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We present a density functional model for the thermodynamic properties of a Lennard-Jones system in the
crystalline state having a small fraction of vacancies present in the lattice. The test density function is modified
from its usual form to take into account the presence of vacancies in the lattice structure. The repulsive part of
the Lennard-Jones potential is treated in terms of an equivalent hard sphere �EHS� system while the contribu-
tion from the long attractive part is treated perturbatively. The properties of the EHS in the inhomogeneous
state is obtained with the weighted density functional approach. The thermodynamic behavior is studied by
locating the state of minimum free energy. The dependence of the vacancy concentration on temperature at the
coexistence of crystal and liquid is obtained.
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I. INTRODUCTION

The thermodynamic properties of macroscopic systems
are obtained from models based on the statistical mechanics
of many particle systems. At the microscopic level the sys-
tem is described in terms of the basic interaction potential
between the particles. In the theoretical models one usually
deals with the systems that have hard sphere or purely repul-
sive type interactions. Systems with attractive potentials on
the other hand have been studied by formulating a perturba-
tive expression for the thermodynamic properties.1 This ap-
proach involves splitting the interaction potential into a short
range purely repulsive and a long range attractive part. The
thermodynamic property of the system with the given inter-
action potential is then obtained as a sum of two contribu-
tions: that of a reference system having the purely repulsive
interaction and the contribution coming from the attractive
part of the interaction treated perturbatively. In the first part,
the properties of the reference system are usually known
from independent models. The most commonly used refer-
ence system is the hard sphere potential for which there exist
several models accurately describing the thermodynamic
properties of the homogeneous state for densities ranging
from low to very high values. The diameter of this equivalent
hard sphere system is determined from suitable criteria2 ob-
tained from thermodynamic considerations. However such
theories for more generalized potentials are dealing with the
uniform liquid state rather than the nonuniform solid state.

The theoretical models of classical solids having strongly
inhomogeneous density distributions is also formulated in
terms of the basic interaction potential. In this regard the
density functional theory �DFT�3–5 has been a very useful
tool for studying the thermodynamic properties of the non-
uniform state. It provides a suitable methodology for com-
puting the thermodynamic properties of the solid state in
terms of those of the liquid state. Here also the theoretical
studies have been initially focused on the systems with hard
sphere interactions. For systems with interaction potentials
having an attractive part, the free energy is computed �in a
mean-field approach� by adding a correction to the free en-
ergy of a system having a purely repulsive interaction. The
correction term is obtained in a perturbative approach in

which6 the structural properties of the reference solid state is
substituted in terms of that of an uniform liquid. However,
Recently Rascón et al. have improved the calculation of the
free energy of the solid whose interaction potential has an
attractive part. This involves obtaining an approximate solid
state structure factor of the reference system which is then
used in the perturbative expression for the free energy. In the
present work we follow this approach to study the inhomo-
geneous solid state of a one component Lennard-Jones �LJ�
system having vacancy defects. The reference system here is
described in terms of a similar imperfect hard sphere system
with vacancy. The structure factor for the latter is obtained
using in the standard density functional model a modified
density function. This inhomogeneous density takes into ac-
count the absence of particles in a small fraction of the lattice
sites. Since the density of vacancies in the crystal is so small
we ignore the interaction between the defects in the solid.
The interaction part of the free energy for the solid is ob-
tained using the modified weighted density functional ap-
proximation �MWDA�, which is a more effective way of
computing the thermodynamic properties of the strongly in-
homogeneous crystalline state. The structure factor of the
solid state is computed approximately following Ref. 7. The
paper is organized as follows: In Sec. II we describe the
modification of the density function in terms of which the
DFT is formulated. Here we also describe the choice of the
proper reference system and computation of the solid state
structure factor. In Sec. III the computation of the free energy
for the LJ system is outlined and the optimum value of the
defect concentration in the equilibrium state is obtained. In
Sec. IV we discuss our results and other related works on LJ
solids with defects.

