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The dynamics of quasicrystals is characterized by the existence of phason excitations in addition to the usual
phonon modes. In order to investigate their interplay on an elementary level we resort to various one-
dimensional model systems. The main observables are the static, the incoherent, and the coherent structure
factor, which are extracted from molecular dynamics simulations. For the validation of the algorithms, results
for the harmonic periodic chain are presented. We then study the Fibonacci chain with harmonic and anhar-
monic interaction potentials. In the dynamic Fibonacci chain neighboring atoms interact by double-well po-
tentials allowing for phason flips. The difference between the structure factors of the dynamic and the harmonic
Fibonacci chain lies in the temperature dependence of the phonon line width. If a bias is introduced in the well
depth, dispersionless optic phonon bands split off.
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I. INTRODUCTION

A. Motivation

Quasicrystals are long-range ordered materials lacking
translational symmetry.1 Their diffraction patterns exhibit a
dense set of sharp Bragg reflections, that can be indexed by
an integer linear combination of a finite number of basis
vectors which is larger than the dimension of space. As a
consequence the atomic configuration of quasicrystals is de-
scribed with reference to a higher-dimensional analog of a
periodic lattice. Elementary dynamic excitations within this
“hyperspace” description are phonons2 and phasons.3

Phasons involve rearrangements of the structure by
atomic jumps over short distances, denoted “phason flips.”
They are connected with many physical properties of quasi-
crystals such as elastic deformations,4 dislocations,5,6

diffusion,7,8 and phase transformations.9 Recently, indica-
tions for phason flips10,11 have been observed by in situ trans-
mission electron microscopy. A coherent set of phason flips
may form a static phason field, e.g., during a phase transfor-
mation or in the neighborhood of a dislocation.12

By investigating the dynamics of quasicrystals one can
find out the influence of the quasiperiodicity on the phonon
spectrum2 and one may gain a deeper understanding of pha-
son flips.13 Both points can be studied in x-ray or neutron-
diffraction experiments by measuring the response of the
system in frequency ��� and momentum �q� space. Depend-
ing on the experimental setup, different functions can be ob-
tained from the scattering experiments. �1� The static struc-
ture factor S�q� is the usual—not energy resolved—
diffraction image, measured with either x rays or neutrons. It
is used for the determination of the atomic structure. �2� The
coherent structure factor14 S�q ,�� is studied via coherent in-
elastic neutron scattering15 or, alternatively, via inelastic
x-ray scattering.16 It allows us to determine the phonon dis-
persion relations. The experiments on icosahedral quasicrys-
tals show well-defined acoustic phonon modes at small wave
vectors17 and dispersionless broad optic bands at larger wave

vectors.18 The crossover between the two regions is very
sharp. �3� The incoherent structure factor14 Si�q ,�� can be
measured in quasielastic neutron scattering. Neutrons are ex-
clusively used here, due to the necessity of a high-energy
resolution. The technique also allows the investigation of
phason flips. In a series of experiments Coddens et al.13,19–21

have found an anomalous q dependence of the quasielastic
signal in icosahedral quasicrystals. They interpreted it as cor-
related simultaneous jumps of several atoms.21

Various calculations of the coherent structure factor of
quasiperiodic model systems have been published, see Ref.
2. Among them are the perfect one-dimensional Fibonacci
chain,22 by static phason fields disordered Fibonacci
chains,23 and three-dimensional tilings.24 In these studies the
dynamical matrix is diagonalized, which is a purely analytic
method and yields the phonon dispersion relations only. The
results are highly structured excitation spectra with a hierar-
chical system of gaps.22 The influence of anharmonicities,
however, especially the dynamics of phason flips, has not
been taken into account.

This “missing link” marks the starting point of our study.
Here we present calculations of the structure factors of spe-
cial one-dimensional quasiperiodic model systems by use of
molecular dynamics �MD� simulations with either harmonic
potentials or potentials that allow for phason flips. Although
structure factors play such a central role in the dynamics of
solids, not much seems to be known about their exact forms
for one-dimensional chains. Even for the simple harmonic
chain only few articles exist.25–28

B. Model systems

As a simple one-dimensional model for a quasiperiodic
system we consider the Fibonacci chain. It consists of par-
ticles arranged at two different distances: large ones �L� and
small ones �S�. The length ratio L /S equals the number of the
golden mean �= 1

2 ��5+1�. The sequence of the distances is
created recursively by the mapping �L ,S�� �LS ,L� with
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starting condition L. For example, after four iterations the
resulting sequence is LSLLSLSL.

