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We present a critical analysis of the Sompolinsky theory of equilibrium dynamics. By using the spherical
2+p spin-glass model we test the asymptotic static limit of the Sompolinsky solution showing that it fails to
yield a thermodynamically stable solution. We then present an alternative formulation, based on the Crisanti,
Horner, and Sommers [Z. Phys. B: Condens. Matter 92, 257 (1993)] dynamical solution of the spherical p-spin
spin-glass model, reproducing a stable static limit that coincides, in the case of a one step replica symmetry
breaking ansatz, with the solution at the dynamic free energy threshold at which the relaxing system gets stuck
off equilibrium. We formally extend our analysis to any number of replica symmetry breakings R. In the limit
R — o, both formulations lead to the Parisi antiparabolic differential equation. This is the special case, though,
where no dynamic blocking threshold occurs. The formulation does not contain the additional order parameter

A of the Sompolinsky theory.
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I. INTRODUCTION

Recently, a great deal of work has been devoted to the
study of the so-called off-equilibrium dynamics of glassy
systems, i.e., the dynamics on time scales large enough to
discard the initial condition but not to ensure equilibrium.
This large amount of work has left aside the analysis of the
equilibrium dynamics, i.e., the dynamics which should lead
to the static properties derived from statistical mechanics.

When discussing the equilibrium dynamics of spin-glass
systems, one usually refers to the Sompolinsky solution.!
Sompolinsky assumed that the relaxation dynamics of a spin-
glass system occurs via a set of large relaxation times z,, all
of which become infinite in the thermodynamic limit, reflect-
ing the hierarchical order of free-energy barriers or states of
the spin-glass phase. By incorporating explicitly this as-
sumption into the relaxation dynamics of the Sherrington-
Kirkpatrick (SK) model?? he was able to construct a consis-
tent mean-field dynamical theory that, in the limit of an
infinite series of relaxation times, is described by two con-
tinuous order parameters functions: the overlap function
q(x), measuring the amount of correlation that has not yet
decayed, and A(x), representing the anomalous contribution
to the response function. As in the static calculation the vari-
able x can be defined to vary in the interval [0,1] with x=1
corresponding to the shortest (though infinite) time scale and
x=0 to the longest. With this definition ¢(x) is a nondecreas-
ing function while A(x) is a nonincreasing function with
boundary condition A(1)=0.

In the static limit the Sompolinsky solution, in general,
does not coincide with the Parisi static solution of the full
replica symmetry breaking (FRSB) phase.* de Dominicis,
Gabay, and Orland® (DGO) have, indeed, shown that the
static limit of the Sompolinsky solution can be derived from
a static calculation with replicas by using a replica symmetry
breaking (RSB) scheme different from Parisi’s. The two
schemes, however, coincide in the so-called Parisi Gauge,
i.e.,, choosing the function A(x) such that dA(x)/dx=
—xdq(x)/dx.!
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In this work we reconsider the Sompolinsky solution, we
show the instability of its static limit and we check the va-
lidity of an alternative solution, originally proposed by
Crisanti, Horner, and Sommers (CHS).® in the context of a
generic R replica symmetry breaking scenario.

Our testing bench is the 2+p-spin interacting spherical
model whose static properties have been studied by the au-
thors in previous works.”® Such a model, for p>3, displays
a rich phase diagram that we show in Fig. 1. It contains a
replica symmetric (RS) phase (i.e., a phase in which the RS
ansatz yields a thermodynamically stable solution), a one
step replica symmetry breaking (1RSB) phase, an infinite
steps RSB phase, and even a phase consisting of an infinite,
continuous (or full), set of RSBs plus a separate step of RSB
(we call it the 1-FRSB solution). Besides this, it has the
further advantage, with respect to, e.g., the SK or the Ising
p-spin models, of being exactly solvable in each one of the
phases. In the same model it is, therefore, possible to ana-
lytically check the validity of the Sompolinsky solution (and
any alternative proposal) both in a phase where the thermo-
dynamics is known to be IRSB and in one where it is FRSB.
The relaxation dynamics for the present model is illustrated
in Sec. II. There we also solve the equations of motion mak-
ing use of two simple ansatz (the dynamic analogs of the RS
ansatz and of the Sommers ansatz, respectively). This should
help to fix notation and concepts and serves as a starting
point for the subsequent discussion.

The line of investigation proceeds, then, along the follow-
ing steps. In Sec. III, reconsidering in detail the derivation of
the Sompolinsky solution, we observe that, in a Parisi IRSB-
stable phase, it tends to a static solution different from the
one of Parisi as the time goes to infinity. This is not dramatic,
since there is no reason preventing the dynamic limit from
being different from the thermodynamic solution (corre-
sponding to the global minimum of the free energy landscape
of the system). Indeed, for IRSB systems, it is a well-known
property that in a quenching procedure from high tempera-
ture the dynamics gets stuck at a threshold free energy level
strictly above the equilibrium one.’
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FIG. 1. Qualitative sketch of the T—J, phase diagram of the
2+p spin spherical model with p>3 in the mean field approxima-
tion. Four phases are displayed. (i) RS/paramagnetic for which the
overlap order parameter is zero; (ii) IRSB/structural glasslike,
where the order parameter is the single overlap g;; (iii) FRSB/spin
glass whose order parameter is a continuous function; and (iv)
1+FRSB with an order parameter consisting of a function g(x) plus
a single number ¢q; representing the self-overlap and such that
q1>q(1). The full curves are the static transition lines, whereas the
dotted ones are the dynamic ones. Notice that dynamic transitions
are different from static ones only when a separate step of RSB
occurs. Indeed this happens for the RS/IRSB transition, for which
the dynamic transition line is rederived in the proper dynamic con-
test in Sec. V B, as well as for the IRB/1-FRSB and FRSB/1-FRSB
transitions (in the latter case only in a small region, see inset). For
p=3 only the RS and the 1RSB phases are present.

In Sec. IV, always working in the 1RSB phase of the
2+p spherical model and using the DGO formalism, we
check the stability of the Sompolinsky solution in its static
limit. We find that it is thermodynamically unstable (details
of the proof of the instability are reported in Appendix C).
We further generalize this result to the case of a dynamics
described by any finite number R of diverging relaxation
times.!? Eventually, we analyze the R— o limit in which the
Sompolinsky static limit and the static Parisi solution coin-
cide, provided one fixes the Parisi’s gauge, and we address
the reasons of the qualitative difference with the behavior at
finite R.

In Sec. V, we propose an alternative formulation of the
equilibrium dynamics of spin-glass systems, based on the
CHS dynamical solution of the spherical p-spin model.® This
is a solution apparently similar to Sompolinsky’s, but based
on slightly different assumptions, that, however, turn out to
be crucial in curing the instability of the latter. As well as
Sompolinsky’s the CHS solution tends, as t—©°, to a solu-
tion different from Parisi’s. The explicit computation of the
solution on the 1RSB-stable phase of the 2+p spherical
model shows that the infinite time limit coincides with the
corresponding Parisi solution at the threshold free energy and
that, unlike Sompolinsky’s, it is marginally stable in that
limit. The same formalism is effective for any number of
steps and the limit R— is considered as well. Details are
reported in Appendix D.

Finally, in Appendixes A and B, we report the DGO deri-
vation of the Sompolinsky solution and discuss its connec-
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tion with the Parisi solution in the FRSB phase.

II. THE DYNAMICAL MODEL

To illustrate the equilibrium dynamics of spin-glass sys-
tems we use the spherical 2+p spin model defined by the
Hamiltonian

1,N
H——E EJZ)O'O' - E Jl(}l’.)..,-po',-l"‘a',-p, (1)
i<j i<-<i

p

where p is an integer equal to or larger than 3 and o; are N
continuous real spin variables which range from —% to +%
subject to the global spherical constraint

N

2 0l =N. (2)
i=1
(s=2,3,...

dependent identically distributed Gaussian variables of vari-
ance

The coupling strengths Jl(:)l ) are quenched in-

2 17>
§ 2_ 5 S / e :
(]iliZ.”is) = 2Ns_l . 151 < < Ig (3)

and mean zero. The scaling with the system size N ensures
an extensive free energy and hence a well-defined thermody-
namic limit N—o. Without losing in generality one may
take either J, or J, equal to 1 since this only amounts to a
rescaling of the temperature 7. Finally, the parameter r is a
Lagrange multiplier needed to impose the spherical con-
straint. In the following, when discussing the FRSB and
1-FRSB phases of the model, we implicitly assume p > 3.

The relaxation dynamics of the model is described by the
Langevin equation

OBH
So(1)
where 8'=T is the temperature, Fal a microscopic time

scale, and the noise &(7) a Gaussian variable of zero mean
and variance

Ty d,0(1) = +&(1), (4)

(EOE ) =215 8,81~ 1), (5)

which ensures the proper equilibrium distribution.

In dynamical calculations the quantities of interest are a
product of spins averaged over the thermal noise and disor-
der. Of particular interest are the local spin correlation func-
tion

C(1.1") =(o () o(t'))¢ (6)
and the average local response function
X)) _
Gt.1") = sen) o (7)

where h,(1) is an external magnetic field.'!

Using the Martin-Siggia-Rose formalism'? in the path in-
tegral formulation'>!# the correlation and response functions
can be obtained from a generating functional for dynamic
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correlations and response functions. The disordered average
can be done directly on the generating functional without
using replicas since the generating functional is normalized
to one.'> The calculation is now rather standard and we do
not report it but give directly the results. The interested
reader can find more details in Refs. 6, 16, and 17.

In the thermodynamic limit N— o the dynamics reduces
to a single-spin self-consistent non-Markovian dynamics de-
scribed by the equation

t
Falo"ta(t)=—ﬂr0'(t)+f dr'2(t,t")o(t') + 5(r), (8)
0
where t, is some initial time and 7() a Gaussian noise with
zero mean and variance

() p(t") =215 8t~ ') + Ale.1"). ©)

The vertex A and the self-energy 3 of the 2+p model are
given by

A1) = A[C(1,")] = o C(t,1") + 1, C(1,£')P~", (10)

S(t,t")y = AN [C(t,t)]G(t,t")
=[po+ py(p - DC(.t")*1G(1,t'), (1)

where
Mo = (18‘]2)27 lu’p=§(,8‘]p)2’ (12)

and A'(x)=dA(x)/dx.
The correlation and response functions must be evaluated
self-consistently from the single-spin dynamics as

_ Ko
~ABh(t')’
where the average ((---)) is over the random noise 7(z).
Since we are interested in the equilibrium correlation and
response function we take the initial time 7, equal to —% so
that two-times quantities become a function of the time dif-
ference only (in other words we are in a time translational

invariant regime).'* To work in Fourier space we introduce
the transformed functions

C(t,t")=(a(t)o(t")), G(t,t") (13)

Clw) = j Ocdtei“”C(t), (14)

G(w) = f - dte'G(1). (15)
0

The single-spin equation of motion then reads
o(w) = G(w) n(w), (16)
where G(w) obeys the Dyson equation
G (w)=pr-il'o-2(0)=G;'(0) - 2(0)  (17)
and 7(w) is a Gaussian variable of zero mean and variance
(n@)(0)) =280+ 205 + A(w)].  (18)

In the Fourier space the correlation function C(w) is given by
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C(w) =(o(w)o(- w)), (19)

where the average is over the noise 7(w). The fluctuation
dissipation theorem (FDT)!!

