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We investigate the influence of the Jahn-Teller distortion and a direct antiferromagnetic moment coupling as
extensions to a two-band Kondo lattice model for the magnetic and electronic properties of manganites. Those
are calculated self-consistently via an interpolating self-energy model and a modified Ruderman-Kittel-
Kasuya-Yosida technique using finite Hund coupling and quantum spins. We found that both effects are
essential to achieve realistic Curie temperatures if we regard intraband Coulomb repulsion. Using reliable
model parameters we got results which are in very good agreement with experimental data in the whole
ferromagnetic doping range. In the calculated phase diagram there are ferromagnetic metal to paramagnetic
insulator transitions, accompanied by a colossal magnetoresistance behavior. To improve the comparability of
the measured behavior of the resistivity with the calculated one, we have to switch on interband Coulomb
correlations.
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I. INTRODUCTION

Manganites like La1−xCaxMnO3 or La1−xSrxMnO3 ob-
tained a lot of interest in past decades, especially after the
discovery of the resistivity’s dependence on the magnetic
field, the colossal magnetoresistance �CMR�. The detection
of huge changes of the resistance in the 1990s led to an
acceleration of the research in this topic. Experimentalists
found very rich phase diagrams containing para- and ferro-
magnetic insulating and metallic regions as well as different
kinds of antiferromagnetism, which can be accompanied by
an ordering of charge or of orbitals. Most of these phases can
also be identified in theoretical calculations. But even after
that long time of research there are still many unresolved
issues. The origin of the CMR is determined as a competition
of different phases, but the exact connections are unknown.
A large variety of phases is an evidence of the complexity of
those systems. Thus it is important to create a solvable
model, which contains as many as possible effects that can
appear in manganites.

The electronic and magnetic features are mainly due to
the 3d electrons of the Mn3+ and the Mn4+ ions, whose ratio
is defined by the doping rate x. Both kinds of ions have fully
occupied spin-up t2g levels which provide a localized spin of
S= 3

2 , but only the Mn3+ ions also have an itinerant eg elec-
tron. The main features of this system should be covered by
the Kondo lattice model �KLM� or double exchange model.
But already ten years ago it became clear that this model
needs to be extended to describe manganites in a proper way.
First of all, Millis et al. argued that the Jahn-Teller effect
�JTE�, which can split up the eg orbitals, should be important
at low and intermediate doping range.1 Likewise it is stated
in some recent publications that a direct antiferromagnetic
coupling between the localized spins, caused by a superex-
change via the oxygen orbitals, is necessary to describe the
competition between the different magnetic phases. Besides
the necessity for the different phases, it also seems to be
important to increase the CMR in theoretical calculations2–5

to be in better accordance with the measured data.

II. MODEL

In this article we want to describe the manganites in the
whole ferromagnetic regime. Therefore we use a two-band
KLM with finite Hund coupling. We extend this model by
terms which describe the JTE, the superexchange, and the
Coulomb interaction. In that general model most of the phys-
ics of the manganites should be incorporated. The phonons
of the JT modes are treated classically, but the spins quantum
mechanically. The model is solved approximately, but self-
consistently. These extensions will appear essential to get the
correct doping dependence of the Curie temperature and to
achieve metal-insulator transitions simultaneously with the
breakdown of the ferromagnetic order. Therefore, we study
the Hamiltonian

H = Hs + Hsd + HU + HAF + HJT

= �
i,j,�,�

Tijci��
+ cj�� − JH �

i,�,�
�i� · Si

+ �
i,�,��

�,��

U���
���ni��ni���� + JAF�

�i,j�
Si · S j

− g�
i

�Q2iTi
x + Q3iTi

z� +
1

2
M�2�Q2i

2 + Q3i
2 � . �1�

ci��
�+� is the annihilator �creator� of an electron with spin � in

the orbital � corresponding to the dx2−y2 or d3z2−r2 orbital at
site i and ni��=ci��

+ ci��. JH is the Hund coupling between the
itinerant spin �i� and the localized Si. The Hubbard param-
eter can represent the fact that there is only intraband Cou-

lomb repulsion �i.e., U���
�,����=0� or that there also is an extra

interband interaction �U���
�,�����0�. JAF corresponds to the

direct superexchange. Q2,3i are special JT modes which
couple with the pseudospin operators Ti

x,z, e.g., Ti
z

= 1
2���ni��=+1−ni��=−1�. A similar model is used, e.g., in

Refs. 6 and 7. Possible other effects, like a hybridization
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between the eg bands, will not be considered explicitly. We
will have a short discussion about that in Appendix A.