We want to study chains consisting of identical particles
with nearest-neighbor interactions. The Hamiltonian has the
form

H = �
j=1

N
pj

2

2
+ V�xj − xj+1 − aj� , �1�

where xj and pj are position and momentum of the jth par-
ticle. The dynamic Fibonacci chain �DFC� is defined by the
choices aj �a0=�3 for the equilibrium distances and V�x�
=x4−2x2 for the interaction potential, respectively. The latter
forms a double-well potential with minima at ±1 and a po-
tential hill of height �E=1 as shown in Fig. 1. Because
neighboring particles sit in either of the potential minima,
two nearest-neighbor distances L=a0+1 and S=a0−1 are
possible. They fulfill the constraint L /S=� of the Fibonacci
chain.

The DFC shows two types of elementary excitations: Pho-
non vibrations in the local minima and phason flips that in-
terchange the particle distances L and S. At low temperatures
only phonons are excited, phason flips have to be activated
thermally. With its neighbors at rest the activation energy of
a particle for a phason flip is 2�E. This value is a result of
the perfect superposition of the potential hills of both neigh-
bors. The value is lowered when the neighbors assist by step-
ping simultaneously to the inside or outside during the pha-
son flip thus creating a nonperfect superposition of the
potential hills. Since the particle distances L and S are ener-
getically degenerate, the total equilibrium potential energy is
invariant under a phason flip.

The occurrence of phason flips makes nonlinearity an in-
trinsic feature of the DFC and an analytical treatment of the
dynamics impossible. To understand the influence of the non-
linearity, we study four model systems with increasing com-
plexity concerning their dynamical behavior: Harmonic peri-
odic chain �HPC�, VHPC�x�=4x2 and aj =a=2�5; harmonic
Fibonacci chain �HFC�, VHFC�x�=4x2 and aj =L or S accord-
ing to the Fibonacci sequence; dynamic Fibonacci chain
�DFC�, VDFC�x�=x4−2x2 and aj =�3; and asymmetric Fi-
bonacci chain �AFC�, VAFC�x�=VDFC+��x2−1�2��x+x2 /2
−1/2� and aj =�3 with �� �0,1	 and �= ±1. The potentials
of the HPC, HFC, and DFC are chosen to be identical in the
harmonic approximation around the equilibrium separation.

The average particle distance a is the same for all four sys-
tems. In the case of the Fibonacci chain the occurrence prob-
abilities for L and S are given by �−1 and �−2, hence
a=2�5.

For the solution of the equations of motions we use a
special MD code. The code is introduced in Sec. II together
with a short theoretical background. The simplest system is,
of course, the HPC. Exact solutions for the equation of mo-
tion exist as a superposition of plane waves. We study the
dynamics of the HPC in Sec. III as a reference system. The
HFC consists of particles arranged on the Fibonacci chain
with distances L and S interacting with the same harmonic
potentials as the HPC, see Sec. IV. The DFC will then be
studied in Sec. V. In the case of the AFC the particles in the
two potential minima have different eigenfrequencies. The
parameters � and � determine the degree of asymmetry. For
more details we refer to Sec. VI. We finish with a discussion
and conclusion in Sec. VII.

II. STRUCTURE FACTORS FROM MOLECULAR
DYNAMICS

A. Definition of the structure factors

We write the particle number density of the chain with N
particles as a sum of delta functions positioned along the
particle trajectories xl�t�, n�x , t�=�l=1

N ��x−xl�t�	. The time
dependent density-density correlation function and the
density-density autocorrelation function are defined as

G�x,t� =
1

N

 �n�x�,t�n�x + x�,0��dx�

=
1

N
�
j,l

���x − xj�t� + xl�0�	� , �2a�

Ga�x,t� =
1

N
�

l

���x − xl�t� + xl�0�	� , �2b�

where the brackets denote the thermal average.29 The coher-
ent and incoherent structure factor are the space-time Fourier
transforms30

FIG. 2. Density-density correlation function G�x , t� of the HPC
for kBT=0.5. The Gaussians are centered at integer multiples of
x=a
4.47.