G(t)=- 0(1)9,C(1) (20)

is recast, in Fourier space, as
2

C(w)=—1Im G(w). (21)
w

The FDT implies that the static susceptibility G(w=0) reads
Glw=0)=C(t=0) - C(t — ). (22)

This reduces to G(w=0)=1 when the spherical constraint is
imposed [C(r=0)=1] and the decay to zero of C(r) for large
times is assumed.

A. The “replica symmetric” solution

Before introducing the Sompolinsky solution we consider
the derivation of the static limit of the dynamics assuming
the existence of a time persistent contribution to the correla-
tion function. We will eventually see [Egs. (35) and (39)]
that, in the limit w— 0 (or t— ), it leads to a static solution
equivalent to a replica symmetric (RS) one.

The strategy for constructing the solution in the spin-glass
phase is the following. First one assumes that in the spin-
glass phase the correlation function C(¢) decays to a finite
value

lim C(r)=¢g > 0. (23)
{—00
The parameter ¢ is called the Edwards-Anderson order pa-
rameter and represents the time-persistent part of the corre-
lation. This implies that C(w) is of the form

C(w) = Cl(w) + 2mg S w), (24)

where (~f(t)=C(t)—q is the finite-time part of C(7), decaying
to zero as t— .

For the spherical model the single-spin equation of mo-
tion (16) is linear and the self-consistent equation for g can
be easily derived just substituting the equation of motion
(16) into the definition (19) of C(w) and extracting the time-
persistent part. However, we derive it in the following in a
more general way.

Inserting Eq. (24) for the correlation function into the
definition of the vertex function A(w) one has

A(w):f dte“‘”A(t):J dte™[A[C(1)] - Alg) + A(g)]

= A(w) +27A(g) 8 w), (25)

where K(w) contains only contributions from the finite-time
part of the correlation function and is, hence, nonsingular for
®— 0. Starting from this separation, and looking at Eq. (18),
the noise 7(w) can be split into the sum of two independent
Gaussian noises
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Nw) = p(w) +z(w), (26)

where ¢(w) is defined by the finite-time part of the vertex
function:

(P () g=2m8w+ w205 + ()],  (27)
while z(w) by the time-persistent part
(Zw)z(w")). =278 w+ ')A (9278 w). (28)

The two noises ¢ and z represent, hence, respectively, the
“fast” and “slow” parts of the noise 7.

By definition, ¢ is the remaining part of the correlation
function once the correlations induced by the fast part of the
noise have died out. As a consequence the self-consistent
equation for ¢ reads

q=(o)y).. (29)

where (0)4=(0(w=0)), is the static average value of o(w)
induced by the noise ¢(w) in the presence of a fixed static
random noise z.

To solve the equation of motion and find (o) a relation
between G(w) and C(w) is needed. Assuming that, as in or-
dinary phase transitions, the effect of an external perturba-
tion will die out on finite time scales, the full response func-

tion G is related to the finite-time part Cof C by the FDT
~ 2
C(w)=—Im G(w), (30)
w
which, in turn, implies

(B )= = I G (w). (31)

This relation ensures that the noise ¢ acts as a thermal noise
and hence (o) is the magnetization induced in thermal equi-
librium by the static Gaussian field z,

+o0

1
doo exp[— EG‘I(w =0)o” + za]

—o0

f do exp{— %G‘l(w =0)o” + za}

(0= ii(2) =

=G(w=0)z. (32)

Since the equation of motion of the spherical 2+p spin-glass
model is linear in o(w), this result can be also obtained by
averaging directly the equation of motion (16) over the noise
¢(w) and taking the limit w— 0.

Inserting this expression into Eq. (29) and using Eq. (28)
one ends up with

q=G(w=0)*A(q). (33)

Eventually, the expression of the static susceptibility can be
readily obtained with the help of the FDT relation (30) and
reads
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G(w=0)=C(r=0)-C(t > *)=1-gq. (34)

We then end up with the following self-consistent equation
for ¢:

Alg) = (35)

q
(1-¢7°
that coincides with the static RS solution of the spherical
2+p spin-glass model.?

The dynamical stability of this solution requires that the
o — 0 limit of the kinetic coefficient, or generalized damping
function, I'(w), must be non-negative. Its inverse is defined
as

G (w d
[Mf )=F51—i0—wE(w). (36)

I''(w)=i

Inserting the form (24) of the correlation function into the
definition of the self-energy 2 (w), and using manipulations
similar to those used for extracting the singular part of A(w),
we have

S(w) =3(w) + A (q)G(w). (37)

In the limit w— 0 one then obtains'®

1_ ) =G Y w
I''(w=0)=lim F-l(w)=ihmG Co)-G ()

w—0 w—0 2w

J ~
Fal +— Im2(w=0)
Jdw

- 1-A(9)G(w=0)> ~ (38)

The numerator describes the decay of the finite-time part and
is, thus, positive. The requirement I'(w=0) =0 leads, then, to
the condition

1-A(¢)GH(w=0)=1-A'(¢)(1-¢g)>=0. (39)

In terms of the static replica formalism, the above expression
exactly coincides with the de Almeida-Thouless!® stability
condition derived from the stability analysis of the RS saddle
point.®

The replica symmetric solution is unstable everywhere in
the low temperature phase, thus this solution is correct only
in the paramagnetic phase up to the critical point where
I'(w=0)=0. Below this point a new solution is needed.

B. The Sommers solution

In the previous derivation of the solution the FDT was
assumed to hold between the full response function G and

the finite-time part C of the correlation function. The failure
of the replica symmetric solution to describe the relaxation in
the spin-glass phase suggests that in this phase the presence
of a time-persistent part in the correlation function must re-
flect itself also in the response to an external perturbation
with an anomalous contribution to the response function.
This extra contribution occurs, however, only in the static
susceptibility, i.e., exactly at zero frequency:
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G(0) = G(w) + Ad,o, (40)

where &, is the Kronecker delta and A is the discontinuity
between the static susceptibility and the w—0 limit of the
dynamic susceptibility G(w):

A=G(w=0)-lim G(w). (41)

w—0

The static limit of this solution is known as the Sommers
solution.?®2! As before, the nonsingular finite-time G of the

response function is related to the finite-time part C of the
correlation function by the FDT,

am=imémy (42)

Inserting the expressions (24) and (40) for the correlation
and response functions into the Dyson equation (17), and
making use of Egs. (26) and (37), a straightforward algebra
leads to the following equation of motion:

() = G(w)[$(w) + H(w)], (43)

where H(w)=H(z) is the effective static noise

H(w) =z(0) + A'(9)Ad,, go(w) = z(w) + A'(q)A 6, o(0) 4.
(44)

In the second expression we used the fact that, because of the
Kronecker delta 6,0, only the part of o(w) which is nonzero
at w=0 may contribute to the static field H(z). This part is
the static magnetization 7(z)=(0), induced by the static
noise z. The product &,,((0) is, however, ill-defined since it
contains the product of the functions &(w) and &, , both
having vanishing width. To give meaning to this product one
introduces a finite-width representation of the Dirac and Kro-
necker delta functions, e:

lim 6(w) = 8(w), lim A (w)=46,. (45)
e—0 e—0

Then 6,,0(0) is defined as the e— 0 limit of the convolution
of 8 (w) and A (w).

If the width of A (w) is much smaller than the one of
d(w) then the contribution of (o), to the static field H(z) is
vanishing, and one gets back the A=0 solution. In the oppo-
site limit,! A (w)d.(w)— &(w) and the full magnetization
im(z)=(0), contributes to the static field H(z).

The finite-time parts G and C of the response and corre-
lation functions are related by the FDT. As a consequence the
fast noise ¢ is a thermal noise and, hence, <0'>¢ is the static

thermal equilibrium magnetization induced by the static field
H(z) [as it was in Eq. (32)]:

i(z) = G(w=0)H(z) = G(w=0)[VA(q)z + AN (g)i(2)],
(46)
where we have rescaled the Gaussian noise z to have <Z2>z

=1. Solving for m(z) and inserting the result into Eq. (29) we
obtain the self-consistent equation
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[ ¢ ]2A( ) 47)
q= ; q,
1-A(1-9)A'(q)
where we used the relation é(w:O):é(r:O):l—q follow-
ing from FDT.

The equation for the anomalous term A is obtained from
the definition of the static susceptibility and reads

am(z)
dBh
where £ is a static external field. Adding the field 4 to the

equation of motion (43) and inserting the resulting 7i(z) into
the above equation we have, after some algebra,

> =1-g+A, (48)
h=0/ z

1-g¢g _
1-A(1-9g)A'(q)

The two self-consistency equations (47) and (49) can be re-
written in the form

1—g+A. (49)

q

Alg) = REPTYNG

(50)

1
(1-g)(1-g+A)’

from which one readily sees that for A=0 the solution re-
duces to the replica symmetric solution at criticality:
I'(w=0)=0 [cf. Egs. (35) and (39)]. The dynamical stability
requirement on the damping function I'(w=0)=0 for the
Sommers solution is still given by Eq. (39). As a conse-
quence, for any A>0 the solution has a positive I'"!(w=0).
This apparently hints that this solution (or, at least, its static
limit) is physically stable. However, as noted by Hertz,?
exactly at w=0 the time persistent part of the response func-
tion [Eq. (40)] should not change the relative static solution,
thus implying a negative nonlinear susceptibility. We will
reconsider this point when we will present the study of the
static limit of the present dynamics in the DGO formalism in
Sec. IV

A(q)= (51

III. THE SOMPOLINSKY SOLUTION

The Sommers solution assumes that there are only two
relevant time scales, a short time scale related to the finite-
time part of the motion, and a long time scale—actually in-
finite in the thermodynamic limit—related to the time-
persistent part of the motion. This scenario is clearly too
limitative for the description of the spin-glass phase where
different time scales are involved.

The Sompolinsky solution extends the Sommers solution
to the case of many different long times scales, all of which
diverge in the thermodynamic limit. To be more specific one
assumes that there are R different relaxation times fz,,
r=1,...,R. As N—x all times go to infinity with the pre-
scription f,/t;— 0 if r<<s. The short time scale relaxation
time, which can be identified with 5., is proportional to Fal
and remains finite for N— .