II. DESCRIPTION OF THE MODEL

We consider the crystal being represented statistically by
a canonical ensemble having N number of particles in vol-
ume V at temperature T. The basic interaction potential be-
tween the particles is used as a starting point in the model. In
the present work we consider the system interacting through
the Lennard-Jones potential which has a hard core repulsive
part and a long range attractive part. The free energy of the
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solid is expressed as a function of inhomogeneous density
function n�r�. The theory uses a suitable parametric descrip-
tion for the nonuniform density function and is defined as a
sum of Gaussian profiles8 centered at each lattice site of the
crystalline structure,

n�r� = �
�=1

N

����r − R��� , �1�

where ���r�= �� /��3/2e−�r2
is the Gaussian function and R�

denotes the position of the �th lattice sites in the solid. The
total number of lattice sites in the crystal is NPC of which N
sites are occupied by the particles and ND are vacant �NPC

=N+ND�. It is assumed here that ND�N and that the vacant
sites are not close to each other. The Gaussian density profile
is absent for the vacant site. The quantity � in Eq. �1� rep-
resents the inverse square width of the Gaussian profiles and
will be called the width parameter �WP�. The limit �→0
corresponds to the liquid phase, while high values of � cor-
respond to the inhomogeneous crystal state.

We follow here broadly the perturbative scheme devel-
oped earlier9 for studying the thermodynamic properties for
the perfect crystal. The Lennard-Jones potential is divided
into two parts,1 namely a hard core repulsive part �called the
reference part� Vhc and an attractive potential Va. The Helm-
holtz free energy of the fcc solid is then obtained as
F�n�r��=Fre�n�r��+Fmf�n�r�� where Fre and Fmf, respec-
tively, denote the reference state free energy and a contribu-
tion from the attractive part of the potential. Fmf is computed
using the mean-field approximation as

Fmf�n�r�� =
1

2
� � dr1dr2f2�r1,r2�Va�r12� , �2�

where f2�r1 ,r2� is the two-point distribution function �TPDF�
for the crystalline solid state. It represents the probability of
simultaneous occurrence of particles 1 and 2, respectively, at
r1 and r2, irrespective of their momentums. The result �2�
can be further simplified as

Fmf�n�r�� = 2�V� drr2 f̃2�r�Va�r� , �3�

in terms of the angular averaged TPDF f̃2�r� defined as

f̃2�r� =� d�

4�
� dr1

V
f2�r1,r1 + r� , �4�

where d� is the differential solid angle aperture around r.

Earlier works6 have used the approximation f̃2�r�=n0
2g�r�, in

terms of the uniform liquid state radial distribution function
g�r�.10 For a better estimation of the contribution to the free
energy from the attractive part of the potential we use fol-

lowing Rascón et al.,9 the solid state f̃2�r� for the reference
hard sphere system. We next discuss the proper choice for
the reference part of the Lennard-Jones potential in the
present context.

A. The reference system

The free energy of the purely repulsive reference system
is approximated by an expansion in terms of an equivalent
hard sphere �EHS� system. Using a statistical mechanical
approach1,11 the reference state free energy is obtained as a
perturbative expansion,

Fre�n�r�� = FHS�n�r�� + 2�n0N� drr2ỹHS�r��e�r�

+ O���e�2� , �5�

where ỹHS�r� is the angular average of the hard sphere func-
tion yHS�r1 ,r2� and can be expressed as

ỹHS�r� = e�VHS�r� f̃2�r� . �6�

In terms of the two-point distribution function f̃2�r� of the
solid state defined above in Eq. �4�. VHS is the interaction
potential of EHS of diameter 	E. The latter 	E is a free
parameter in the theory and its value is fixed such that first
order term in the expansion of Eq. �5� for the free energy
becomes zero. Thus

�
	E




drr2ỹHS�r� − �
0




drr2ỹHS�r�e�Vhc = 0. �7�

The EHS radius 	E is therefore computed with the knowl-

edge of the angular averaged TPDF f̃2�r�. The angular aver-

aged function f̃2 is also necessary in computing the mean-

field term Fmf in �3�. The computation of f̃2 defined in �4� of
the EHS is therefore the next step in the calculation. In the
present context we need to obtain the two-point functions for
the imperfect crystal with vacancies. Since the individual
particles in a crystal are sharply localized to the site, the
TPDF f2�r1 ,r2� is approximated at the simplest level as the
product of the individual probabilities, i.e., the single particle
densities,