FIG. 1. Double-well potential V�x�=x4−2x2 of the dynamic Fi-
bonacci chain. The equilibrium distances are S and L.
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S�q,�� =
1

2�N

 e−i�t�

j,l
�e−iqxj�t�eiqxl�0��dt , �3a�

Si�q,�� =
1

2�N

 e−i�t�

l

�e−iqxl�t�eiqxl�0��dt . �3b�

Both functions are symmetric about q=0 and �=0. The
static structure factor is the integral of the coherent structure
factor S�q�=�S�q ,��d�, i.e., the Fourier transform of
G�x ,0�,

S�q� =
1

N
�
j,l

�e−iqxj�0�eiqxl�0�� . �4�

B. Molecular dynamics simulations

For further calculations the particle trajectories are re-
quired as solutions of the equations of motion. Since in the
case of the anharmonic chains only numerical solutions exist,
we use a simple MD code. Initially the particles are placed
on the equilibrium positions of a finite chain of length L with
periodic boundary conditions. The velocities are initialized
according to a Gaussian distribution. Its width determines the
total energy and thus the temperature of the system. The
equations of motion are integrated by a Verlet algorithm run-
ning for a simulation time Tsim. After starting the simulation,
the dynamics is not controlled by a thermostat or in any other
way.

For the direct numerical calculation of the Eqs. �3� we
must compute a fourfold sum: two sums over the particle
number N and two over the time Tsim, one sum for the Fou-
rier transform and one for the time average. Note, that by
assuming ergodicity the thermal average �¯� can be replaced
by a time average 1

Tsim
�dt and additionally by an average

over several independent MD runs. For the sake of clarity the

averaging over the MD runs is suppressed in the following
notation. We introduce a more compact notation by defining
the functions f l�q , t�=eiqxl�t�. Let us assume tentatively that
these functions are periodic in time with period Tsim and in
space with period L. Then Eqs. �3� and �4� are greatly sim-
plified to

S�q,�� =
1

2�NTsim
�
 e−i�t�

l

f l�q,t�dt�2

, �5a�

Si�q,�� =
1

2�NTsim
�

l
�
 e−i�t f l�q,t�dt�2

, �5b�

and

S�q� =
1

NTsim

 ��

l

f l�q,t��2
dt . �6�

The equations differ in the order of the absolute square and
the particle sum. Since only two sums are left, an efficient
numerical computation of the structure factors is possible.
Furthermore a fast Fourier transform is used for the time
integrals in Eqs. �5�.

FIG. 3. Incoherent structure factor Si�q ,�� of for HPC for q
=� /a, and different temperatures. The symbols mark the data from
MD simulations with N=1000 particles, and the lines result from
the analytical formula �7b�. The peaks and edges are at integer
multiples of �=2�0=2�8.

FIG. 4. �Color online� Coherent structure factor S�q ,�� of the
HPC with N=6500 particles from MD simulation. The temperatures
are kBT=0.01 �a� and kBT=0.1 �b�. One-, two-, and three-phonon
branches are observed. They start at the reciprocal lattice points
2�n /a. In �b� the output from the MD simulation �left side� is
compared to the output of the analytical formula Eq. �7a� �right
side�.
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A discussion of the periodicity condition remains. The
spatial periodicity follows from the periodic boundaries used
in the simulation. Therefore the chain acts similar to a ring
and the excitations can go round during the simulation. To
avoid such a behavior that would lead to unwanted correla-
tions, we limit the maximum simulation time by the quotient
of the length of the chain and the sound velocity cs to Tmax
=L /cs. For all the model systems HPC, HFC, and DFC the
sound velocity is the same, cs=a�8, and Tmax=N /�8. We use
Tsim=Tmax.