III. APPROXIMATION METHODS

A. Electronic part

To solve the resulting equations we need some simplifi-
cations. The JT part is treated in a mean-field
approximation.8 Assuming translational invariance, introduc-
ing spherical coordinates Q3=Q sin �, Q2=Q cos �, and us-
ing “dressed” operators c̄i��

�+� , which are now corresponding to
the higher and lower JT orbital, yields

HJT = g2�
k��

z���n�c̄k��
+ c̄k��. �2�

Here is z�=±1= ±1 and

��n� = − �
��

z��n̄��� . �3�

As one can see ��n� is dependent on the occupation numbers
�n̄��� and therefore has to be calculated self-consistently. The
dressed operators are

c̄i��=−1 = ei�/2�cos
�

2
ci�,3z2−r2 + sin

�

2
ci�,x2−y2� ,

c̄i��=+1 = ei�/2�sin
�

2
ci�,3z2−r2 − cos

�

2
ci�,x2−y2� �4�

and are now a superposition of the original eg states. We
simplify the notation by setting c̄i��

�+� →ci��
�+� . The formulation

of HJT in Eq. �2� is possible because of the restriction to
noncooperative effects. Of course, the JT distortions are co-
operative in reality, which is, e.g., important for orbital or-
dering. But we restrict the noncooperative distortions, so that
we can solve the resulting equations. This suitable form of
HJT allows us to combine it easily with the kinetic part

Hs
JT = �

k��

���k� + z�g2��n�	ck��
+ ck��, �5�

containing the dispersion ��k� of the free band for simple
cubic structure. In this form of HJT one can easily see that the
JTE can split up the bands for ��n��0 �band Jahn-Teller
effect�. That is why we will now refer to both bands as JT
bands, which are denoted by the index �. If we first leave out
the antiferromagnetic coupling, we remain with a correlated
KLM,

H� = Hs
JT + Hsd + HU. �6�

The related Green’s function can be approximated within an
interpolating self-energy approach �ISA�.9 In this approach
we get a self-energy, which fulfills practically all limiting
cases of the KLM. The exactly solvable cases of the ferro-
magnetically saturated semiconductor �magnetic polaron�
and the atomic limit are reproducible by the ISA. Also a
second order perturbation theory is included. These cases are
interpolated by the use of rigorous high-energy expansion. If

we postulate that this approximation is valid also between
the limiting cases, we get a theory that should be reliable for
all temperatures, band occupations, and couplings JH.

Within the ISA, the Hubbard term was handled in an ef-
fective medium approach, so it influences the spectral weight
and the width of the bands. But of course it will also give an
additional splitting of the bands into different Hubbard sub-
bands. We will call all bands �distinguished by the indices
�� ,�� coming from the JTE and the spin	 which are not
affected by the Coulomb repulsion lower Hubbard bands and
the other ones upper Hubbard �sub-�bands. The lower and the
upper sub-bands have an energy difference of the magnitude
of the Hubbard parameter U. For manganites the value of the
Coulomb repulsion is much greater than all the other param-
eters so we can choose in a good approximation U→	. This
means the upper Hubbard bands will be shifted to infinite
energy and will therefore never be occupied. Thus we do not
have to consider these bands explicitly. We get the one par-
ticle Green’s function

��ck��;ck��
+ ��E

ISA = 

���

E + � − T���k� − k��
ISA �E�

. �7�

It is

�8�

the spectral weight of each band coming from the Hubbard
term, k��

ISA �E� the self-energy in the ISA formalism, and
T���k�=z�g2��n�+�����k� the centers of gravity.

Here the ��� represent the probability that there is no
repulsion partner for an electron on the same site. Thus the
sum of the ���, which is equivalent to the maximum occu-
pation of the lower Hubbard bands, for the intraband repul-
sion is greater than for interband interaction. Figure 1 shows
the influence of the ��� on the quasiparticle density of state
�QDOS�. As can be seen a complete filling of the lower
Hubbard bands for n→1 is only possible with the adding of
interband repulsion. This complete filling correlates with the

FIG. 1. �Color online� Differences of the QDOS at ferromag-
netic saturation �T=0 K� if one only has intraband Coulomb inter-
actions or additional interband repulsions. The main discrepancies
are at higher occupation number n. Especially a complete filling of
the bands is only possible with extra interband repulsion �Mott-
Hubbard insulator�. The upper Hubbard bands are shifted to infinity.
J=1 eV, W=3 eV, g=0, and JAF=0.
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generation of a Mott-Hubbard insulator. Thus this property
of the manganites for n=1 is automatically fulfilled within
the ISA including an extra interband repulsion.