f2�r1,r2� = n�r1�n�r2� . �8�

The approximation for f2 as a product of single particle den-
sities amounts to neglecting the two-point correlation in the
crystal and hence works better when r is large. The inhomo-
geneous density n�r� for the hard sphere system is expressed
as a sum of Gaussian profiles as in �1�. We include the pres-
ence of vacancies in the lattice through a modification of the
density function. The fraction of sites occupied is N /NPC
=A. Hence the probability that a given site is occupied by
the particles is A=N /NPC, or equivalently �v=1−A is the
probability that a site is vacant. Computation of f2 using the
definition �8� require the density function n�r�. For the im-
perfect crystal n�r� is now modified with the averaged
form,12 ñ�r�=Anpc�r� where the npc�r� would be the density
for the perfect lattice �i.e., for N=NPC� in absence of vacan-
cies. Thus the influence of the vacancy is only included in an

average manner here in the computation of f̃2. Using this
averaged one particle density function �now parametrized in
terms of the WP �H and A� in the expression �8� the TPDF is
calculated. The corresponding angular averaged quantity de-
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fined in �4� is obtained in terms of an approximate expres-
sion,

f̃ 2
0�r� = �

i

f 2i
0 �r� , �9�

where we have used the superscript 0 to denote the approxi-

mations mentioned above. The functions f̃ 2i
0 �r� represent

Gaussian peaks which are obtained as

f 2i
0 �r� =

n0

4�
��H

2�
	 wi

rRi

exp	−

�H

2
�r − Ri�2
, i = 2,3, . . . ,

�10�

where Ri is the radius of the ith shell around a lattice site
chosen as origin and wi is the number of sites in the ith shell
in the fcc lattice. In reaching the above expressions �10� we
have neglected contributions involving exponential terms
like e−��r + Ri�

2/2, since in the present case for large � values
�corresponding to the highly localized structures in the crys-
tal� such factors are negligible at finite r values.

The approximate expressions �9� and �10� are good

enough for large r. For the first peak in f̃2�r� �corresponding
to the shortest r value� however the above mean-field ap-
proximation in terms of f21

0 �r� is inadequate to account for
the small range correlation in the system and requires im-

provement. The first peak of f̃2�r� is therefore obtained using
thermodynamic properties of the hard sphere solid. We make
the following choice from Ref. 7:

f̃21�r� = ��A0/r�exp	−
�0

2
�r − r0�2
 if r � 	c,

0 otherwise,
� �11�

where the superscript 0 in f21
˜ on the left-hand side �LHS� of

�11� is dropped to indicate the different parametrization in-

volved here �from that for f̃ 2i
0 in �10� discussed above�. The

parameters A0, �0, and r0 are determined by numerically
solving three coupled nonlinear equations obtained using the
following three constraints. First the normalization of the

angular average two-point distribution function drf̃2�r�
done in the first shell is equal to the coordination number in
the corresponding crystal structure. Second, the virial equa-

tion relating the pressure of the system to the f̃2�	c� at
contact. Finally, approximating the �r� calculated with the

f̃ �21��r� and with f̃ 21
0 to be the same. In the scheme for ob-

taining f̃2�r�, outlined above, the pressure P and �H are re-
quired at fixed density n0 and vacancy concentration nD. To
obtain the pressure P, the free energy of the solid is com-
puted using the standard density functional methods for hard
core systems. The DFT calculation in this case requires
choosing for the hard sphere system a suitable inhomoge-
neous density function n�r� in terms of the Gaussian profiles
of WP �H. The free energy of this hard sphere system is
calculated with the standard modified weighted density func-
tional approximation.13 The key aspect of this calculation
scheme in the present context is the inclusion of vacancies

on the lattice structure. This is done here through a modifi-
cation of the test density function �as described with Eq. �1��
to be used in the DFT. The details of the MWDA are given in
the Appendix. The optimum value of �H is determined from
that corresponding to the minimum FHS. As outlined above,
for computing the constants in the expression �11� for the

function f̃2�r� at small r the value of the corresponding pres-
sure P is required. The latter is determined here with the
numerical derivative with respect to density n0 of the free
energy FHS at the minimum �at a fixed nD and n0�. Using the
optimum �H and the corresponding value of the pressure P,
we obtain the required functions, respectively, given by �10�
and �11� needed to compute the angular averaged TPDF,