In each time interval, or sector, ¢,,; <<t<<t,. The relaxation
process with characteristic times less than ¢, have already

144301-5



A. CRISANTI AND L. LEUZZI
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FIG. 2. Schematic form of the correlation function with many
relaxation time scales.

relaxed to equilibrium, while those with longer (or equal)
relaxation times have not relaxed yet. For each time interval
t..1 <<t<<t, we can introduce an order parameter

q,=T,lim C(t), r=0,...,R, (52)

t—00
where the “time ordered limit” 7, lim,_,., is defined as

lim lim lim --- lim . (53)

ty—® [—® [ —®© tg—>

T, lim:= lim ---
t—o0 tR—®
The overlap ¢, measures the time-persistent part of the cor-
relation function in the interval [¢,,,,7,], see Fig. 2.

With this definition gy coincides with the Edwards-
Anderson order parameter previously defined. Moreover, we
have introduced the additional level =0 associated with the
longest time scale, i.e., the equilibration time scale, of the
model. The overlap g, represents, then, the asymptotic equi-
librium value (that is equal to zero in the absence of an
external magnetic field).

The next step is to split away from the full correlation and
response functions the time-persistent parts as for the Som-
mers solution. The functions C and G thus are still of the
form (24) and (40) with finite-time parts related by the FDT
(42), but now!

R
48(@) — X (4, 4,15, (@) (54)
r=0
and
R
Ago),() - = 2 ArAer(w)a (55)
r=0

where Ar is the anomalous contribution to the response func-
tions, 5 (w) and A (w) are finite-width representations of the
Dirac and Kronecker delta functions, and €,=1/¢,. Here and
in the following we use the convention that all quantities of
negative subindex are zero.

As for the Sommers solution, the noise 7(w) is decom-
posed into the sum of a fast (thermal) noise ¢ and a slow
noise z composed by the sum of independent slow noises z,
of zero mean and variance
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<Zr(w)zr(_ w)>r = [A(Qr) - A(Qr—])]ﬁfr(w) . (56)

From the definition of ¢, and the fact that the noise z, acts as
a static noise only up to the time scale ,, the order parameter
q, is thus given by

q,=<n_13)z, r=0,...,R, (57)

where m,=m,({z}) is the static magnetization induced at
scale r by the slow noise z and the average (- --). is over all
static noises z,. Clearly m, is a function of zg,...,z, only
since all other noises z, with s>r have died out. The mag-
netization 7, can be obtained from the magnetization iy
induced by the noise z on the shortest time scale by integrat-

ing out the noises z, with s=r+1,...,R:
R
l’?lr= H DZSn_’lR(Zo, . ,ZR), (58)
s=r+l

where Dz, = P(z,)dz, and P(z,) is the probability distribution
of z,.

One then proceeds as in Sec. II, inserting Egs. (24), (40),
(54), and (55) for C and G and Eq. (26) for the noise 7(w)
into the equation of motion and looking at its static limit in
order to derive the equations for the thermal equilibrium
magnetizations. As we have seen in the study of the Som-
mers solution, in this limit one has to deal with the products
5€r(w)A€r(w). Clearly one has

b}r(a))A%(a)) = 5Er(w) if r<s, (59)

S (WA, (0)=0 ifr>s, (60)

since €,/€,<1 for r<<s. Yet, for s=r the product is ill-
defined.

Sompolinsky solves the problem with the assumption that
for €e<1 the width of the function 8 (w) is much smaller
than the width of A (w),' and the product goes like

S w)Alw) = 5{w),

With this assumption each level r contributes to the effective
field H(z) with the full magnetization 77i,. As a consequence
the self-consistent equation for my reads [cf. Eq. (46)]

e<1. (61)

mplzt = (1 - qr)H({z}), (62)
R

H({z) = X [VAz, - Al (zD)], (63)
r=0

where we used the identity G(w=0)=1-g, we rescaled the
Gaussian variables z, in order to have (zf)r= 1, and we de-
fined

Ar = A(qr) - A(Qr—l)’ A; = A’(qr)Ar~ (64’)

We anticipate that the cause of instability of the static limit
of the Sompolinsky solution (studied in Sec. IV), is hidden
right in the conjecture expressed by Eq. (61). We will come
back to this problem and we will show how to overcome it in
Sec. V, where we will analyze the CHS solution.
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The equation for the anomalous term A, follows directly

from its definition: A, represents the anomalous contribution
on scale r to the static susceptibility. The total anomalous
contribution to the static susceptibility from the short time
scale up to scale r is then

R

=1 _qR_EA.s’ (65)

h,=0 s=r

i,
[z, —*
S<r &Bhr

where £, is a static external field active up to the temporal
scale labeled by r, so that dm,/dh,=0 if r<s. The presence
of h, just adds the term Bh, to the r contribution to H(z), in
Eq. (63), and this implies

R
1 om, 1 /am, :
fHDZS=—=T< >=1—qR—EAS,
r z

s<r V’Ar 9z N 9z, s=r

(66)

since m, only depends on z,...,Z2,.

Equations (57), (58), (63), and (66) together with the ex-
pression (62) for iy constitute the Sompolinsky solution for
the spherical 2+p spin-glass model. The Sommers solution
is recovered by taking R=0.

A. Sompolinsky’s functional and explicit solution of the 2+p
spherical model

The Sompolinsky solution can be obtained from the Som-
polinsky functional,! that, for the spherical 2+p spin-glass
model, reads

R
1
- Bfs=—Bfolgr) + EE qrA},"

r=0

R R
+| 11 Dzr[ %E Ay () + p(HEZD) |,
r=0 r=0

(67)
where
1
$(H) =5 (1 - qpH* (68)
and
1
- Bfolqr) = - E{g(%) +A(gr)(1 = qg) - ]
— 4R
— log(1 —CIR)} = Bf (69)
The function g is such that
%D _ A 70
q

and the term f,. is the infinite temperature limit of the free
energy, whose explicit form is only needed for computing
thermodynamic quantities. The Sompolinsky equations fol-
low from stationarity of fg with respect to variations of m,,

A,, and A,.=A(g,)—-A(g,_).
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For the spherical 2+p spin-glass model equation (58) for
the local magnetization 7, can be explicitly solved. After a
simple algebra one gets

_ 1 —gg

R
L+(1-gp) 2 A;

S=r

Az, (71)

that, with Eq. (57), leads to the following equations for the

order parameter ¢, with r=1,... ,R:
1-g¢g 2
qr—4qr-1= . R Ar (72)
L+(1-gp 2 A
and g,
1- qr : 2
qo= R [Algo) = (BR)].  (73)
1+(1-gqp) 2 A
s=r0

In the last equation we have added an external field % to
make ¢ finite. Finally from Eq. (66) we have

R
. 1-g¢g
l-gp- 2 A =———F— (74)
T 1+ (l-gpX Al

S=r

B. Comparison between the Parisi solution and the static limit
of the Sompolinsky solution

The static solution for the spherical 2+ p spin-glass model
within the Parisi R-RSB scheme, as obtained in Ref. 8, con-
sists of the following self-consistency equations:

qr—4qr-
A(qr)_A(Qr—l)=—l’ r=15-”7R, (75)

rAr+1
Ago) =L - (ny, (76)
Xo
1
AN(q)=—, (77)
r+1

where

R
Xr=1_QR+2ms(qs_QJ—l)’ l’=0, ...»R. (78)

The quantities 0<m,<<1 are the RSBs parameters, i.e., the
sizes of the blocks of the Parisi R-RSB scheme in the con-
tinuation from integer to real numbers in the limit n—0,
where 7 is the total number of replicas.

The equations yielding the infinite time limit of the Som-
polinsky solution for the spherical 2+p spin-glass model,
i.e., Egs. (72)—(74), can be written in the equivalent form

Ag)-Ag)=T"3" r=1,..R (19)

r
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Ago) =L - (ny, (80)
Xo
1
A'(g,) = . (81)
XrXr+1
where
R

x,=1-gg-2 A, r=0,...,R. (82)

s=r

A simple inspection of the two sets of equations reveals
that the Sompolinsky solution cannot be reduced to the Parisi
solution, not even fixing the so-called Parisi gauge

A,=-m,(q,—q,-,). This implies that, for any finite value of
R, the Sompolinsky solution differs from the Parisi solution.

When the number of time sectors (or RSBs in the static
counterpart) is sent to infinite, however, the static limit of the
Sompolinsky solution can be formally reduced to the Parisi
solution,! provided that the gauge dA(x)=—xdg(x) is set. The

functions dA(x)=A(x)dx and ¢(x) are the limit functions of

A, and g, as R— . The parameter x e [0, 1] is the continu-
ous limit of the series {m,}.

This is more easily seen by using the replica derivation of
the Sompolinsky solution introduced by DGO.?* By using
this approach it can be shown, see Appendix A, that the
Sompolinsky solution can be derived from stationarity with

respect to ¢, and A, of the DGO functional

R
— 28100 =—8(qr) — 2 Alg)A,+ (Bh)xo +log(1 - gg)
r=0
R —
T oy (83)
r=0 Xr

with x, given by Eq. (82). We have neglected the term f,, it
is irrelevant to our discussion.
In the limit R— in the FRSB phase we have ¢,—¢q,_;

—dq while A,—[dA(g)/dqldg=A(g)dg. As a consequence,
the sums can be replaced by integrals and the DGO func-
tional for the spherical 2+p model becomes

1 1
-2Bfpco=- f dgA(q)A(q) - (Bh)* f dgA(q)

+1n(1 - ¢(1)) - f f . (84)

dg'Alg")

where g(1)=limg_... gz, and we have extended the definition
of A(g) to the whole interval [0,1] defining

Alg)=0 if0<g<q,,

Ag)=-

to have a more compact expression.

ifg(l)y<g=<1 (85)
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The analogous calculation can be performed within the
Parisi scheme. When the stable phase of the 2+p model is
yielded by a FRSB solution, the Parisi functional is

1

1
~ 28 = f dqx(q)A(q) + (Bh)? f dqx(q) +In(1 - g(1))
0

q(1)
J J (86)

dq'x(q

where x(g) is the inverse function of g(x). It is easy to see
that the two functionals, Eqs. (84) and (86), coincide in the
Parisi gauge A(g)=-x(q).

The fact that the two solutions differ might not be a prob-
lem. Indeed, systems whose thermodynamics are described
by a 1RSB stable phase display the well-known property of
having a dynamic solution—at which the system relaxation
gets arrested—that is different from the static solution. This
arrest is due to the presence of very many metastable states
of infinite lifetime lying at a free energy level higher than the
one of the global minima, selected, instead, by the static
solution.

The apparent paradox of having different solutions at fi-
nite R but coinciding ones for R—<c can be solved by in-
specting the R—o0 limit of the DGO and Parisi RSB
schemes. It can be shown that for any finite R the difference
between the Parisi and the DGO-Sompolinsky theories is at
least of order O[(g,—g,_;)*], which is finite for finite R but
vanishes as R— . The gauge invariance of the Parisi equa-
tion for the order parameter g(x) which follows from the
DGO-Sompolinsky theory just reflects the reparametrization
invariance of the Parisi equation due to the arbitrary defini-
tion of the variable x in the Parisi scheme. The Parisi gauge
dA(q)/dg=-x(q) is the definition of the function x(¢) whose
g derivative is the probability density of overlaps.