The functions f l�q , t� are in general not periodic in time.
There is no reason why the particles should be at the same
positions at the end of the simulation as at the beginning. To
avoid this problem, we multiply f l�q , t� with a window func-

tion w�t� to enforce an artificial periodicity. The function
w�t� has to decrease fast enough—both in direct as in Fourier
space—towards the boundaries of its domains. We use a nor-
malized broad Gaussian function. Its width is chosen as large
as possible with the constraint that the Gaussian has decayed
to a small enough value at the interval boundaries. The effect
of the Gaussian is a smoothing of the structure factors by
convolution with a narrow Gaussian. The exact value of the
width has no influence on the results.

III. HARMONIC PERIODIC CHAIN AS REFERENCE
SYSTEM

A. Analytic calculations

The harmonic periodic chain �HPC� is used as a reference
system to test our algorithms since its equations of motions
can be solved analytically. If we put xl�t�=ul�t�+ la, then the
ul�t� are expressed by a linear combination of normal modes.
The wave vector q and the frequency � are related according
to the dispersion relation ��q�=2�0�sin�qa /2��. Here, �0 is
the eigenfrequency of a single particle. In the case of the
model systems HPC, HFC, and DFC we have �0=�8.

For the HPC the thermal averages in the structure factors,
Eqs. �3� can be calculated to be

S�q,�� =
1

2�

 e−i�t �

l=−�

�

e−iqal exp�−
1

2
q2	l

2�t��dt , �7a�

Si�q,�� =
1

2�

 e−i�t exp�−

1

2
q2	0

2�t��dt , �7b�

where we used from the literature25

FIG. 5. Static structure factor S�q� of the HPC for kBT=0.02.
The symbols mark the data from a MD simulation with N=1000
particles, and the line is the result from the analytical formula �9�.

FIG. 6. �Color online� Coherent structure factor S�q ,�� of the HFC with N=13 000 particles for kBT=0.02. It consists of a dense set of
phonon branches starting from the reciprocal lattice points.
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	l
2�t� = ��ul�t� − u0�0�	2�

=
kBT

�0
2 �l +

1

2



0

2�0t

J2l�s��2�0t − s�ds� . �8�

Jn�s� is the Bessel function of the first kind of order n. The
only external parameter in these functions is the temperature
T. The particle sum and the Fourier transform have to be
evaluated numerically. Due to the translation invariance of
the HPC the double sum of Eqs. �3� is reduced to a single
sum. The static structure factor of the HPC can also be cal-
culated analytically26

S�q� =
sinh�q2	2/2�

cosh�q2	2/2� − cos�qa�
, �9�

where 	2=kBT /�0
2.

Let us take a closer look at the incoherent structure factor
Si�q ,��. In the limit of small T the term exp�− 1

2q2	0
2�t�	

decays slowly with t and we substitute 	0�t� with its approxi-
mation for large t: 	0�t�= �t�kBT /�0 for �t�→�. This leads to
a Lorentzian peak

Si�q,�� =
1

�





2 + �2 , 
 =
q2kBT

2�0
. �10�

In the limit of large T the term 	0�t� is approximated for
small t: 	0�t�= t2kBT for �t���0

−1. Hence there is a Gaussian
peak

Si�q,�� =
1

��2�
exp�−

�2

2�2�, � = �q2kBT . �11�

The transition temperature between these two limiting cases
is kBT=4�0

2 /q2.
The Fourier transform of the Eqs. �7� yields the correla-

tion functions

G�x,t� =
1

�2�
�

l=−�

�
1

	l�t�
exp�−

�x + la�2

2	l
2�t� � , �12a�

Ga�x,t� =
1

�2�

1

	0�t�
exp�−

x2

2	0
2�t�� . �12b�

The function G�x , t� is shown in Fig. 2. It consists of a sum
of Gaussians centered at the equilibrium positions of the par-
ticles. The width of the Gaussians increases with tempera-
ture, as well as with time and in space: limx,t→�G�x , t�=

and 
=1/a. This means that there is no long-range order.
Indeed, for the particle number density we have �n�x��=
,
which is uniform as in liquids.25 The autocorrelation function
Ga�x , t� corresponds to the center peak at x=0.