f̃2�r� = f̃21�r� + �
i=2

f̃ 2i
0 �r� . �12�

In Fig. 1 the angular averaged correlation function f̃2�r� of
the hard sphere fcc solid at density n0=1.025 and vacancy
density nD=10−6 is shown. The inset in Fig. 1 displays the

difference of the f̃2�r� of the perfect crystal and the same for
nD=1�10−6. The effect of the vacancy concentration on the
TPDF is also of the order of nD. It is important to note in this
respect that the free energy FHS for the hard sphere system
considered above �having WP �HS� is different from the free
energy Fre of the reference system which is a part of the total
free energy of the LJ system. Minimization of FHS is only

obtained to compute the pair correlation function f̃2�r� for
the solid state which is then used in Eq. �7� to calculate the
diameter 	E of the EHS system. The reference system is
approximated to be another hard sphere system of diameter

	E, i.e., packing fraction 0=�n0	E
3 /6. Finally, f̃2�r� for the

reference system needed for computing the mean-field term
in �3�, is obtained by rescaling r in terms of 	E. This com-
pletes our description on computing the properties of the
reference system.

FIG. 1. Angular averaged correlation function f̃2�r� for the im-
perfect hard sphere fcc solid at the density n0	3=1.025. The inset

shows the difference of the correlation function � f̃ 2
pe�r�

− f̃ 2
im�r�� /nD with and without defect at the same density.
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B. The Lennard-Jones system

For a given density n0 and temperature T of the LJ system
we compute the total free energy for the imperfect crystal
with vacancy concentration nD. The stable thermodynamic
state is then determined by minimizing the free energy with
respect to nD and the parameters characterizing the density
function n�r�. The total free energy of the Lennard-Jones
system is obtained as a sum of the free energy of a reference
system and a mean-field contribution. The free energy of the
reference system is now obtained in terms of that of the EHS
system of packing fraction E and the two-point function

f̃2�r�. The free energy of the EHS system Fre is obtained
following again the MWDA procedure outlined in the Ap-
pendix. The corresponding density function �1� for the EHS
system is now expressed in terms of the Gaussian WP �.
Thus Fre is determined at the corresponding chosen values of
nD and �. The mean-field term Fmf in �3� is computed with

the characteristic f̃2�r� for the EHS system. The sum of Fre

and Fmf is the free energy of the Lennard-Jones system at the
chosen value of the WP � and nD. We now minimize the total
free energy with respect to these two parameters to identify
the stable equilibrium state of the Lennard-Jones solid at a
given n0 and T. The optimum value of nD thus obtained is the
equilibrium concentration of vacancies in the corresponding
thermodynamic state. In Fig. 2 we have shown the minimum
of the free energy with respect to the variation of the WP �,
while the vacancy concentration nD is kept fixed at the opti-
mum value. The inset shows the minimum of the free energy
in the nD space at the optimum value of the width parameter
�.

The Helmholtz free energy of the imperfect crystal is
found to be less than that for the perfect crystal, showing that
the presence of vacancies make the crystal thermodynami-
cally more stable than the perfect crystal. In Fig. 3 we com-
pare the free energy of the crystal obtained theoretically form

this calculation within the present DFT approach and the
computer simulation results for the free energy of the LJ
solid.14 The improvement of the free energy calculation with
two-point correlation function7 for the inhomogeneous state
results in very good agreement of theory and simulation data.
The free energy of the uniform Lennard-Jones liquid ob-
tained from computer simulations15 is also shown in the
same figure to compare the relative stability of the two
phases. Crossover of the free energy occurs at the Tm=1.10
below which the crystal state is more stable than the liquid
state.

III. NUMERICAL RESULTS

Using the scheme of the DFT outlined above, the opti-
mum vacancy density nD is computed for a given thermody-
namic state of the LJ system of density n0 and temperature T.
We study the variation of nD with either one of T or n0,
respectively, keeping the other thermodynamic parameter
constant. The optimum defect concentration near the freezing
is obtained as 6�10−6. Figure 4 shows the variation of nD
with temperature T, at constant density n0=1.0. The inset is
described in the context of an improvement in the present
model later in the discussion section. The defect concentra-
tion decreases exponentially with decrease of the tempera-
ture in the manner nD /n0�exp�−��v�. The corresponding
activation energy �v is obtained from the slope of the curve.
If on the other hand, the temperature is kept constant, nD
decrease with the increase of density n0. This dependence at
constant T=1.0 is shown in the Fig. 5. The decreases of nD
with density here is even more drastic than exponential. We
have also studied the temperature dependence of the opti-
mum value of nD �corresponding to the free energy mini-
mum� along the constant pressure line. The pressure of the
fcc solid in this case is computed from the derivative P
=−��f /�n0�T, at fixed temperature. This also allows us to
study the equation of state for the LJ solid. The variation of