The explicit structure of the self-energy is

k��
ISA �E� = −

1

2
z�JHX�,−�

+
1

4
JH

2 a�,−�G�,−�
�0� �E − 1

2z�JHX�,−��
1 − 1

2JHG�,−�
�0� �E − 1

2z�JHX�,−�� , �9�

where

a�� = S�S + 1� − X���X�� + 1� ,

X�� =
��� − z��Sz�

1 − n��

,

��� = �Si
�ci�,−�

+ c��� + z��Si
zni��� ,

G��
�0��E� =

1

N
�
k




E + � − T���k�
, �10�

and Si
�=Si

x+ iz�Si
y. With the spectral theorem we can calcu-

late important terms like the correlation functions

��� = −
2

�NJ
�
k



−	

+	

dE f−�E�

� �E − T���k�	Im Gk���E − �� , �11�

the mean occupation values

�n��� = −
1

�N
�
k



−	

+	

dE f−�E�Im Gk���E − �� , �12�

and the occupation difference

��n� = �
�

��n�=+1,�� − �n�=−1,���

self-consistently. The only remaining model parameters are
the spin S, JH, the JT coupling g, the bandwidth W, the total
density n=1−x �corresponding to ��, and the magnetization
�Sz�.

There are some important changes in the QDOS of the
ISA compared to, e.g., mean-field calculations. The often
used neglection of minority spins by setting JH→	 contra-
dicts for example the KLM’s exactly solvable atomic limit.
Even for large JH there is a spectral weight of the spin-down
peaks of the QDOS, so that a large Hund’s coupling alone
cannot prevent double occupation. Thus we get a finite
QDOS of the spin-down electrons at lower energies �Fig. 1�.
This originates from scattering processes of the spin-down
electrons. Those can do a spin-flip while emitting a magnon
and so become a spin-up electron. This can only be done at
an energy interval with a finite number of spin-up states, due
to the low magnon energies. That means we have a finite
occupation number of minority spin electrons even for a
large Hund’s coupling. Furthermore, there is a peak in the

spin-up spectrum at higher energies which is connected to a
magnetic polaron. Details can be found in the original paper.9

B. Magnetic part

To calculate �Sz� in a self-consistent way, too, we use
another technique. In the modified Ruderman-Kittel-Kasuya-
Yosida formalism �mRKKY� we try to map the Hamiltonian
of the KLM onto an effective Heisenberg model.10,11 That is
done by averaging out the electronic degrees of freedom.
This yields

Hf f
eff = −

JH

N
�

i���kq

e−iqRi�Si · ������ck+q�
+ ck���

�s�. �13�

�¯��s� means averaging while treating the spins as numbers.
We can now construct the equation of motion �EOM� for the

Green’s function Ĝk,k+q
��� �E�= ��ck� ;ck+q��

+ ���s�. This yields

Ĝk,k+q
��� �E� = �q0����Gk

�0��E� −
J

2
N
�

ik���

�e−i�k−k��RiGk
�0��E�

��Si · �����Ĝk�,k+q
���� �E� + e−i�k�−�k+q�	RiĜk,k�

�����E�

��Si · �����Gk+q
�0� �E�	 . �14�

As a simplest approximation we can replace the full Green’s
functions right-hand side �RHS� by free Green’s functions,

Ĝk�,k+q
���� �E� → Gk+q

�0� �E��k�,k+q���,��,

Ĝk,k�
�����E� → Gk

�0��E��k�,k��,��. �15�

Then we use the spectral theorem and

Si · �i =
1

2
�Si

z Si
−

Si
+ − Si

z �
to get effective exchange parameters

J�q�1.O. = −
1

2
JH

2 
2�
k

f−���k + q�	 − f−���k�	
��k + q� − ��k�

�16�

for an effective Heisenberg model

Hf f
eff = − �

ij

ĴijSi · S j ,

Ĵij =
1

N
�
q

Ĵ�q�e−iq�Ri−Rj�. �17�

This is the result of the conventional RKKY �cRKKY� which
is originally derived by perturbation theory for low JH. But
we can go one step further and replace the upper Green’s
functions by the Green’s function we derived in Eq. �7�:

Ĝk�,k+q
���� �E� → Gk+q

�� �E��k�,k+q���,��,

Ĝk,k�
�����E� → Gk

��E��k�,k��,��. �18�

After the solution of the EOM, we get effective exchange
integrals
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Ĵ�q� =
JH

2

4



−	

+	

dE f−�E�
1

�N
�
k��

Im Ak,k+q
�� �E� , �19�

which define the effective Heisenberg term. These exchange
integrals now contain the electronic correlations due to