B. Simulation results

In the case of the incoherent structure factor the variables
T and q only appear as combination q2kBT in Eqs. �7� and
�8�. Therefore it suffices to examine Si at a fixed wave vector
for different temperatures. We choose q=� /a arbitrarily. The
results from MD simulation and the numerical integration of
the analytical formula �7b� are shown in Fig. 3 for tempera-
tures ranging from 0.01 to 100.0. There is a maximum at

FIG. 7. Static structure factor S�q� of the HFC from a MD simulation with 2000 particles at the temperature kBT=0.02.

FIG. 8. Snapshot of the particle trajectories of the DFC at the
temperature kBT=0.6. Changes in the particle distances from L to S
and S to L are marked with a cross ��� and a plus ���. A L→S
change and a S→L change combined form a phason flip.
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�=0, called the quasielastic peak. In the low temperature
regime the maximum has a Lorentzian shape. Furthermore, a
one-phonon peak, two-phonon edge, three-phonon edge, etc.,
are found at 2�0
5.7, 4�0
11.3, 6�0
17.0.31 Note that
the multiphonon contributions rapidly decay for larger �
�logarithmic scale�. At higher temperatures the curve
smoothes and approaches a Gaussian profile.

The coherent structure factor S�q ,�� is shown in Fig. 4.
For a low temperature of kBT=0.01 a one-phonon branch,
two-phonon branch, and very weakly three-phonon branch
are observed. The one-phonon branch has a Lorentzian line
shape and follows the phonon-dispersion relation. At higher
q values the branch broadens with a width proportional to
kBTq2. This is similar to the temperature behavior for the
incoherent structure factor. The multiphonon branches follow
the modified relations ��q�=2n�0�sin�qa /2n�� with n=2,3.

In Fig. 4�b� the comparison of the MD simulation �left
side� and the analytical formula Eq. �7a� �right side� is
shown. The temperature in this figure is kBT=0.1, which is
higher than in Fig. 4�a�. As a consequence the one-phonon
branch is broader. For both methods of calculating S�q ,�� a
high accuracy over 12 orders of magnitude is possible. The
accuracy is only limited by the internal floating point preci-
sion of the simulation code.

The static structure factor from Eq. �9� is compared to the
results from the MD simulation in Fig. 5. S�q� consists of a
sequence of Lorentzian peaks at the reciprocal lattice points.
The increasing width for larger wave vectors shows again
that no long-range order is present in the one-dimensional
model system.

The MD simulations and analytical formulas show a per-
fect agreement. Therefore we conclude that MD simulations
are a well-suited numerical tool for calculating the structure
factors of the one-dimensional model systems. Although we
integrate the equations of motions with a good precision only
on a short time scale using the simple Verlet algorithm, the
statistics extracted from the trajectories are correct. This con-
firms our approach and encourages us to proceed studying
the phason dynamics of Fibonacci chains in the next section.

IV. HARMONIC FIBONACCI CHAIN: INFLUENCE
OF THE QUASIPERIODICITY

By changing the interparticle equilibrium distances of the
HPC to those of a Fibonacci sequence with separations L and
S we obtain the harmonic Fibonacci chain �HFC�. The inter-
action potential is left unchanged. Since the incoherent struc-
ture factor is a function of the single particle motion only, it
does not depend on the equilibrium distances of the particles
but only the interaction potential. Hence, the incoherent
structure factor of the HPC and of the HFC are identical. For
the coherent structure factor the interparticle distances be-
come important. Instead of Eq. �7a� we now have

S�q,�� =
1

2�

 e−i�t�

l

e−iqxl
0

exp�− q2	l
2�t�/2	dt . �13�

Here xl
0=� j=1

l aj for l�0, xl
0=� j=l

−1 aj for l�0 and x0
0=0 de-

note the equilibrium positions of the particles. For kBT=0
this gives the Fourier transform of the static Fibonacci chain

S�q,�� = �����
l

e−iqxl
0

�14�

which is well known.32 It consists of a dense set of delta
peaks with varying intensity, positioned at the reciprocal lat-
tice points

q = q0�h + �h��, h,h� � N �15�

with q0= 2�
a 
1.40.