FIG. 2. Free energy �f vs width parameter �	2 corresponding
to the optimum defect concentration nD	3=1.9�10−6 at T=1.0 �in
units of � /kB� and n0	3=1.025. The inset shows the free energy
with respect to nD	3 corresponding to the optimum value of the
width parameter �	3=135.41, at the same temperature and density.

FIG. 3. Free energy �f of the crystal from present theory �solid
line�, from simulation �open circle�. Also shown is the liquid state
free energy �dashed line� from computer simulations.
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pressure P with density n0 at constant temperature T=1.0 is
shown in Fig. 6. The pressure P for the liquid state, as ob-
tained from computer simulations15 is also shown here for
comparison. In Fig. 7 the logarithm of the relative defect
concentration ln�nD /n0� vs inverse temperature T−1 is dis-
played at fixed pressure P=3.50. The defect density de-
creases on lowering the temperature at constant pressure, the
linearity of the curve implying that nD decreases exponen-
tially with the fall of temperature. We have also calculated
defect density dependence on the change of pressure. This is
shown in Fig. 8 which displays nD obtained by changing the
pressure at a constant temperature T=1.0. The defect density
is decreases exponentially with pressure P.

Next, we study the properties of the LJ system in a situ-
ation when the crystalline and the liquid state coexist. We

consider the variation of the vacancy concentration with tem-
perature of the LJ solid along the coexistence line. For this
we require information of the liquid state free energy as well
as the corresponding equation of the state. Here we use the
computer simulation results of the pressure and free energy
as reported by Nicolas et al.15 We have calculated the chemi-
cal potentials ��� of the solid and liquid states from the
relation, �= f − Pv where f is Helmohtz free energy per par-
ticle and v=1/n0 is the specific volume. For the pressure and
the free energy of the liquid state we use the computer simu-
lation results. At coexistence the chemical potentials � and
the pressures P for the solid and liquid states are simulta-
neously equal. At a given temperature there exist only one
pair of densities, respectively, corresponding to the coexist-
ing liquid and solid states. In Fig. 9 these coexisting densities

FIG. 4. Relative defect density ln�nD /n0� vs the inverse of tem-
perature T−1 �in units of kB /�� at fixed density n0	3=1.0. In the
inset we display the same quantities obtained in an improved model
with two different types of density profiles, respectively, for the
normal and the distorted sites �see the discussion section�.

FIG. 5. Relative defect concentration ln�nD /n0� vs the density
n0	3 at fixed temperature T=1.0 �in units of � /kB�.

FIG. 6. Pressure P �in units of �	3� of uniform liquid �dashed
line� and of the crystal �solid line� vs density n0	3 at temperature
T=1.0 �in units of � /kB�.

FIG. 7. Relative defect density ln�nD /n0� vs inverse temperature
T−1 �in units of kB /�� at fixed pressure P=3.50 �in units of �	3�.
The inset shows results from Ref. 18 at pressure P=2.20 �pressure
is in units of �	3�.
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�respectively, of the solid and liquid states� vs the corre-
sponding temperature is displayed. Note that here the dis-
played pairs of coexisting densities, each correspond to a
common value for the pressure and the chemical potential.
At high temperatures the coexisting densities are also high.
The calculation in this limit is not very accurate due to the
poor approximation of using the Percus-Yevick direct corre-
lation function at high density. The variation of nD along the
coexistence line shown in Fig. 10 display its decreases with

the increase of the temperature. This trend of decreasing va-
cancy density nD with increasing temperature is in fact op-
posite to what was stated above for the crystal state along a
constant density or constant pressure line. In the former case,
i.e., along the coexistence line, as the temperature increases
the density also increases instead of decreasing �which
would have been the case for change of temperature along
the constant pressure line�. The observed nD behavior is
mainly controlled here by the increasing crystal density.