Ak,k+q
�� �E� = Gk��

�0� �E�Gk+q��
ISA �E� + Gk+q��

�0� �E�Gk��
ISA �E� ,

Gk��
�0� �E� =




E + � − T���k�
, �20�

where Gk��
ISA �E� is the Green’s function �7�. We have now

included the band index � which we first left out for sim-
plicity. The mRKKY covers the cRKKY for low JH �Tc

�JH
2 � and the double exchange for large couplings �Tc

�const� �Fig. 2�. After the mapping onto an effective
Heisenberg model, it is easy to add the antiferromagnetic
part by just summing both exchange integrals

Jij = Ĵij + Jij
AF, �21�

where Jij
AF has only next-neighbor elements with the magni-

tude JAF. It is important to recognize the differences between

both couplings. Ĵij comes from the electronic properties and
is a long range interaction ��5th–30th neighbor� and Jij

AF is
constant and short range �next neighbor�. Thus the adding of
Jij

AF is more than just a renormalization of the energy scale.

We can now directly calculate the magnetization �Sz� with
the solution by Callen:12

�Sz� = 

�1 + S + ���2S+1 + �S − ���1 + ��2S+1

�1 + ��2S+1 − �2S+1 ,

� =
1

N
�
q

1

e�E�q� − 1
,

E�q� = 2
�Sz��J0 − J�q�	 − gJ�BB0. �22�

Furthermore, one can derive Eq. �B1� for the direct calcula-
tion of the Curie temperature as it is shown in Appendix B.

A typical feature of the mRKKY for larger n is the ap-
pearance of a critical Jc, which is needed to get a finite Tc.
This Jc can become very large, especially for a larger value
of the free bandwidth W. It can even achieve the magnitude
of the large JH of the manganites �Fig. 2�.

The whole model is now self-consistent with respect to
the electronic and magnetic properties.

IV. RESULTS

We will focus on the model’s electronic and magnetic
properties, like the resistivity, the JT splitting, and the Curie
temperature. As we will see there is a great difference be-
tween having only intraband repulsion or having additional
interband correlations. Interesting, for example, is the influ-
ence of the JT splitting on the Curie temperature �Fig. 3�. In
our self-consistent calculation we need a critical gc, which
was also found in other works,6,7,13 to split up the bands. This
splitting will usually decrease Tc, but with extra interband
repulsion and larger occupation number n �n�0.8, which
means half-filling in this case� Tc can also be increased. Thus
we will observe the respective interaction in different parts.

Experimental results show that the ferromagnetic regime
is in the doping rate 0.1�x�0.5 with a maximum of Tc at
x�0.3.14,15 The observed behavior of the Curie temperature
is not reproducible in the pure two-band KLM, because it
causes a finite Tc for high and low doping rates. Therefore it
is necessary to include other effects. In our case these are the

FIG. 2. �Color online� Tc−JH dependence in the mRKKY for-
malism. �a� For higher densities n a JH�JH

c is needed, to get a finite
Tc. The regions where the mRKKY corresponds to conventional
RKKY and the double exchange formalism are marked. W=1 eV.
�b� With increasing bandwidth W a higher Tc is achieved, but a
larger JH is needed to get a finite Curie temperature. n=0.95.
�a�,�b�: g=0, JAF=0, and intraband repulsion.

FIG. 3. �Color online� Influence of the JT coupling on Tc. Be-
yond a critical gc �marked by arrows� the JT splitting of the eg

bands starts and then Tc is changed. If there is only intraband Cou-
lomb repulsion Tc is decreased every time, but can be increased if
we switch on an additional interband repulsion. JH=2 eV; W
=1 eV.
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JTE and the superexchange, incorporated by a direct antifer-
romagnetic exchange JAF. Furthermore, at higher electron
densities a CMR is observed accompanied by a FM to PI
transition. To achieve a large CMR and to reproduce the
insulating behavior for n→1 we will need interband Cou-
lomb repulsion.

Several suggestions were made to explain the CMR. Most
are based on a competition between different phases �e.g.,
Ref. 8�. In Ref. 2 this is described as a result of the compet-
ing tendencies to form a charge localized or a ferromagnetic
phase. This leads to a peak of the resistivity at Tc. A further
theory is based on the current-carrier density collapse in-
duced by the emerging of bipolarons.16,17 Those bipolarons
can be broken up below Tc for a exchange JHS which is large
enough. We will see in our model that this peak of the resis-
tivity at Tc can be the consequence of a lattice distortion
�intraband Coulomb repulsion� or of a drastic change of the
spectral weight of the quasiparticle density of states �inter-
band Coulomb repulsion�.

It is not in the scope of the paper to investigate antiferro-
magnetic phases or orbital ordering. Thus we will only focus
on ferro-or paramagnetic phases.