As shown in Fig. 6 for the temperature kBT=0.02, the
coherent structure factor S�q ,�� of the HFC consists of
many different branches all following the one-phonon disper-
sion relation. Relative to each other the branches are dis-
placed in the q direction. They start at the reciprocal lattice
points with the intensity of the respective delta peak. Two-
phonon branches are also found. The broadening of the
branches proportional to kBTq2 has already been discussed
for the HPC.

FIG. 9. Average flip frequency as a function of the temperature
kBT. In the temperature range of the figure: �flip��0
2.83.

FIG. 10. Incoherent structure factor Si�q ,�� of the DFC �solid�
and the HFC/HPC �dashed� for q=� /a at different temperatures.
The data was calculated using MD simulations with N=1000
particles.
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From these findings and Fig. 5 one can guess the form of
the static structure factor S�q� for the HFC: Lorentzians are
positioned at the reciprocal lattice points with varying inten-
sity. In Fig. 7 S�q� is shown for q� �0,3�	. For small q a
large number of Lorentzians occur. With increasing q value
their width increases and the stronger ones hide the weaker
ones. Comparing the position of the strong peaks and ignor-
ing the change of their widths and heights, there is a self-
similarity in S�q�. The deflation factor is �q1 /�q2=�3 as
indicated in Fig. 7.

It is interesting to note that there are regions with very
few peaks. They are positioned around q=�, q=2�, etc. The
same regions are also special for the coherent structure fac-
tor. As seen in Fig. 6 all the weak one-phonon branches
vanish towards q=�. Only the strong one-phonon branch
starting from the Bragg peak at q=�q0
2.27 remains.

V. DYNAMIC FIBONACCI CHAIN: OCCURRENCE
OF PHASON FLIPS

A. Phason flips

Let us now proceed to the anharmonic chains with phason
flips by investigating the dynamic Fibonacci chain �DFC�. It
is built from identical particles that interact with a symmetric
double-well potential VDFC=x4−2x2. First the notion of a
phason flip has to be specified. To do so we identify the
position of the changes from L to S and from S to L of the
interparticle distances along the particle trajectories. This is
done in Fig. 8. Often a L→S change and a S→L change lie
next to each other �particle distance 1� and the sequences LS
and SL are interchanged. But there are also many cases
where the positions of the two changes are separated by 0, 2,
3, or even more particle distances as marked by lines in Fig.
8. Sometimes it is not possible to find a partner locally. Only
in the long time average every L→S change will eventually
cancel with a S→L change.

In the literature on the Fibonacci chain a phason flip is
understood as the exchange of a L and a neighboring S par-

ticle distance. As we learned above there are also other types
of exchanges in the DFC. In the following we denote by
phason flip every pair of flip partners as those connected by
lines in Fig. 8. Note that the times and positions of the pha-
son flips are not well defined. Only their number can be
estimated by counting the changes in the particle distances as
we will do now.

The temperature dependence of the average phason flip
frequency �flip is shown in Fig. 9. Phason flips start to appear
at about kBT=0.1. At low kBT the average phason flip fre-
quency increases rapidly by thermal excitation and �flip
��0. At higher temperatures kBT�0.4 the average phason
flip frequency slowly saturates. In this region the internal
energy is comparable to the potential hill.

B. Results for the structure factors

For the anharmonic chains no analytic results are avail-
able, in particular not at elevated temperatures when phason
flips occur. The incoherent structure factors of the DFC and
of the HFC/HPC differ remarkably and are shown in Fig. 10
for q=� /a. The comparison leads to the following conclu-
sions.

�1� At a fixed temperature, there are � ranges where the
curve for the DFC lies below the curve for the HFC/HPC and
vice versa. Since we have �Si�q ,��d�=1 from Eq. �3b�, the
integral area between the two curves has to vanish.

�2� At very low kBT and ��2�0
5.7 the curves of the
DFC and the HFC/HPC cannot be distinguished in logarith-
mic scale except for two small bumps. They are a conse-
quence of the anharmonicity of the interaction potential of
the DFC and not related to the phason flips. At larger �
values the multiphonon edges have different heights.

�3� Above kBT=0.1 the one-phonon peak and the mul-
tiphonon edges in the curves for the DFC broaden and
weaken considerably faster than in the curves for the HFC/
HPC. They finally disappear at kBT=1.0.