IV. STABILITY IN THE REPLICA FORMALISM

The results just described raise the question of the validity
of the Sompolinsky solution. Is it a different but yet accept-
able solution? This question is better answered considering
the phase of the spherical 2+p spin-glass model where the
IRSB Parisi ansatz is known to be stable.® In the 1RSB
phase there is only one long time scale, so that the appropri-
ate dynamical solution should be given by the Sompolinsky
solution with R=0, i.e., the Sommers solution of Sec. II B
There, we have shown that, in the dynamic limit for infinite
times (i.e., w—0), the equation of motion appeared to be
well-defined. Here, we inspect more thoroughly the Som-
mers solution exactly at w=0 and we show that it turns out to
be unstable everywhere in the 1RSB phase.

The present analysis is carried out in the DGO formalism
(cf. Appendix A) that, for R=0, is analogous to the Parisi
RSB formalism with R=1. Our approach is a straightforward
generalization of the procedure adopted in Ref. 24 to study
the stability of the IRSB solution & /a Parisi in the spherical
p-spin model.
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The replicated free energy density as a function of the
overlap matrix g reads

I,n

1
- Bflgl= 2 8(qap) + —ln detg +s(),  (87)

glx)= &x2+'u P (88)
p

where ,u,p=(,8Jp)2p/2 and s(e©)=(1+1In27)/2 is the entropy
per spin at infinite temperature. The parameter # is the num-
ber of replicas.
The elements of the symmetric n X n real matrix g are
N

qab=—an
ll

ab=1,...,n. (89)

The spherical constraint, Eq. (2), implies that the diagonal
elements of the matrix q are all equal to one: ¢g,,=¢=1.
The saddle point equation reads, in the n— 0 limit,

A(qaﬂ) + (q_l)aﬁ= 07 a# 18 (90)

The stability of the saddle point calculation requires that
the quadratic form
1 1
F= Bf) ==~ 2 N (qup) (g0 + ~Trlg™ 39) (O1)
aB
must be positive definite.>* The elements of the symmetric
matrix oq are the fluctuations dg,, from the saddle point
value (90).
At this stage we impose the Sommers ansatz in the DGO

formalism, i.e., we divide the matrix g into n/pyXn/p,
blocks of dimension py X p, and we set

qabz(l_Q)ﬁab+(q_r)éab+r? (92)
where the matrix € is defined as

if a and b are in a diagonal block

1
€, = 93
Cab { 0 otherwise. (93)

The Sommers solution is recovered by sending the block size

o to infinity with the constraint po(g—r) — —A.

Details of the study of the Hessian of Eq. (87) in the
present ansatz are reported in Appendix C. Here we concen-
trate on the results of that analysis relevant for the stability of
the DGOy_(, ansatz. We have n/p, clusters each composed
by p, replicas. Different kinds of fluctuations can thus occur,
e.g., between replicas in the same cluster or in different ones,
or between clusters taken as a whole. In the limit of the
number of replicas going to zero, the eigenvalues of the rep-
licated Hessian matrix that might take negative values are the
following.

(1) Fluctuations in the same cluster. These are the fluctua-
tions between one replica and p, others, belonging to the
same cluster. The correspondent eigenvalue is

A== A(g) + (94)

b
(1-¢)*

This is the so-called replicon and describes longitudinal fluc-
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tuations in the replica space. It must be non-negative in order
to ensure thermodynamic stability. It is, indeed, always posi-
tive for the Sommers solution, as long as —A=A>0. To see
this one just uses Eq. (51) to replace A’(g). A(ll) is the static
counterpart of the dynamical stability condition I'(w=0)
>0 of the Sommers solution discussed at the end of Sec. II.

(2) Fluctuations between clusters. The first dangerous ei-
genvalue for the Sommers solution is, instead,

1
[1-g+polqg-nT

AF == A'(r) +

(95)
po=*—Al(g)+ ———.
(1-g-A)°
In this case we are considering contributions coming from
fluctuations between clusters as a whole. Using Eq. (51), Aff)
turns out to be always negative for -A>0, signaling the
instability that we were mentioning at the end of Sec. II.

(3) Mixed fluctuations. Another eigenvalue indicating an
instability is
q(1-q) +polg-r)*
—q)’[1-q+polg—n)F

A(Z) A(l) (po 2)

q(1 - q)
—Po X
(1-9)(1-g-A)°
It becomes infinitely large and negative as py— o°. A similar
problem has been observed recently in the study of the sta-
bility of the R step DGO saddle point of the truncated
model.??

From this analysis we can conclude that the Sompolinsky
theory does not yield a physically consistent static limit.

as po>1. (96)

V. THE DYNAMICAL SOLUTION

The problem with the Sompolinsky solution follows from
the assumption that the width of the function 8 (w), whose
limit for e—0 is a Dirac delta function, is smaller than the
one of the function A (w), whose limit is, instead, a Kro-
necker delta, see Eq. (61). To overcome this assumption
Hertz?? proposed a different solution that avoids the assump-
tion Eq. (61) by using the representations

€ —le{ < } 97)

+62 Tw E—IW

Ow) =

Alw)=

(98)

e—iw’
Hertz, however, assumes a standard form for the FDT and,
hence, his solution is valid only at the critical point. CHS,
studying the dynamics of the spherical p-spin spin-glass
model, propose, instead, a solution reproducing the correct
static limit in the IRSB phase. The solution differs from the
Sommers-Sompolinsky solution and is in the same spirit of
Hertz,>>?0 though with a different implementation of the
FDT.
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FIG. 3. Schematic form of the correlation function with two
relaxation time scales.

We will first present the CHS solution for the 2+ p-spin
model in the Fourier space for two time sectors and we will
then generalize it to an arbitrary number of R+1 time sec-
tors. The CHS solution was originally developed (for the
spherical p-spin model) in the time space. The generalization
of the CHS theory to R time scales in the time space, how-
ever, though feasible,?’ is quite tedious. Therefore we would
rather work in the w space.

A. The CHS solution

The CHS solution assumes, in the spirit of multiple-scale
analysis, that the correlation and response functions are func-
tions of a fast variable ¢ and a slow variable e, e<<1:

C(t)= C(t,et), G(t) = G(1,et). (99)

The fast variable t describes the decay of C to the plateau
value g, while the slow variable et describes the subsequent
decay to the equilibrium value g, see Fig. 3.

If we are interested only in the leading order behavior for
€—0, this is equivalent to assume time-scale separation: ei-
ther the fast variable is varying while the slow variable is
zero (i.e., the processes evolving on the long time scale are
quenched) or the slow variable is varying and the fast vari-
able is infinite (i.e., the processes evolving on the short time
scale have already thermalized). Under this assumption the
correlation and response function can be represented as the
sum of two separated contributions relative to long and short

time dynamics:®
C(t) = C,(2) + Cy(er), (100)
G(1) = G,(1) + eGy(er), (101)
or
C(w) = Ci(w) + €'Cy(wle), (102)
G(w) = G(w) + Gy(wle), (103)

where C, and G, describe the fast part and C, and G the
slow part of C and G, see Fig. 3. Alternatively, one can
employ the standard technique of multiple scale analysis,
ending up again at the leading order in € with the above
expressions.?’
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The functions C; and Cj, satisfy the boundary conditions
Cit=0)=1-q;, Ci(1=2)=0, (104)

Co(t=0)=q,, Cylt==)=gq, (105)

where we used the spherical constraint C(r=0)=1, while, as
e—0,

G, #0 iffr<e! (106)

and

Go#0 ifft>¢€l. (107)

In the regime <<€ ' the FDT must be satisfied and hence
fast parts C; and G, are related by the FDT relation
2

Cl(a))=;Im Gi(w). (108)
In the long-time regime #> €' the response to an external
perturbation is given only by the degrees of freedom which
have not relaxed, i.e., equilibrated, in the short-time regime
t<e€!, and hence only these degrees of freedom contribute
to Gy. On the other hand al/ degrees of freedom contribute to
correlation Cy. As a consequence G, cannot be related to the
full C,. If we introduce a parameter m, 0 <m < 1, measuring
the fraction of degrees of freedom which have not relaxed in
the short-time regime, we have

Go(w) =mGy(w), (109)

where 60 is the response function which would be observed
in the long time regime iff all degrees of freedom would be
still active, i.e., nonequilibrated. Since all degrees of freedom

contribute to 50 this is related to the full correlation function
Cy by the FDT

Co(w) = % Im Gy(w), (110)

where 50 is the Fourier transform of the nonpersistent part of
Co:

Co(1) = Co1) = Cylt = %) = Cy(t) = gy (111)

The equations for m, q;, and g, are obtained by studying the
dynamical equation in the static limit w— 0 and €— 0 in the
two regimes w> € and w<<e.

The parameter m is related to the discontinuity of G(w) in
passing from frequencies w> € to frequencies w<<e:

Glw=0) - G(w)) =mGy(w=0) =m(q; - q), (112)
where w; is an infinitesimal frequency, w; <I'j;, but goes to

zero slower than € w;>e€—0. In the last line we used the

identity Go(w=0)=g,—¢, which follows from FDT relation
(110). Inserting now the Dyson equation (17) into the left-
hand side of the above equation we end up with

m(q; — qo) = G(w=0)G(w))[2(0=0) - 2(w))].
(113)

From the expression (11) for the self-energy it follows
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Yw=0)-2(w) = J di(1 - e A'[C(1)]G, (1)
0

+e€ f i dt(1 = e ) A'[C(1)]Gy(et). (114)

0

The first integral vanishes for w; <T, but w;> € as €—0. In
the second integral only the region t> €', where G is dif-
ferent from zero, contributes. Therefore we can replace C
with C, in the argument of A’[C(¢)]. Finally, by using the
FDT relation (110), the leading contribution to X(w=0)
—3(w,) for e—0 reads

Ef ditN'[Co(€)]Go(et) =m[A(q)) = Algo)]. (115)

0
Inserting this result into Eq. (113) and using the identity

G(w=0)=G(w=0)+Gy(w=0)=1-q,+m(g,;—qo) we end up
with the equation

91~ 40
(1 =g)[1 =g, +mlg - qo)]
The parameter ¢ is the time persistent part of C(r) for

t> €', To study this limit we consider the infinitesimal fre-
quency wy<<e<<I'y and extract the part of C(w),

Alg)) - Algo) = (116)

C(wy) = (o(= wp)a(wy)) = G(= wo)G(wo)[ZFBI +Alwp)],
(117)

proportional to 8(w,) for é— 0. From the form of the vertex
function A(r) we have, see also Eq. (25),

Alawp) = f dteiwol[/\[éo(éf) +qo] — Alqo)]

+00
+ f dte’ ' A(qq). (118)

Only the second integral contributes to the &(w,) part of
C(wy). We then obtain the equation

q0=G(w=0)*Algo) (119)

or, equivalently,

90
Algo) = :
[1-q,+mlg - q0)
Equations (120) and (116) coincide the equation for ¢,
and ¢, as a function of m for the spherical 2+p spin-glass

model obtained from the static replica calculation with the
Parisi 1RSB scheme, see, e.g., Egs. (28) and (29) of Ref. 8.