A. Intraband Coulomb repulsion

First we will only use intra band Coulomb repulsion. That
means we use ���=1− �n�,−�� in Eq. �7�. Figure 4 shows
how the JTE and the antiferromagnetic coupling act on the
Curie temperature in this case. An increase of the according
couplings reduces Tc. The impact on Tc of the JTE appears at
low and of the AF coupling at high doping rates. This differ-
ent scope of each coupling is physically consistent, because
at high electron density �that means small x� there are more
active Mn3+ ions, so the JTE should be supported, which is
shown by measurements, too.18 A reduction of Tc by the JTE
has also be found by other authors, e.g., Ref. 13. The drop of

the Curie temperature at small x can also be reproduced
without the JTE3 and/or if we include a large interband Hub-
bard interaction in our model.

JAF was found to stabilize the antiferromagnetic CE phase
for x�0.5,19 so it seems plausible that the influence of this
coupling on Tc should be noticed stronger in this region. The
importance of JAF in connection with the RKKY mechanism
is even more obvious. No matter whether we use the cRKKY
or the mRKKY formalism, there is always a finite Curie
temperature for small electron densities, i.e., high x, for JH
�0 �compare Ref. 11 and Figs. 2 and 4�. Thus we need a
non-RKKY-like effect to reduce Tc in this region. It should
favor antiferromagnetism, which is observed for higher dop-
ing rates. To the knowledge of the authors, there is no other
plausible effect, which reduces Tc at higher x and shifts its
maximum to lower doping rates and which can be added to
the two-band KLM. Calculations without such an extension
can achieve good results for Tc at lower doping rates, but
they will miss the characteristic decrease above x�0.3.

We can now try to calculate realistic values of Tc. There-
fore, we choose S= 3

2 and fix the Hund coupling to JH
=2 eV, which is a typical value and confirmed �with large
error bars� by photoemission measurements. For the free
bandwidth we choose W=2 eV for La1−xCaxMnO3 and
Nd1−xSrxMnO3, which is estimated from ab initio calcula-
tions for La1−xCaxMnO3.20 Since La1−xSrxMnO3 is regarded
to have a larger bandwidth, we use W=3 eV. That corre-
sponds to a hopping t=0.16�0.25� eV for the simple cubic
model density. The order of magnitude of the JT and AF
coupling can only be determined roughly. In Ref. 8 g is
guessed to be g=1. . .1.6kJTt, which means in our model
with kJT=1 that gt=0.16 eV=0.4. . .0.64 eV. JAF is considered
to be in the range of JAF=0.01. . .0.1t8,21 ⇒JAF
�2. . .20 meV. These parameters will be fitted to the experi-
ment for each material. That means we choose a set of these
parameters and calculate full magnetization curves �Sz��T�
for each x and get Tc from that curves. It is necessary to

FIG. 4. �Color online� Effect of the different couplings on the Curie temperatures at intraband Coulomb repulsion. Left: JAF acts on Tc

mainly at higher doping rates and can reduce Tc to zero in this regime. This is not possible in the pure KLM. Right: The JT coupling acts
at lower doping rates and can change Tc only in a special range Tc

min�x��Tc�Tc
max�x�, in contrast to JAF. The Curie temperature will not be

reduced for g�g	 any more �cf. Fig. 3�. The upper Tc curve on each side matches the normal two-band KLM without AF and JT coupling.
Left: g=0. Right: JAF=0. Both: JH=2 eV; W=1 eV.
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calculate the full curves because of the temperature depen-
dence of the strain and the mutual influence of the JTE and
the magnetization �discussed later�. If one calculates Tc di-
rectly by using Eq. �B1� one has to set �Sz�=0 and one has no
influence of the magnetization on the JT splitting any more.

As Fig. 5 shows it is possible to have an excellent agree-
ment with the experimental data within our theory. The var-
ied parameters g and JAF stay in the estimated range and play
a crucial role to achieve the conformity of the curves of the
Curie temperatures. First, which is most important for an
approximative theory, our method can reproduce the right
trends according to Tc and secondly it can also give qualita-
tively right values in contrast to, e.g., mean-field treatments.
Thus it could be applicable to be combined with ab initio
calculations to derive self-consistently input parameters like
JH.

In the low doping region exists a finite JT splitting of the
two JT bands of the order EJT=2g2��n�. Near Tc the occu-
pation difference ��n� �equivalent to the strain Q=g��n��
increases, which is in qualitative agreement compared to
Ref. 18 �Fig. 6�. Even though the transition temperature of
the distortion is not far away from the experimental result,
the main focus should be on the qualitative behavior, because
of the simple treatment of the JT term.