IV. DISCUSSION

We have studied here a simple model for the Lennard-
Jones crystal with vacancy defects in the lattice structure.
Unlike the hard sphere case, the thermodynamic properties
are temperature dependent in this case. Following methods
developed for the liquid state, the LJ interaction is divided
into a purely repulsive core as well a purely attractive part.
We compute the free energy from a DFT approach using a
test density function n�r� for the inhomogeneous solid. n�r�
is parametrized in terms of Gaussian profiles of WP �. The
contribution to the thermodynamic properties of the LJ solid
coming from the hard core repulsive part of the interaction
potential constitute the so-called reference part. For the pur-
pose of computation, the reference system is identified with a
suitable hard sphere system. The total free energy of the
imperfect fcc solid is calculated by taking the contribution
due to the attractive potential within the mean-field approxi-
mation.

The activated behavior displayed in Fig. 4 can be easily
justified from a simple model which estimate the optimum
free energy cost of creating a vacancy in the solid in terms of
an independent parameter16 �0 �say�. The energy ��0� repre-
sent the energy cost of taking a particle out of the crystal and
is to be determined independently. In this model the energy

FIG. 8. Relative defect density ln�nD /n0� with respect to pres-
sure P in units of �	3 at temperature T=1.5 in units of � /kB �solid
line�. Results from Ref. 19 at the same temperature are also shown
as the dashed line.

FIG. 9. Coexisting densities of solid phase �solid line� and liquid
phase �dashed line� for the Lennard-Jones system at different tem-
peratures T �in units of � /kB�.

FIG. 10. Relative defect density ln�nD /n0� vs the temperature T
�in units of � /kB� along the solid-liquid coexistence line. The inset
shows the corresponding result from Ref. 19
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scale is an input and must be evaluated independently from
direct simulation17 or otherwise for an estimation of the de-
fect concentration. In the present work, on the other hand,
the activated behavior is obtained without using any such
input parameter. The starting point in the present DFT model
is the basic interaction potential which acts as an input in the
theory in terms of the direct correlation functions c�r�. The
present work estimates the vacancy concentration in the LJ
solid by improving the theoretical model along several lines
and calls for a more careful estimation of the vacancy con-
centration in similar systems with improved experimental
and simulation methods.

We obtain the equilibrium defect vacancy in LJ crystal
near the freezing decreases in an exponential manner with
the inverse temperature at constant density or the pressure.
The optimum vacancy density obtained in our model is close
to the theoretical result nD�7.5�10−5 of Ref. 18 in which a
different approach to the problem was taken. In that work the
two-body Lennard-Jones interaction is considered for the
rare gas solid �argon, krypton� and using the Einstein model
in the quasiharmonic approximation the Helmholtz free en-
ergy with one vacancy is obtained. Our results are also simi-
lar to the dependence of the defect density on various ther-
modynamic parameters seen in this earlier DFT models19

constructed using the simple Ramakrishnan-Yussouff
approach.20 However in the present work the DFT treatment
for the LJ solid is improved along several lines. In Ref. 19
the free energy of the solid state is expressed in a low order
perturbative expression around the uniform liquid state. This
is a very major approximation for the strongly inhomoge-
neous solid state. In fact the theory for the perfect crystal was
improved �subsequent to the original Ramakrishnan-
Yussouff work� with the effective medium approximation us-
ing a weighted density functional approximation �WDA�8 to
account for the strong density inhomogeneity in the crystal.
In the present work we have applied the modified weighted
density functional approximation13 approach to compute the
free energy of the imperfect solid with vacancy defects. Fur-
thermore in the earlier work19 the role of the LJ potential is
included only by using the direct correlation c�r� function for
the uniform liquid. Here the treatment7 for the inhomoge-
neous state of the LJ solid is implemented along the same
lines as was done in the theory1 for the homogeneous LJ

liquid case. The two-point distribution function f̃2�r� is com-
puted here for the inhomogeneous solid state7 and is then
used in calculating the contribution to the free-energy from
the attractive part of the interaction. In earlier works this
mean-field contribution is usually ignored or computed by

replacing f̃2�r� with the liquid state pair correlation function
g�r�. Although both the works �the present calculation and
Ref. 19� are using the same DFT approach the methods of
computation involved in each case are therefore quite differ-
ent. The results in the two cases are comparable near freez-
ing. The detailed comparison is shown in Figs. 7, 8, and 10.
Along the coexistence line defect density is found to de-
crease with the increase of the temperature in both works.
The temperature dependence of nD shows the same activated
behavior, with the activation energy being somewhat higher
in the present case. It should be noted from Fig. 8 that our

model’s results are closer to those of the RY model near
freezing point and the difference widens as one goes to
higher densities which is a trend according to expectation
due to the approximations involved in the RY model as
pointed out above. The difference between the results from
the two models is also listed in Table I.