(120)

B. Stability of the CHS solution

The equation for the parameter m follows from the dy-
namical stability condition of the static limit which requires
that the w— 0 limit of the kinetic coefficient I'(w) has to be
non-negative (simply a physical requirement). To distinguish
the two regimes w> € and w< e we define I'"!(w=0) as
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I''(w=0)=1lim ZL[G"(w) -G '(-w)] (121

w—0 LW
and use the frequencies w; and w, defined previously to per-
form the limit in the two regimes.

Let us first consider the frequency w> e. In this case the
limit w— 0 must be evaluated as
lim f(w) = lim lim f(w) =f(@;).
w—0

w—0 e—0

(122)

Since Gy(w;/€) =0, we thus have
G Y w) -G (-w)=- 2iw1[ral +A(w))]
- AN (q)[G(w) = Gi(- w))],
(123)

where A;(w,) is a finite and positive quantity. Inserting this
expression into Eq. (121) we end up with'®
Iy +A (o)

I'Y(w)=
() 1-Gy(w=0)*A"(g)

(124)

so that the requirement I'(w;) =0 leads to the condition
1-Gi(w=0)’A"(q)=1-(1-g1)°Alg;) = 0. (125)

A similar calculation for w<e, i.e., evaluating now the
limit w—0 as

lim f(w) = lim lim f(w) = f(w,) (126)
w—0 e—0 w—0
leads to
-1
I (ag) = — 0+ A2(e0) (127)

1-G(w=0)*A"(q0)

where A,(w,) is finite and positive. We have thus the second
condition for the stability:

1-G(w=0)*A"(qp) =1 = [1 - g, + m(q, — q0)*Algp) = 0.
(128)

The dynamical stability conditions of the static limit, Eqgs.
(125) and (128), coincide with the stability conditions of the
1RSB saddle point computed in the static replica calculation
of Ref. 8 [Egs. (31) and (32)].

From a dynamical point of view, and for the consistency
of the calculation, we must require that I'(w,)=0. Indeed, if
I'(w;) >0 the correlations decay exponentially fast and the
system equilibrates on a time scale of order I'"'(w,). This
would imply that all degrees of freedom have relaxed before
entering the regime > € ! and m=0, i.e., we have back the
RS solution. To yield a two time scales solution, then, the
condition (125) becomes the additional equation:

1= (1-¢1)*Alg) =0,

the so-called marginal condition.?® The self-consistency
equations (116), (120), and (129) and the stability condition
(127) yield the CHS dynamical solution of the spherical
2+p model in the 1RSB phase. The dynamic RS/1RSB tran-
sition line in Fig. 1 can be obtained by Eq. (129) as the curve
where g; jumps discontinuously from zero to a finite value.

(129)
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Summing up, the CHS solution presents—in the 1RSB
phase—an infinite time limit different from the static solu-
tion. Indeed, it coincides with the solution known as “dy-
namic,” where the 1RSB phase nucleates at higher free en-
ergy than the equilibrium one. The stable phase, in the sense
of lower free energy, in this regime is still the RS one but a
1RSB phase exists, is locally stable, and despite a higher free
energy it dominates the dynamics due to the very large de-
generacy of the metastable states belonging to it. In other
words, in its evolution on the free energy surface, the system
will find itself with probability one in a local minimum of the
IRSB solution simply because the number of these minima
is exponentially large, in the system size, with respect to the
number of global minima of the RS solution. The logarithm
of the number of equivalent minima is what is called the
complexity, and hence the dynamics of the system is domi-
nated by the solution with the largest complexity. The mar-
ginal condition Eq. (129) is, indeed, nothing else than the
condition of maximal complexity in the static Parisi replica
theory.8 The static solution corresponds, instead, to the low-
est minima of the free energy and has vanishing complexity.
This is the reason why the two solutions differ.

To be more explicit, for the 2+ p-spin model, in Fig. 1 we
noticed two lines between the RS and the 1RSB phases. The
dotted one is the line at which a 1RSB solution (with a
q,>>0) arises, even though the statics stays RS. This is the
dynamic phase transition that, as we have just seen above, is
also obtained from the static limit of the CHS solution. The
solid line marks the thermodynamic transition to a stable
IRSB phase. In the 1RSB region an extensive complexity
exists, monotonically increasing between the lowest equilib-
rium free energy (at which it is zero) and the threshold free
energy (where it takes its maximum value). The infinite time
limit of the CHS solution describes those states lying at the
threshold free energy.

As Eq. (129) cannot be satisfied anymore with 0<g,
<1 and I'(w;) becomes negative, a different solution is
needed, involving more time scales and, correspondingly,
more overlap order parameters. This is the generalization
that we are going to analyze in the next section.

In particular, in the 7—-J, diagram in Fig. 1, the limit of
validity of Eq. (129) is represented by the dynamic transition
line between the 1RSB and the 1-FRSB phase. In that case
the number of scales required to stabilize the solution out of
the region of validity of the 1RSB phase (for increasing T at
fixed J, or decreasing J, at fixed temperature) becomes a
continuous set, plus a separate step relative to the shortest
time scales.

We stress that I'(wy) remains non-negative since it de-
scribes the relaxation of the systems to equilibrium for
t> €', In Appendix D we show in detail why for the 2+p
spherical model the marginal condition on the intermediate
time scale is necessary in order to guarantee relaxation to
equilibrium on the longest time scale. In the 2+p spherical
model the instability appears on the intermediate time scale,
however, in general, it may appear on the longest time scale
as well, with a negative I'(wp). In the present scenario this
means that a new (infinite) time scale enters into the game
and must be included in the description of the dynamics.
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FIG. 4. Schematic form of correlation function with many re-
laxation time scales in CHS theory.

C. The R-time scale CHS solution

The extension of the CHS theory to the case of R different
diverging relaxation time scales follows the same initial steps
of the Sompolinsky solutions, namely one introduces R long
time scales, see Fig. 4,

I'<e! <e,< - <q'<¢, (130)
all of which eventually diverge in the prescribed order in the
thermodynamic limit.3° In what follows we shall denote with

€ the set of the R frequencies €, and assume that the limit
€—0 is always taken in order, i.c.,

lim:= lim --- lim. (131)

€e—0 GR_|~>0 €0~>0

A convenient way of studying the dynamics in the limit
€—0 is by using the multiple scale analysis. One then as-
sumes that the correlation function C(z), as well as the re-
sponse G(1), is a function of the fast variable 7z=€gt with
ex=I"y and R slow variables 7,=€,¢ (r=0,...,R—1) describ-

ing the motion in each time sector e;l <U< e;_ll:
C(t) = C(TR, TR=15 -- (132)

.,Tl,To).

The leading behavior for €—0 in the time sector €' <t
< e;_l | 1s obtained by assuming that only processes evolving
on times r>¢€' but r<¢!, contribute (ie., 7,=finite)
whereas those evolving on slower time scales are quenched
(7,<,=0) and those evolving on faster time scale are thermal-
ized (7,~,=). Under this assumption of time scale separa-
tion, C(¢) can be represented as the sum of R+1 distinct
terms

R
C()=2 CA7), 7=¢t, (133)
r=0

one for each sector.
The functions C, satisfy the normalization condition
(spherical constraint)
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R
C(t=0)=2, C(r,=0)=1.

r=0

(134)

We can now split off the r-sector function C, and take the
limit €e— 0 with 7, finite. Taking the limit 7,— oo, afterward,
so that C(t) — gq,, cf. Eq. (52), we have the additional condi-
tions:

r—1 R
EC.S(TYZO)"'ECs(Ts:OO):qre Vr=0,...,R.
s=0 s=r
(135)

It is useful to define for each sector the nonpersistent part of
the correlation function as

C(D=C(n-C(r=) (136)
so that the above conditions become
C(r=0)=¢,,,—¢q, Clr=0)=0, Vr=0,...,R,
(137)
with gg,,=1, while the whole C(r) reads
R
C(r):EOE‘,(r»wo. (138)

By similar arguments we obtain the following representa-
tion for the response function G(7):

R
G(t) =2 €G,(1,), (139)
r=0

where each function G, varies only in the corresponding sec-
tor r, where 7,~ O(1) for €— 0, and vanishes in all sectors
with s<<r. The function G, represents the response of the
system to a perturbation in the time sector labeled by r, i.e.,
the response due to all degrees of freedom which have not
equilibrated in previous sectors. As a consequence, G, cannot

be related to the full correlation function 6} since all degrees
of freedom, equilibrated or not, contribute to the latter. By
introducing the parameter O<m,, ;=<1 as the fraction of de-
grees of freedom which have not relaxed up to sector r+1,
and hence do contribute to the response in the next sector r,
we can write

GA7) =m, G (1), (140)

where é, is the full response in sector r due to all degrees of
freedom, equilibrated and not:

5,(w)=%lm G o). (141)
By definition mpg, =1, since in the first sector all degrees of
freedom contribute to the response, while my=0 since the
system equilibrates in the last sector.

By taking the Fourier transform of Egs. (138) and (139)
we have
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R
Clw) =2 €' Clole) +2mg)8w), (142)
r=0
R
G(w) =2 Glwle). (143)
r=0

As for the CHSg_; solution, the equations for g, and m,
are obtained by studying the static limit w— 0 separately in
each sector. We, then, introduce the set of infinitesimal fre-
quencies w,, with w, <<€, but w,>¢€,_;, all of which go to
zero as €— 0, so that the w— 0 limit in sector r just reads

lim f(w):= lim -+ lim lim lim--- lim f(w)=f(®,).
w—0 ER_1—>() Er—>0 w—0 [ 60—>0

(144)

The parameter ¢ is the singular part of C(w,), see Eq.
(142), and repeating the steps from Egs. (117)—(119) we end
up with

qo=G(w=0)*A(go). (145)

where G(w=0) must be evaluated from the expression (143):

R
Glo=0)= X m,,Gw=0)
r=0
R-1
=1-qp+ 2 (s - q,)
r=0
R
=1 _qR+Emr(Qr_qr—l)=X0 (146)
r=0

[cf. Eq. (78)]. Here we have used the relations G, (w=0)
=¢,+1—¢,, following from the FDT relation (141), and m,
=0. Thus we have

Algy) =L (147)

X20 b
coinciding with Eq. (76) obtained from the static replica cal-
culation within the Parisi RSB scheme. The presence of an
external field & would, indeed, just add a term —(h)? to the
right-hand side of this equation, as can be easily verified.