The increase of the strain is accompanied by a drastic
decrease of the magnetization. That is the reason why we
could not use formula �B1� to calculate Tc. If we are in the
critical regime of the parameter g the JT splitting and the
magnetization have a large impact on each other.22–25 At in-
traband repulsion both effects suppress each other. That
means the larger the magnetization �Sz� the lower the JT
splitting EJT and vice versa. When �Sz� goes down because of
the rising temperature it cannot have that much effect on the
JT splitting any more. Therefore, the splitting of the JT bands
becomes stronger. With this increase of EJT it will now sup-
press the magnetization even more and will lower it in addi-
tion to the lowering of the temperature effect. When this
self-energizing effect exceeds a special value, we have a
first-order transition of the magnetization. One can also see
this behavior in the QDOS �Fig. 7� where the different bands

split more for T=Tc. The finite QDOS for the spin-down
electrons at lower energies is a quantum mechanical effect
due to scattering.9

If we calculate the resistivity according to Eq. �C2� and
define an insulator-metal via the temperature behavior, we
can get the phase diagram of Fig. 6. There are metal-
insulator transitions at lower doping rates, which are accom-
panied by a change of the magnetic phase. In Fig. 8 �left� the
explicit resistivity curves are plotted. One sees the jump of

FIG. 5. �Color online� The calculated Curie temperatures in comparison with the experimental data for the corresponding materials in the
ferromagnetic regime. �Refs. 14 and 15� Lines are a guide for the eyes. The doping range where a JT splitting occurs is marked. For
La1−xSrxMnO3 there are typical curves without the JTE or JAF but fitting the other parameters. One can see that both effects are needed to
get the typical shape of the Tc curves. Parameters as follows. La1−xCaxMnO3: W=2 eV; JAF=5.4 meV, g=0.428 eV. Nd1−xSrxMnO3: W
=2 eV; JAF=5.0 meV; g=0.435 eV. La1−xSrxMnO3: W=3 eV; JAF=3.7 meV; g=0.436 eV. All: JH=2 eV.

FIG. 6. �Color online� �a� Comparison of the calculated values
for the strain and �Sz� for La1−xCaxMnO3 at x=0.15 and the mea-
sured strain �Refs. 18�. The magnetization first lowers the JT dis-
tortion and then breaks down at the rising of the strain at Tc. �b�
Phase diagram for the parameters of La1−xSrxMnO3 in Fig. 5. M,
metal; I, insulator; F�P�, ferro�para�magnet. At the M-I transition a
CMR effect occurs of a maximum of 170% at x=0.1.
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�el at Tc for low doping rates. The reason for that is the
behavior of the JT splitting �cf. Fig. 6�a�	. At Tc the bands
split which means a lower total DOS at the Fermi energy �cf.
Fig. 7� and therefore a decrease of the conductivity. With
rising temperature the JT splitting becomes smaller and the
bands get more and more overlap again. Thus the resistivity
decreases with temperature resulting in an insulating behav-
ior. With the breakdown of the JT splitting we get the normal
metallic phase again. Though the simultaneous FM-PI tran-
sition leads to a CMR behavior, the resistivity jump is too
small compared to measured results.

Antiferromagnetic phases and phase separation are very
important, but were not part of this work, because it would
enormously expand the complexity of the problem. Those
were found in Ref. 26 for the KLM using the same self-
energy. The inclusion of the AF phases within our whole
model will be left for later investigations.

B. Interband Coulomb repulsion

With intraband repulsion we achieved very good results
concerning the Curie temperatures and the JT splitting. Even
though there are important phases and phase transitions �FM-
PI�, the ferromagnetic insulating �FI� phase is missing and,

of course, the many antiferromagnetic and charge-orbital or-
dering phases are not there, either. While we will not con-
sider antiferromagnetism and orbital-charge ordering, we
will try to get the FI phase in our model. Such a phase is
found for low doping rates, e.g., in Ref. 27. This phase can-
not be reproduced in the intraband model. These measure-
ments also show that the resistivities decrease with increas-
ing doping rates. That is not reproduced in the intraband
treatment; thus we will now add the interband Coulomb in-
teraction.