In the present model we have considered the nature of the
density profiles for all the sites irrespective of their locations
on the lattice to be the same �represented by Gaussian pro-
files of a single width parameter ��. However the strain con-
tribution arising from the distortion of the lattice close to the
vacant site play a role in the free energy calculation. At the
simplest level such an effect can be included in the present
theoretical model of DFT by modifying the test density
function.21 This involves representing the sites immediately
adjacent to a vacant site in terms of Gaussian profiles with a
different width �from that for the general sites in the bulk
away from the vacant site�. This extension has not been so
far done for the LJ system. Our main focus was to construct
the perturbation theory for the Lennard-Jones system and
hence for the sake of simplicity we have not extended the
model to include a new variational parameter for the dis-
torted sites. We now present the result of extending our
model in this direction. We compute here the free energy of
the imperfect solid simply in terms of the equivalent hard
sphere system having an effective diameter corresponding to
the LJ system. The optimum free energy is obtained here by
minimizing with respect to the three variational parameters,
namely the widths for the normal and distorted sites as well
as the defect concentration nD. We obtain, for example, at
T*=1.0 and n	3=1.0, a vacancy concentration of nD=7.2
�10−6 which is of the same order of magnitude as the cor-
responding result from the simpler model considered above.
In Fig. 4, as a comparison with the simplified model we
show as an inset the dependence of ln�nd /n0� vs inverse of
temperature T−1. It is interesting to note that from the opti-
mized values of the density parameters it follows in a natural
way that the width of the distorted sites are usually larger
than the normal sites. This conforms to the physical situation
that the degree of mass localization is less adjacent to the
vacant site. This model can be further refined by including
the new density function for the calculation of the mean-field

TABLE I. Comparison of the defect density nD /n0 with respect
to pressure P �in unit of 	3 /�� for the two different temperatures T
�in units of � /kB�. Pm represents the critical pressure at which the
free energy of the liquid state becomes higher than that of the crys-
tal making the latter more stable.

T Pm P
nD /n0

�Present result�
nD /n0

�Ref. 19 result�

1.0 2.33 2.10 1.80�10−5 8.01�10−5

3.00 6.45�10−6 2.26�10−6

4.17 1.88�10−6 2.00�10−8

1.5 8.82 8.01 5.10�10−7 9.77�10−6

9.60 1.09�10−7 2.82�10−6

11.57 8.00�10−9 4.00�10−9
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part for the free energy representing the effect of the attrac-
tive part of the Lennard-Jones interaction. Another possible
way of including the role of distortion near the defects will
be relaxing the positions of the lattice points at which the
centers of the Gaussian density profiles in the inhomoge-
neous density function are located. This of course will in-
volve restricting the calculation to a finite size system.
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APPENDIX: FREE ENERGY OF THE REFERENCE
SYSTEM

The free energy of the hard sphere system of the diameter
	 is obtained as a sum of the ideal gas term and interaction
or excess free energy term, FHS�n�r��=Fid�n�r��+Fex�n�r��.
The ideal gas part of the free energy is expressed as a sum of
two contributions,

�Fid =� drn�r��ln��3n�r�� − 1� + ln	 N!ND!