�4� No additional peaks or edges occur at any tempera-
ture.

FIG. 11. Cuts through S�q ,�� of the DFC for a fixed �=1.0
including a one-phonon peak. The solid curves are fits with
Lorentzians.

FIG. 12. Width of the Lorentzian peak of Fig. 11 as a function
of temperature for the HFC �inset� and the DFC.
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Further MD runs show that different q values change the
temperature dependence, but the general features remain un-
changed: The phonon peaks and edges broaden and weaken
much faster with increasing temperature for the DFC than for
the HFC/HPC.

Similar conclusions follow for the coherent structure fac-
tor of the DFC. S�q ,�� for the DFC looks qualitatively simi-
lar to S�q ,�� for the HFC except that the branches broaden
more quickly with temperature. To compare the broadening
let us look at plane cuts through S�q ,�� for �=1.0 fixed.
Three cuts for the temperature kBT=0.05, 0.2, and 0.3 are
shown in Fig. 11. A one-phonon branch is located inside the
cut resulting in a peak with approximate Lorentzian line
shape as indicated by the fits in the figure. Only for lower
temperatures does the line shape deviate from a Lorentzian,
which is seen at the base of the peak for kBT=0.05.

The width of the Lorentzian in Fig. 11 is shown as a
function of temperature in Fig. 12 for both the HFC and
DFC. In the case of the HFC the width increases linearly
with temperature, as discussed in Sec. IV. There is a devia-
tion from linearity at low temperatures. This is an artifact
from the method of calculation from MD simulation data. As
explained in Sec. II B the structure factor is convoluted with
a Gaussian due to the finite simulation time. The �narrow�
Gaussian generates the observed offset. The convolution
with the Gaussian is also responsible for the shape of the cuts
in Fig. 11 at low temperature, deviating from the Lorentzian
shape.

There is one aspect of the DFC that has been ignored up
to now. Due to the phason flips the original perfect quasi-
periodic long-range order is slowly decaying. With progress-
ing simulation time the chain becomes randomized which,
however, has no effect on the incoherent structure factor. To
test the influence of the randomization on the coherent struc-
ture factor, a MD simulation was started with a totally ran-
domized Fibonacci chain. The interaction potentials and the
occurrence ratio of L and S were not adapted. The result of
the simulation is shown in Fig. 13. Most of the details in

S�q ,�� are lost by the randomization process and the
branches are strongly broadened, although the simulation has
been carried out at a low temperature of kBT=0.02.

We summarize the results of this section. By the introduc-
tion of the anharmonic double-well potential of the DFC, the
phonon peaks, edges, and branches are strongly broadened
and weakened with increasing temperature. There are two
effects responsible for the broadening. �1� The anharmonicity
and single phason flips affect the propagation of phonons.
This is seen in the incoherent structure factor. �2� The de-
struction of the long-range order by a large number of pha-
son flips. This is the main effect of broadening for the coher-
ent structure factor. The phason flips appear more or less
uniformly distributed over the simulation time and the
particles.

VI. ASYMMETRIC FIBONACCI CHAIN: COMPETING
EIGENFREQUENCIES

A. Band gaps

In the next step we modify the double-well potential of
the DFC. As in all the previous model systems the asymmet-
ric Fibonacci chain �AFC� is built of identical particles, but
they interact with the more complicated potential VAFC
=VDFC+�V, see Fig. 14. The additional term is given by

�V�x� = ��x2 − 1�2��x + x2/2 − 1/2� �16�

with �� �0,1	 and �= ±1. This term has been chosen in such
a way that the positions of the minima at x= ±1 are left
invariant, but the curvatures of the potential at those points is
changed to VAFC� �±1�=8�1±���. In harmonic approximation
a particle will feel different eigenfrequencies, depending on
the nearest-neighbor configuration SS, SL, LS, or LL. In the
case of �=1 it is �LL��LS=�SL��SS and for �=−1 it is
�LL��LS=�SL��SS. The sign change of � corresponds to a
mirror operation of VAFC about the y axis.