To find the equation for ¢, with r=1,... R, we consider
the discontinuity of G(w) in passing from one sector to the
next one: G(w,_;)-G(w,). By observing that G(w,/€,) =0
for s <r (since w,/€;>1) while Gy(w,/€;) — G,(w=0) for s
=r (since w,/€,<1), it follows that

r—1 R
G(w) =2 Glw/e) + 2 Glw/e)
s=0 s=r
R
=2 G(w=0)
R

= 2 M1 (Gsa1 — q5)- (148)

S=r

The difference G(w,_)—G(w,), therefore, reads
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G(wr—l) - G(wr) = mr(qr_ qr—l)’ (149)

that, using the Dyson equation (17), can be transformed into

mr(qr_ qr—l) = G(wr)G(wr—l)[E(wr—l) - E(wr)]
(150)

This relation is valid for r=1, ... ,R. For R=1 it reduces Eq.
(113) of the CHS solution.

For the spherical 2+p model the difference 3 (w,_,)
—3(w,) can be easily evaluated: from Eq. (11) and the defi-
nition of €, we have

o

R
(o) -3(w) =2 | di(e 1" =) A'[C(1)]G,(€t)

s=0 0

— 6r—1f dt(eiwr_ll_ eiwrt)A/
0

X[C(N]G,-i(&11)

= f dA'[C,_ (D) + ¢,_1]G,(7)
0

=m[A(q,) = Alg,-1], (151)

where we have used the fact that only the term with
s=r—1 yields a finite contribution for e—0.

With this expression for the difference 2(w,_;)-2(w,),
and using the identity [cf. Eq. (78)]

R
G(wr—l) = E ms+lés(w=0)
s=r—1
R-1
=1- qrt E ms+l(qx+1 - qs)
s=r—1
R

:l_qR+2ms(qs_qs—l):Xr7 (152)

S=r

we finally obtain the equation for the static limit of the R
time scale CHS solution:

qr—dr-
A(Qr)_A(Qr—])z—l’ r=19 sR

rAr+1

(153)

coinciding with the result from the static replica calculation,
see Eq. (75).

D. Stability of the R-time CHS solution

As for the CHS_; solution the equation for m, follows
from the stability condition of the static limit w— 0 in sector
r. From the definition (121) of the kinetic coefficient I'(w)
we have
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i
I'(w,) = E[G_'(wr) -G (- )]
r

=T;' - j[i“(wr) -3-w)]. (154)

For the spherical 2+ p model the difference 2(w,) -2 (~w,) is
given by

(w)-3(-w,) = J di(e' ! — M A'[C(1)]G(0)
0

= iT((‘)r) - i(_ wr) + A,(qr)
X[G(wr) - G(_ wr)]’ (155)

where

S(w,) = f dre’'TA'[C()] - A'(g)]G().  (156)
0
As a consequence we have

FO - lii(wr)

Jw
r-! = 157
) 6w () (57
The quantity i(9/dw,)S(w,) is real and negative, therefore
the requirement I'"!(w,) =0 leads to the dynamical stability
condition

1- G(wr)ZA’(qr) =0 (158)
which can be written [cf. Eq. (152)] as
1
—A’(qr)+T>O, (159)

r+1

where y, is defined in Eq. (78). We recover then the condi-
tion for stability of the R-RSB saddle point in the replica
calculation.?

Unlike the static calculation, however, the dynamical so-
lution requires that all I'"!(w,), but the last one for r=0,
vanish. Indeed, as discussed for the CHS solution, if it hap-
pens that I'"!(w,) >0 for some r=1,... R, then all degrees
of freedom not yet thermalized up to sector r relax in the
sector r, so that m,=0 for s<r. This, in turn, implies that the
number of diverging relaxation time scale is <R, and not R
as initially assumed.? This argument does not apply to the
last sector r=0. Indeed, by assumption, the system equili-
brates in this sector and this is feasible only if I'"'(wy) is
positive.3!

If the above requirements cannot be satisfied and one or
more I'(w,) are negative, including the last sector r=0, then
additional time scale(s) have to be included into the descrip-
tion. This is what happens, e.g., in the 2+p spherical model
in the 1-FRSB and FRSB phases. Actually in these phases an
infinite number of successive time scales is required in order
to stabilize the dynamics. Nevertheless it can be seen that
with increasing R the violation of dynamical (marginal) sta-
bility decreases and vanishes as R — .
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We stress that similarly to what happens for the CHS
solution in the 1RSB phase, also the extension of the CHS
theory to R-time scales does not reproduce exactly the same
static solution found from the static replica calculation. In-
deed, while Egs. (147) and (153) for ¢, and ¢, and the con-
dition I'(wg) >0 are the same as those found from the static
replica calculation, the equations

I'(w,)=0 forr=1,...,R (160)

differ from the corresponding ones in statics. For any finite R
we have, thus, the same phenomenon already observed for
systems described by the 1-RSB solution.?>33 As in that case,
the difference between the static free energy and the free
energy of the static limit of the dynamical solution corre-
sponds to the existence of an extensive complexity of the
R-RSB solution, i.e., to the presence of a macroscopic num-
ber of statistically equivalent metastable states dominating
the dynamics. In the free energy landscape describing the
phase space of the system, such states are at a free energy
level larger than the free energy of the static minimum, nev-
ertheless they dominate the dynamics due to their macro-
scopic number. In the mean-field picture we are adopting
here, for €,— 0, the system is stuck in these threshold states
because of the consequent decoupling between processes at
different time scales. Relaxing such a constraint, i.e., going
beyond mean field, the evolution from the threshold states at
a given step of the RSB can be, instead, allowed.?*

The difference disappears in the FRSB phase where the
complexity vanishes. Indeed defining m,=x(g,) from either
Eq. (153) or Eq. (160) we obtain in the limit R — o

d A(g) = 1

dq qR , / 2°
l—qgr+ | dq'x(q’)
q

which is the FRSB solution of the spherical 2+p model, cf.
Eq. (53) of Ref. 8. It is easy to show that in the R— o limit
the order parameter function g(x) satisfies the Parisi antipa-
rabolic differential equation. We also note that at difference
with the Sompolinsky theory the R-time-scale CHS solution
does not introduce the additional function A(x).

(161)

VI. SUMMARY AND CONCLUSIONS

We have addressed the problem of the equilibrium dy-
namics of spin-glass systems. One of the issues that makes
equilibrium dynamics worth studying is its connection with
the static properties of the systems, i.e., those obtained from
statistical mechanics via the partition function. While the sta-
tistical mechanics of spin-glass systems is well-developed,
the equilibrium dynamics is less known. The usual theory for
equilibrium dynamics of spin-glass systems is the Sompolin-
sky theory that in the FRSB phase leads to a static solution in
agreement with the statistical mechanic one, provided one
imposes the Parisi gauge dA(x)/dx=-xdg(x)/dx. The Som-
polinsky theory has received further support from de Do-
minicis, Gabay, and Orland (DGO) who, using a replica sym-
metry breaking scheme with two order parameters (a Parisi-
like overlap ¢ and a Sompolinsky-like anomaly A), derived
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the FRSB Sompolinsky solution from equilibrium statistical
mechanics. Despite these results the Sompolinsky theory was
the object of criticisms and its validity is still not well-
established.

In this work we have analyzed in detail the Sompolinsky
solution using the spherical 2+ p spin-glass model. The main
motivations in using this model are (i) that its static solution
is completely exactly known and (ii) that, besides displaying
a FRSB phase, it possesses stable 1RSB and 1-FRSB phases,
so that—unlike in the SK model—we can test the Sompolin-
sky solution in phases other than the FRSB.

The first result of our study is that if the number R of
relaxation times (equivalently the number of replica symme-
try breaking steps in the static equivalent DGO description)
is finite then the Sompolinsky theory leads to a static solu-
tion that cannot be traced back to the static solution obtained
with the Parisi RSB scheme. The two solutions can coincide
only in the FRSB phase, when R— o and ¢(x) becomes a
continuous function, provided one fixes the Parisi gauge.

To understand the properties of the Sompolinsky solution
we have studied it in the IRSB phase of the 2+p model. The
analysis, performed within the equivalent DGO theory, re-
veals that the fluctuations about the DGO saddle point yield-
ing the static limit of the Sompolinsky solution not only have
negative eigenvalues, but some of them go to minus infinite.
The saddle point is, therefore, unstable and the Sompolinsky
solution in the infinite time limit is not a physically consis-
tent solution. As already noted by Hertz?? the weak point of
Sompolinsky theory is in the assumption that each time sec-
tor r is assumed to contribute to the effective static field
H({z}) in the spin equation of motion with the full magneti-
zation m,({z}) induced at that time scale by the slow noise z,
mathematically expressed by Eq. (61).

In the second part of the paper we have presented an
alternative theory for the equilibrium dynamics of spin-glass
systems. The theory, based on the CHS solution of the
spherical p-spin spin-glass model, differs from the Sompo-
linsky theory in that it uses a modified form of the FDT
theorem to deal with the anomalous contribution to the re-
sponse function, overcoming the Sompolinsky assumption
Eq. (61). In this theory, in the static limit, the parameters are
q,. the time persistent part of the correlation function at (in-
finite) time scale ¢,, and m,, the fraction of nonequilibrated
degrees of freedom at scale ¢, entering into a modified FDT.
No anomaly functions are introduced to represent the zero
field cooled static susceptibility.

The equations for g, have the same functional form of
those derived from statistical mechanics using the Parisi
RSB ansatz. For any finite R, however, the equations for m,
have a different form. The reason is that in the dynamic
theory the equations for m, follow from the condition that the
dumping function must be zero (marginal condition) for all
but the longest time scale:3!

Nw,)=0, r=1,...,R. (162)

In the static replica calculation the self-consistency equations
for m, are, instead, obtained by the stationarity of the repli-
cated free energy functional with respect to variation of m,.,
i.e., from the vanishing of the derivative of the replica free
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energy with respect to m,. From the replica calculation point
of view, on the contrary, the dynamic marginal condition
corresponds to the requirement of a maximal derivative of
the free replica free energy with respect to m,, that is maxi-
mal complexity.532-33:35

The difference between dynamic and static solutions is
due to the degeneracy of the metastable excited states that
yields an extensive complexity at free energies higher than
the static one. Even though their weight is smaller than the
one of the equilibrium state, the states at higher free energy
(“threshold states”) are statistically much more relevant
(their number is exponentially larger as the size of the system
increases) and therefore a system cooled down from high
temperature will end up in one of these with probability one.
Because of the mean field nature of the models considered
and the consequent growth of barriers with the size, the sys-
tem cannot evolve anymore out of the threshold states in a
relaxation dynamics and the equilibrium states become un-
reachable in the thermodynamic limit. This might be possi-
bly bypassed considering time scales that are not completely
decoupled. In our notation it would amount to using nonva-
nishing € values and computing the first correction to the
leading behavior for e — 0, not an easy task.