Actually we can achieve a ferromagnetic phase with insu-
lating behavior of the resistivity �Fig. 8�. Additionally we
have a better comparability of the theoretical and experimen-
tal results for the resistivity in the whole ferromagnetic re-
gime, too. In particular the system becomes an insulator at
x→0, the Mott insulator as described in Fig. 1. But the fer-
romagnetism breaks down in this limit �Tc=0 K� which in-
dicates that other phases are important for x→0. This is
indeed the case, as it is widely known from the experiments
showing antiferromagnetic or spin glass phases, which we
are not treating in this work. That our approximate self-
energy ��

ISA�E� actually leads to antiferromagnetism at x
→0 was shown by Hennig.26

Furthermore, we can get a high CMR effect �Fig. 9�
which was very much smaller while using only intraband
repulsion. In this case the origin of the resistivity jump is
different from that which occurred in the intraband calcula-

FIG. 7. �Color online� The quasiparticle DOS and Fermi function �blue solid line� for the parameters of La1−xCaxMnO3 in Fig. 5 at x
=0.15, below and at Tc=175 K. Those bands originate from the combined states of eg orbitals shown in Eq. �4�. One sees that the splitting
��n� between the lower �solid line� and the upper �dashed line� JT band rises at Tc and the same occurs for the strain Q=g��n� in accordance
with the experiment.24 For a large JH there is a finite occupation of the spin-down band for T�Tc, too.

FIG. 8. �Color online� Left: Calculated resistivities for the pa-
rameters of La1−xSrxMnO3 in Fig. 5, intraband repulsion. Right:
Calculated resistivities with extra inter band repulsion: W=2 eV;
J=3 eV; JAF=0; g=0.5 eV. The values of Tc are marked by solid
arrows and the critical temperatures of the JTE by dashed ones.
With extra interband repulsion the curves now show qualitative
agreement with the experiment �Ref. 29� and especially a ferromag-
netic insulating phase can be achieved at lower doping rates.

FIG. 9. �Color online� The resistivity for different external mag-
netic fields. With extra interband Hubbard-repulsion CMR behavior
with ��=��H=0�−��Hmax� /��Hmax� over 700% can be found. x
=0.1; g=0 eV; W=3 eV; J=3 eV.

EXTENSIONS TO THE KONDO LATTICE MODEL TO… PHYSICAL REVIEW B 75, 144409 �2007�

144409-7



tions. The latter originated from the JTE and the increasing
band splitting. Now, in the interband calculations, it comes
from a drastic change of the DOS in the bands themselves.
Figure 10 shows that at Tc it comes to a large rearranging of
the DOS at the Fermi energy if no external magnetic field is
applied. This leads to a drastic reduction of the spin-up DOS
which cannot be compensated by the increase of the spin-
down DOS. Therefore, the resistivity is jumping to a higher
value. At higher temperatures above Tc there is an increase of
the conductivity due to the softening of the Fermi function.
The fast changing of the DOS can be slowed down in the
presence of an external magnetic field and leads to a delay of
the increase of �el. That means we have a CMR effect.

Quantitatively, the resistivity should vary over more or-
ders of magnitude, according to the experiment. We also
have to pay for the better agreement of the resistivity with a
worse behavior of Tc. The Curie temperature is much more
suppressed if we use interband repulsion and we cannot get
the typical shape of a parabola for the Tc-n curves. Such a
strong influence on Tc is probably due to the effective me-
dium treatment of the Hubbard part. This treatment cannot
contain all many-body correlation effects. Thus for the cal-
culation of Tc we should include the Coulomb interaction in
a more subtle way, which is no simple task, of course.

V. SUMMARY

We investigated manganite systems with a two-band
KLM, which was extended by terms that represent the Cou-
lomb correlations, the JTE, and the superexchange. Within
this model we calculated the electronic and magnetic prop-
erties self-consistently by the use of an interpolating self-
energy approach and a modified RKKY method. Because of
the use of full single-particle Green’s functions, this method
contains more many-body interactions than the conventional
RKKY. Therefore, it gives reliable results even for larger JH.

With this formalism it was possible to calculate Curie
temperatures, which are in very good agreement with experi-

mental measurements in the total ferromagnetic doping
range, if we use intraband Coulomb repulsion. We have
shown that therefore the additional terms to the KLM are
essential to achieve these results. We found a phase diagram
with FM-PI transitions where a CMR effect occurs and the
JT distortion behaves qualitatively like in the measurements.
But we have seen in our model that the neglection of inter-
band Hubbard correlations will lead to an incorrect behavior
of the resistivity. With the introduction of such interactions
we get qualitatively correct results. A disadvantage of our
effective medium treatment of the Hubbard part is that it has
a too strong influence on the magnetic properties, especially
Tc. Possibly, a treatment of the Hubbard term that has a
better inclusion of many-body correlations could correct
these discrepancies.