�N + ND�!
 ,

�A1�

where � is the thermal wavelength. The first term on the
right-hand side �RHS� of Eq. �A1� is obtained when the N
particles in the system are treated as an ideal gas. The parti-
tion function of an ideal gas of N particles involve the phase
space integration with a Hamiltonian which is strictly Gauss-
ian in the momentum variables and no spatial dependence.
This term is a simple generalization of the ideal gas part of
the free energy for the nonuniform density, i.e., n→n�x�. The
second term in �A1� represents the configurational free en-
ergy �entropic contribution� due to the random location of
the ND vacancies among the NPC lattice sites. The different
configurations for the various arrangement vacancies on the
lattice are considered to be equivalent. Using the Sterling
approximation this term can be expressed in terms of the
fraction A as NPC�A ln A+ �1−A�ln�1−A��. In the limit,
strongly localized density profiles in the crystalline state den-
sity can be further simplified and approximated in terms of a
gaussian centered around a single site. This reduced the ideal
gas part of the free energy given in Eq. �A1� to

�f id�n� = �3

2
ln	�

�

 −

5

2
� +

npc

n0
�A lnA + �1 − A�ln�1 − A�� ,

�A2�

where f id is the ideal gas free energy per particle.
For the excess part of the free energy special techniques

has been developed to describe the strongly inhomogeneous
crystalline solid. The nonuniform system is represented by
an effective liquid having a local density which is a weighted
average of the crystal density. Here a suitable weight func-
tion is to be chosen for the proper averaging. We use here the
modified weighted density approximation13 in which the ex-

cess free energy depends upon the global average n̂ of the
density rather than the local average density. Thus Fex
=Nfex�n̂�, where fex�n̂� represent the excess free energy per
particle of the homogeneous system as a function of the glo-
bal average density n̂. The weighted density n̂ is obtained
from the self-consistent solution of the integral equation for
the equivalent liquid,13

2fex� �n̂�n̂ = − N−1� dr1� dr2c��r1 − r2�; n̂�n�r1�n�r2�

− n0n̂ f ex� �n̂� , �A3�

where the prime on the fex denotes the derivative with re-
spect to density. Equation �A3� is obtained by requiring that
the second functional derivative of the MWDA excess free
energy yields the correct direct correlation function c�r� in
the uniform density limit n�r�→n0.13

In order to solve n̂ for a hard sphere system of diameter 	,
we substitute in �A3� the Percus Yevick �PY� solution of
direct correlation function c�r� and the corresponding �inter-
action� free energy fex, expressed as a function of the pack-
ing fraction ̂=�n̂	3 /6,

fex�̂� =
3

2
	 1

�1 − ̂�2 − 1
 − ln�1 − ̂� . �A4�

The nontrivial task in solving Eq. �A3� is the evaluation of
the integral I �say� in the first term on the RHS, involving
products of the densities n�r� at two different points. Using
the definition �1� for the density function, I is obtained in
terms of overlapping integrals A�R� of Gaussian profiles cen-
tered at two lattice sites separated by a distance R,

I � �
R

A�R� = 	�

�

3� dr1e−�r1

2� dr2c�r12��
R

e−��r2 − R�2.

�A5�

In Eq. �A5� we have used the notation r12= �r1−r2� and the
summation over R is implied for all pairs of occupied lattice
sites. This sum is conveniently evaluated in terms of occu-
pation numbers of lattice points in concentric shells around a
given lattice site as center. The occupation numbers �i, for
i=1,2 , . . . of different shells are required as an input in this

TABLE II. In the fcc lattice, numbers of occupied sites and the
vacant sites in different concentric shells centered around a site
lying at a distance R0 from the vacancy. R0 is expressed in units of
the lattice constant a.

R0

Number of occupied sites
in shell �i�

Number of vacant sites
in shell �i�

I II III IV I II III

1 /�2 11 6 24 12 1 0 0

1 12 5 24 12 0 1 0
�3/2 12 6 23 12 0 0 1

�2 12 6 24 12 0 0 0
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calculation. For a perfect lattice the set of �i’s with any site
as origin are identical. However for the imperfect solid the
environment of lattice sites close to the vacancy are different.
Since the vacancy concentration is very low and the Gauss-
ian profiles are very sharp for the crystalline state, we only
count the sites lying within next nearest neighbor distance
from the vacancy as special, i.e., having different set of �i’s
from those in the bulk. The occupation numbers are provided
in Table II for the fcc structure. The horizontal rows in Table

II, correspond to different values of R0 which is the distance
of the origin from the vacant site. The last row in this table is
the case in which the origin is in the bulk, i.e., away from
any vacancy by a distance long enough so that overlap of the
Gaussian profiles is negligible. The weighted density n̂ of the
equivalent liquid as a function of the nD and � is obtained by
solving the self-consistent equation �A3�. The free energy of
the solid is obtained from the PY expression �A4� for the free
energy at density n̂.
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