When more RSB steps are considered, the complexity de-
pends on more breaking parameters m, and the threshold
value is obtained by maximizing the complexity with respect
to all of them. In the dynamical formalism it is equivalent to
impose Eq. (162). This selects the ensemble of statistically
equivalent minima of the (exponentially) more numerous
kind, that is, those at higher level in the free energy corru-
gated landscape. As the number of steps is increased, the
complexity function counting the number of minima de-
creases, as well as the difference between the dynamic
(threshold) free energy and the static (equilibrium) one.?¢ In
the limit where the stable phase is FRSB this difference
eventually reduces to zero, as, e.g., in Ref. 37 for the case of
the Ising SK model. The same effect can be detected in the
Ising p-spin model®® at zero temperature passing from a
IRSB to a 2RSB ansatz, even though both solutions are
physically inconsistent even at the static point. The advan-
tage of the spherical 2+p with respect to the above-
mentioned models is that three separate spin-glass stable
phases exist, each obtained by a different—physically
consistent—RSB solution, where the above considerations
have been tested.
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APPENDIX A: THE DE DOMINICIS, GABAY, AND
ORLAND (DGO) SOLUTION

In this appendix we sketch the derivation of the de Do-
minicis, Gabay, and Orland?® (DGO) static solution for the
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2+ p spin-glass model and show its relation with the Sompo-
linsky solution.

In the replica approach the static solution for the spherical
2+p spin-glass model is given by the n— 0 limit, where n is
the number of replicas, of the stationary point of the replica
functional f{Q,,, A 4] 2+

1.n

I,n
I« 1
- nﬁf[Qa,&AaB] = 52 g(Qa,B) - EE AaﬁQaﬁ
af ab

1
+log Tr,, exp(gz Nopo,0p+ b, oa) ,
af3 a

(A1)

where Q5 is the spin-overlap matrix in the replica space
between replicas a and B, A,z the Lagrange multiplier asso-
ciated with Q,, and b=ph the external field. The function
g(x) is defined as dg(x)/dx=A(x), with A(x) given by Eq.
(10). Moreover, for the spherical model

Apa=\ (A2)
is the Lagrange multiplier fixing the spherical constraint
0Q.e=1, and

(A3)

+00
Tr, := Hf do,.

The R-step DGO solution is obtained by taking the n
X n matrix Q,z made of (n/p,)* submatrices g, and r,;, of

size poX po,

9ab Tab Tab

Qaﬁ =\ Tab 9ab Tab |> (A4)
Fab  Tab Yab
with each matrix ¢, and r,, an R-RSB Parisi matrix:
R+l -1
Q=2 (@1~ q-0D11 8, (A5)
=0 k=0
R+1 -1
Tap= E (rt_rl—l)H 6“k’bk’ (A6)
1=0 k=0
where
ak=0,...,pk/pk+1—1 with
l=pret <pr< -+ <pi1<po,
g1=r=0,
qrs1=q=1 (for the spherical constraint),
rR+1=rR=F. (A7)

The matrix A,g is written in a similar form with the
PoX po R-RSB Parisi matrices A\, and p,.

At difference with the Parisi RSB scheme the block sizes
pr are sent eventually to infinity in order, so that p,/p;_;
— 0, with the assumption that
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Plgi=r) = =4, pl—p) — -4y,  (A8)

as p;— . The limit n— 0 is taken at the end.
As an example we consider

R+1

E AaﬁQaB = nE PLNG = pir) = (Nm1Gimy = proi7imy)]
af =0

o R+l

n
+ _E PP = Peiticr) -
Po =0

(A9)

From Eq. (A8) we have r,=¢,+ Aqr/p,+o(1/pt) and a similar
expression for p,. As a consequence, performing the ordered
limit p,— o we have

R

E AaBQaB =n X - )\RQR - E ()\L‘Aqt + QrA.)\t) .
af t=0

(A10)

The evaluation of the trace is more involved. We shall
give here the main steps. With the DGO form of A,z we
have

> Ao, 0B= (A - )\R)E a'i
af o

R+1
+ E PLNG = pir) = (N1 Gimy = proiTie) ]
=0
Po ) 2
<SS (S 4
i=1 ag -a,_ ) \ayap

R Po 2
+2(Pt‘Pz_1) > (E > UZO...GR) )
t=0

aya;_y \i=1 a;--ag

(A11)

where the index i=1,...,p, is relative to the primary blocks
of size pyX py, while the index a, is relative to the sub-
blocks of the Parisi RSB scheme.

By inserting this expression into the exponent of the ex-
ponential in the trace one ends up after a straightforward
algebra with

1
Tr, exp -> A 50,0 +b> O,
< NapTalp
af af

- r]i {ao.]‘ll [ f th]?[ f Dy,-,t]}

X H H exp[prér(Hp) ],

ay a1

(A12)

where z,=z(ay"*-a,_;) and y; , =yay *+a,_;) are the auxil-
iary Gaussian variables used to linearize the squares in Eq.
(A11), and we have used the short-hand notation
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The function ¢g(H) is defined as

expl pr(H)]=Tr, eXp{ %02 + Ho-]

2 |: H? :|
= — exp — |, (Al4)
V Ag— X\ 2(\g=N)

while Hy is given by

R
Hp= 2 [\‘"AMZ[ + V- Ax,)’;;;] +b
=0

with AN,=N,—\,_;. In Eq. (A12) we used the fact that Hp
does not depend on ay,.

In the limit px>1 the integral over y; » can be evaluated
at the saddle point

(A15)

YiR= N~ AmeR’ (A16)
where
_ d '
mpg= odr(H) = (/’R(HR)~ (A17)
dH H=Hp

Noticing that 2[---]=0(n) and n<<1, we then have

Po
fDZRH D}’i,Rede)R(HR):H exp[pr-1¢r-1(Hg_1)],
i=1 i

(A18)

where Hy_, is given by Eq. (A15) with the replacement R
— R-—1, while

1 —
¢R—1(H)=fDZR[5AxR’ﬁ12e+ ¢R(\'A>\RZR—A>\RmR+H)]
(A19)

The procedure can be repeated integrating over y;p_i,
then over y; g_, and so on. After having integrated out all y;,
we end up with

1
Tro’ exp( EE Aa,BO-aO-B + bE Ua) = exp[n¢_1(b)] >
af3 af

(A20)
where
R 1 R
¢b)=| 11 Dz,[ RN ¢>R(H{z})] (A21)
t=0 =0
with
R
H({z) = 2 [VANg, - &, i) + b (A22)
=0
and
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m, = ﬁlz(z()’ ’Zt) = f DZz+1”’_’lt+1(ZO’ ’Zt+l)

R
11 Dziig(zo, - 2x) (A23)
r=t+1

with mg(zg, ... ,zg) defined by Eq. (A17).

Collecting all terms, and redefining ¢g(H) as
H2
¢r(H) =7 (A24)
2\ R~

to extract trivial factors, we obtain the Sompolinsky
functional"> for the spherical 2+p model

1 _
- Bfs= 5[8(1) - q(qr) = N + Nggg]

R R
le(%)A E(m +qu0]

=0

1 .
11 Dz,[ RN ¢R<H<z))]
t=0 t=0

+11 ( 27 )
— log — .
2 "\ \g=\

The Sompolinsky solution follows from stationarity of fg

(A25)

with respect to variations of 7, A'K,, Ax,=h,—A,_1Aq,, q,, and

\ leading to, respectively,

n_1r = f DZr+1n_1r+1 (A26)
with 7iig= ¢p(H{z}),
R
[1 Dz, (A27)
=0
——EA e H z, (A28)
)\R - r =0 (92}“
N.=A(q,), (A29)
Ay =N(g)A, (A30)
and
N\g=N""=1-gg (A31)

that is the spherical constraint.

By using the stationary equations (A29)—(A31) to elimi-
nate \, \,, and AM from fg, and changing the notation as
Ax,HA;, Aqt—>A,, and AN, — A,=A(q,)—A(q,_,) it is easy to
see that the functional (A25) reduces to the Sompolinsky
functional (67).
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APPENDIX B: R— «» DGO THEORY

To compare the DGO theory with the Parisi theory in the
limit R— we first eliminate the local magnetization i,
using the the stationary equation (A26). For the the spherical
2+p spin-glass model the equations can be easily solved
obtaining

—
VAN b
m,= L2+ —, (B1)
=0 Ft FO
where
R
F,:)\R—X+EA'M. (B2)

r=r

As a consequence

2 Axt‘*

rt—

FO; AA (B3)

H Dz,E A g

=0
and
2
f HthH({z})Z (\g— A)2[2 ? +%} (B4)
=0 t 0

Collecting all terms one finally has

1 _
- Bfpco= 5[8(1) - 8(qr) = N+ Ngggl

R
[EA (g)4,, E(m +th0]

=0

N =\ 16> 1 2
2 = ——+—10g< 7 ),

F, 2F, 2
(B5)

which is the more usual form of the DGO functional. Again
the equations for order parameters follow from stationarity
of fpgo- It can be checked that by eliminating the order
parameters A, and AM and \ with the corresponding station-
ary equations the DGO functional (B5) reduces to the DGO
functional (83) given in the main text.

In the limit R— o0, and assuming that we are in a FRSB
phase, the DGO functional (B5) of the spherical 2+p spin-
glass model becomes

1 _
= Bfpco= 5[8(1) -8(q) =N+ Ngq]

1
- %f dxA[q(x)]Aq(x)
0
1
.l f MDA, () + g()4, ()]
0

1 jl Ax)  1A0) + B>
+— | dx + -
2)y F(x)

2 F(0)
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1 27T
+ = log(—_), (B6)
2 7\\ =X\
where N(x)=d\(x)/dx, \g=\(0), and
1
F(x) =\, —X+f dx' A, (x"). (B7)

The expression (B6) is specific of the spherical 2+p
model, however, it can be written in the more usual form for
the FRSB phase:*>-3°

1 - 1! .
—,BfDGo=5[8(1)—8(611)—7\+)\1f]1]—5f dxAlq(x)]A,(x)
0

1
+ % f dx{N(x)A,(x) + g(x) A\ (x)]
0

[
+ , exp| —
_ \2m\(0)

+1] ( 277)
> logl ——,
2 7\\ =X

Y f AG)
¢°"”‘2[F(x>+ x xF(x’)]

is the solution of the Parisi antiparabolic differential equation

(y-b)?
27 (0)

} #(0,y)

(B8)

where

(B9)

. A(x) , A, (x) ,
Bley) === wy)+ = Ty (BLO)
with the boundary condition
1 y2
dly) =3 ——. (B11)
A=A

As usual a “dot” in the Parisi equation denotes the derivative
with respect to x while a “prime” the derivative with respect
to y.