FIG. 13. �Color online� Coherent structure factor S�q ,�� of a
randomized Fibonacci chain with 2000 particles at the temperature
kBT=0.02. The same interaction potentials as in Fig. 6 have been
used.

FIG. 14. Interaction potential VAFC�x� of the AFC for different
values of the parameter � and �=1. VDFC is shown with dashed
lines.
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The coherent structure factor of the AFC with �=0.1, 0.3,
0.5 and �= ±1 is shown in Fig. 15. Band gaps of different
widths appear and broaden with increasing values for �.
They are positioned at the frequencies where one-phonon
branches intersect each other. Their positions and widths are
different for �=1 and �=−1. For �=1 three large gaps and

several smaller gaps appear, whereas for �=−1 only one very
large gap, one medium gap and several small gaps appear.
The band gaps are a consequence of the competing eigenfre-
quencies due to the asymmetric potential in the same way as
band gaps appear in periodic systems with several particles
and eigenfrequencies per unit cell.

FIG. 15. �Color online� Coherent structure factor S�q ,�� of the AFC for different values of � and � from MD simulations with 6500
particles at kBT=0.01. Band gaps are observed. The band gaps also appear in the DOS D���.
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B. Density of states

The gaps are seen more clearly in the density of states
�DOS� D���. The DOS per particle is calculated from the
velocity autocorrelation function by a Fourier transform

D��� =
1

�N

 e−i�t�

l

�vl�t�vl�0��dt, � � 0. �17�

It is obtained from MD simulation data similar to the inco-
herent structure factor: f l�q , t� has to be substited by vl�t� in
Eq. �5b�. By interchanging the Fourier transform and two
time derivatives we can alternatively write

D��� =
�2

�N

 e−i�t�

l

�xl�t�xl�0��dt . �18�

After a Taylor expansion of the exponentials in Eq. �3b� a
connection to the incoherent structure factor is found,

D��� = 2�2 lim
q→0

Si�q,��
q2 , � � 0. �19�

For comparison we present the DOS of a harmonic chain
�HPC or HFC�

D��� =
2

�

kBT

�4�0
2 − �2

for 0 � � � 2�0 �20�

and 0 elsewhere. The total number of states is normalized to
�0

�D���d�=kBT.
It can be checked, that the DOS of the harmonic chain fits

well to the DOS of the AFC for �=0.0, except small bumps
that originate from the anharmonicity of the potentials. In
Fig. 15 the DOS of the AFC for different values of � and �
are drawn. The band gaps appear at the same frequencies and
the same widths as in the coherent structure factor.

VII. DISCUSSION AND CONCLUSION

At the end we would like to make some general remarks
concerning phason flips and phason modes: In the context of

a hydrodynamic theory, phason flips can be associated with
phason modes. It was noted quite early33 that phason modes
are diffusive, contrary to the propagating phonons. This
means that phason flips are only weakly coherent in space
and time, which, of course, we have also observed here. As a
result their influence on the structure factor is small making
it difficult though still interesting to study them by scattering
experiments. Another point concerns the connection of pha-
son flips and quasiperiodicity. There is no reason why phason
flips should only occur in quasicrystals. Since interaction po-
tentials are not sensitive on the long-range order, phason flips
in the form of atomic jumps can also occur in periodic com-
plex intermetallic phases, which is supported by recent ex-
perimental results.34,35 In the case of our model systems, it is
equally possible to compare simulations of a periodic
LSLSLS¯ chain with harmonic and double-well potentials,
respectively.

In conclusion, we have investigated the dynamics of
phonons and phason flips in one-dimensional model systems
with molecular dynamics simulations. An efficient algorithm
made it possible to calculate the structure factors with high
precision and in great detail. As a result, multiphonon
contributions—although weak in comparison to the one-
phonon peaks and branches—have been identified. By intro-
ducing phasons in the model systems we were able to study
their influence on the structure factors, which is mainly a
broadening of the characteristic peaks, edges, and branches
with temperature. The broadening can be further split into a
broadening due to the disorder as a result of collective pha-
son flips, i.e., a static phason field, and a broadening due to
the anharmonicity of the interaction potentials and single
phason flips. The work presented here is a first step. Further
studies on two-dimensional and three-dimensional model
systems with phason flips are under way.
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