Most of the research on manganites is done with the sim-
plification JH→	, which means effectively the neglection of
the minority spins. But as can be seen in Fig. 7, there exists
also for T�Tc a finite occupation of the spin-down band.
This comes from scattering processes of the spin-down with
the spin-up electrons accompanied by magnon emission or
absorption, which is a result of the quantum mechanical
treatment. Thus the influence of the spin-down electrons can-
not be neglected just by the assumption of infinite Hund’s
coupling.

In principle our model contains all ingredients to describe
the para- or ferromagnetic phase of the manganites properly
and none of the parts seem to be negligible.
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APPENDIX A: HYBRIDIZATION

Hopping between different bands seems to be important
in manganites. To recognize which effect such a hybridiza-

FIG. 10. �Color online� The quasiparticle DOS �solid lines� for parameters of Fig. 9 at different temperatures. Only the lower part of the
QDOS close to the Fermi edge ��−2.15 eV, dashed line� is shown. Left: �B=0 T� The QDOS at the Fermi energy is changing very
drastically at Tc. It develops a lack of spin-up electrons which cannot be compensated by the spin-down electrons and creates the jump of
the resistivity in Fig. 9. After Tc the QDOS is not changing very much and �el lowers because of the softening of the Fermi edge. Right:
�B=16 T� The QDOS is not changing very much at all. Thus just a small change of �el exists.
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tion could have in our model, we use an effective medium
approach:

H̄ = �
k��

����k� + ��
ISA�E�	ck��

+ ck�� + �
k��

Vck��
+ ck�−�.

�A1�

Here the first part is the original Hamiltonian �1�, represented
by the approximative ISA self-energy �10� containing the
correlation effects. Due to the adding of ��

ISA�E� the elec-
trons can be treated like free electrons in an effective me-
dium. The second one describes the interband hopping with
the hybridization V. After solving the according EOM we
can investigate the possible changings due to this new term.

There are no big changes of the resistivity curves for hy-
bridization values at the order of magnitude of the intraband
hopping �t�0.2 eV�, as can be seen in Fig. 11. Only if V
exceeds this range can it come to essential modifications.
This can also be shown at the density of states �Fig. 12�. The
formation of a hybridization gap occurs only for larger V.
For V� t the QDOS is almost unchanged.

Actually those bands we have investigated do not come
from pure d3z2−r2 or dx2−y2 eg orbitals, but from the states
shown in Eq. �4�. That means the resulting bands do not

belong to one of those eg orbitals, but already contain some
mixing.

APPENDIX B: DIRECT CALCULATION OF Tc

By setting �Sz�→0+ in Eq. �22� one can get an explicit
formula for the Curie temperature

kBTc =
2

3

S�S + 1�� 1

N
�
q

1

�Ĵ�0� − Ĵ�q�	Tc

�−1

. �B1�

This formula �B1� is exact, but it can cause problems if there
are some temperature dependent variables, beside those of
the KLM, which can influence the magnetization. In our case
this can be the JT splitting at special parameter constella-
tions. Thus Eq. �B1� has to be handled carefully.

APPENDIX C: RESISTIVITY

To calculate the electrical conductivity tensor, we can use
the Kubo formula28 and get a current-current correlation
function

�̄���E� = V

0

�kBT�−1

d�

0

	

�j��0�j��t + i�
��e�i/
��E+i0+�tdt .

For the special case ��k�=��−k� and v��k�= �1/
��k�
��k�=

−v��−k�, which holds for the simple cubic structure, this can
be simplified to a formula which only contains one-particle
Green’s functions.29,30 With the definition of a transport func-
tion, e.g., in x direction,

��x� =
1

V
�
k
� ���k�

�kx
�2

�„x − ��k�… , �C1�

we now get

�̄�T�xx �
1

kBT
�
��

 


−	

+	

dE dx
�����E,x�	2

4 cosh2�E − �

2kBT
���x� ,

�C2�

with the QDOS ����E ,x�=−�1/�� Im Gx
���E� and the resis-

tivity �el�T�= �̄−1�T�. Results with the same structure can be
found in other work.31–33

FIG. 12. �Color online� Quasiparticle DOS for different hybrid-
ization values V. Lower JT band is represented by the �black� solid
line, upper by the �red� dashed line, and the Fermi function by a
�blue� solid one. Only the part at lower energies close to the Eermi
edge is shown. For hybridizations near the intraband hopping t
=0.16 eV there are only small changes. Parameters as in Fig. 11 for
x=0.15 and T=50 K, interband Coulomb repulsion.

FIG. 11. �Color online� Resistivity curves for different hybridization values V at two doping rates. Major discrepancies occur only if V
is much greater than the normal intraband hopping t=0.16 eV. Parameters: W=2 eV, JH=3 eV, JAF=0, and g=0.5 eV, interband repulsion
�cf. Fig. 8�.
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