The Parisi solution is recovered by setting A,=-x\(x),

A,=-xq(x), see, e.g., Ref. 8.

APPENDIX C: STABILITY OF THE DGO-SOMMERS
SOLUTION

In the DGOy_ ansatz the free energy fluctuations in the
replica space, cf. Eq. (91), become

1
&= Bf(r.gm)]=- =2 {A'(r)
n ab
+&,[A () = N (N]H6q4)°
+ =2 (89,)* + —Tr(e8g)>
n . n

+ c2(2 5%,,)2 +2AB Tréqedy
ab
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+2ACY, (8q8q),,+2BCY, (6q€8q),,
ab ab

(C1)
with
1
A=—, (C2)
I-¢g
q-r
B=——""—, (C3)
(I-9x
c=-—, (C4)
X1
xi=1-g-A, (C5)

where A=—p,(g—r) by definition. The eigenvalue equation is
[A% = A (N]6qa ~[A'(9) = AA(r)]€w8qa
+ BEa2+ O 2 S|t
cd

+AB[(€8q),;, + (69€) )
+ACY, (8¢, + Oqp,)

+ BCE [(éﬁq)ac + (éﬁq)hc] = )\BQab' (C6)

The above equation is valid for a # b. The diagonal elements
0q,, are all zero because of the spherical constraint. In the
present ansatz we have n/p, blocks each containing p, ele-
ments. The diagonal blocks contain g elements, whereas the
off-diagonal ones contain r elements. ¢ is the overlap value
of replicas belonging to the same cluster, r the overlap be-
tween replicas of different clusters. The different eigenval-
ues, solutions of Eq. (C6), can be grouped in three different
sets each one corresponding to a given subspace of the rep-
lica space. One subspace involves fluctuations of the over-
laps of one replica with other p, replicas (both belonging to
the same cluster and different clusters). Another one involves
fluctuations of the overlaps of groups of p, replicas with
other p, replicas. The third one consists of the eigenvalues
determining the stability of the fluctuations between clusters
as a whole (roughly speaking). We look in detail at the ei-
genvalues and at their behavior as n— 0.

1. Fluctuations of the overlaps of one replica with p, other
replicas

The first subspace is determined by the condition

(gﬁq)ab = 0’

Two eigenvalues are associated to this subspace. One corre-
sponds to fluctuations of the overlap between replicas in two
different clusters (off-diagonal elements), for which all diag-
onal blocks are zero:

Ya,b. (C7)

144301-19



A. CRISANTI AND L. LEUZZI

€409.,=0, Va,b. (C8)

The eigenvalue and its degeneracy are
A == A'(r) + A2,
a0 = n(n—po)(po— 1)2
’ 2p; '

The other one controls fluctuations of the g overlaps, i.e.,
the off-diagonal blocks are zero:

(C9)

(1-€,)09,5=0, Va,b. (C10)
Its expression and its degeneracy are
A== A (g) +A%,
(C11)
-3
n(]]) _ n(po—3) .
2

2. Fluctuations of the overlaps of p, replicas with other p,
replicas

We now look at the fluctuations in the subspace
(éﬁq%)ab=0’ Va,b

with (é69),, # 0 [Eq. (C8) not satisfied].

The first eigenvalue can be addressed as the one related to
fluctuations between different clusters as a whole, that is the
subspace given by the further condition

(C12)

€.(€6q),,=0, Va,b. (C13)
Eigenvalue and degeneracy are
AP == A'(r) + A% + p,AB,
(C14)

Q) _ n(n —Po)(Po - 1)
no - 2 .
Po
The second eigenvalue deals with the subspace orthogo-

nal to Eq. (C13), i.e., with fluctuations between replicas in
the same cluster:

(1-¢é,)(€dqg),,=0, Va,b. (C15)
Its form and degeneracy are
AP == A'(q) + A%+ (py - 2)A(B+ C).
(Cl16)

Po

n(py—1
"(12) (po—1)

3. Fluctuations of the overlap of one cluster with other
clusters

Here we consider the clusters as single elements and the
relative fluctuations. The subspace we look at is orthogonal
to the first two subspaces and in order to express the condi-
tion defining it we introduce the cluster matrix

PHYSICAL REVIEW B 75, 144301 (2007)

b e B,

a, B are cluster indexes. In terms of this matrix one identifies
a first subsubspace associated with purely off-diagonal fluc-
tuations (i.e., between different clusters):

C.5=(€dq),, witha e a, (C17)

Cou=0, X2 Cop=0, Va. (C18)
B
The eigenvalue and its degeneracy are
A == A'(r) + (A + poB)?, (C19)
-3
n63) - M (C20)

2p;

There are, then, two other subspaces (for finite n), whose
physical meaning is less clear since mixed fluctuations are
involved.

One subsubspace is determined by the eigenvectors for
which

> C,p=0. (C21)

2 Coa=0,
a a#f
Defining

U=-A'(r)=A'(q) +2(A+pyB)>—BQA + p,B) + W+ Z,
(C22)

V=—WZ+[-A'(r) + (A +p,B)*+ W]
X[—A'(q) + (A + poB)* = B(2A + poB) + Z],

(C23)

W= (n-2py)C(A + pyB), (C24)

Z=2(py-1)C(A + p,B), (C25)

the two eigenvalues are
U
A(13%:—|:li 1—4‘—/], (C26)
n) =10 (C27)
Po

The last subspace is set by the eigenvectors orthogonal to
Eq. (C21):

> Cop#0.

2 Co #0,
a a#

(C28)

Also in this case there are two different eigenvalues, whose
expression is identical to Eq. (C26) provided that U=2(n
—po)C(A+poB) +n(n—py)(C*>+b?). Their degeneracy is 1.

APPENDIX D: DYNAMICAL SOLUTION FOR THE 2+P
SPHERICAL MODEL

In this appendix we show that the CHS dynamical solu-
tion of the spherical 2+p spin-glass model requires margin-
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FIG. 5. Schematic form of 7,(¢) and 7y(q,m) in the IRSB phase.
The horizontal line shows the value of 7. In the plot the slope of
71(q) at g, is strictly positive, implying that the slope of 7y(g,m) at
qo [the largest solution of the equation 7y(q,m)=7 below g,] cannot
be positive.

ality of the dynamics in the intermediate time scales. To keep
the notation simple and to refer to a physically well-known
system, we shall consider the case of two time scales, appro-
priate for the IRSB-type phase. With minor changes the deri-
vation can be generalized to any number of time scales.

By inserting the forms (94) and (95) for the correlation
and response function into the Dyson equation (17) and sepa-
rating out the short time behavior w> € as e — 0 and the long
time behavior w=€e() as €e—0, one obtains the following
equations of motion for G,(w) and G,(Q):

(r— ir—w>G1(w) -3(0)G(w) =1, (D1)
0
_ iQ
(V‘*' Algy) - fr_)Go(Q) — (1 =¢1)20(2)
0
-20(Q)Gy(Q) =0, (D2)

where 2 (w) and 2,({)) are the short and long time part of
the self-energy 2(w), and

F=r-A(1)==Alg)) + (D3)

l-q
to ensure the correct static limit w— 0 of Eq. (D1). The static
limit Q—0 of Eq. (D2) gives the equation for ¢.

91— 40
1—g,+m(q; - qo)

The parameter 7 can be eliminated from these equations with
the help of the spherical constraint

Algqy) = Alqo) =7+ Alq))] (D4)

* dw
f —C(w)=2(1-q,) - (1 -gq,)?

o 2T

+2m(1 = q1)(q, = q0)A(q)

=m[7+(1=m)A(g)](q1 - go)*=1.
(D5)
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qo ql

0 0.2 04 0.6 0.8

FIG. 6. Schematic form of 7;(g) and r(q,m) in the 1RSB phase.
The horizontal line shows the value of 7. Here the slope of 7,(¢q) at
q is zero, implying a positive slope of the function 7y(q,m) at g.

One, then, recovers Egs. (116) and (120) of the main text.
The equations for the correlation functions C; and C are
obtained from Egs. (D1) and (D2) by using the relations:

o

Giw)=(1-q))+ iwf dte'C ()= (1 -¢q,) + iwé’l(w),
0

(D6)

Go(w)=m(1 —q;) + miwf dfeiwt[co(f) - qo]
0

= m(qy — qo) + mioCo(w), (D7)
and

2 (w)=A(1) - Alg))

+ iwf dte’'(A[C,(D) + q,]1- Alqy))
0

=A(1) - Alg)) +ioA,(w), (D8)

So(w) =m[Alg1) - Algo)]

+ miwf dtei“”(A[Co(t)] - A(qp))
0
=m[A(1) - Ag)] + miwA () (D9)

that follow from FDT. A simple algebra leads to the equa-
tions

A

) A 1
(7‘*' Algy) - Z_>C1(w) - A ()G (w) - F_(l -q1)=0
0

(D10)

and
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- ola1 =g+ i0.Co()]
0
+{7+ Algy) — m[A(g)) = Algo) FCo()
— (1= g AQ) = Ay(Q)Gy(Q)=0.  (DI11)

To study the stability of the static limits it is useful to
rewrite these equation in the time space in the following
equivalent form:

[510,Co(0) +FLCI(0 + 4,1~ P - g - €, (0]
R fo dr{ALC (1= 1) + g1 ALC/ () + 4,1, €, (1) =0,
(D12)
el'5'9,Co(t) + {Fo[ Cor).m] = FH1 = g1 + m[q, — Co(1)]}
o fo A ALC 1~ 1] = ALCH (O Ty Cole) = 6,

(D13)

where d=lim,_+ €l';'9,Co(1) and 7,(g) and 7o(q,m) are the
functions

i) == A+ (D14)
Folg.m) = 7i(@) - S
o) = )= (g ) (=l - g1+ mlgy — )]
(D15)
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In terms of these equations the physical values of ¢;,¢qq
(0=<gy=<gq;=<1) yielding the plateau are the largest solution
of the equation®

ri(q)) =7o(qo.m) =7 (D16)
with 7 fixed by the spherical constraint.

Expanding Egs. (D12) and (D13), near the plateau to the
first order in the deviation one obtains the dynamic stability
conditions

J
0_FI(Q) =0, (D17)
q q9=4
d
—rolg,m) = 0. (D18)
9q 4=,

It is easy to check that these coincide with dynamical stabil-
ity conditions (125) and (128) given in the main text.

In the 1RSB phase 7,(¢) and 7y(q,m) have the shape de-
picted in Figs. 5 and 6, while 7<<1.% A simple analysis of
these figures shows that in order to satisfy Eq. (D18) to have
(81 9q)ro(qg,m) >0 it is necessary that

J _
a_”l(CI) =0,
q q9=4

(D19)

i.e., the solution at shorter time scales must be marginally
stable.
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