Fast molecular transport in hydrogen hydrates by high-pressure diamond anvil cell NMR

Takuo Okuchi,¹ Masashi Takigawa,² Jinfu Shu,³ Ho-kwang Mao,² Russell J. Hemley,² and Takehiko Yagi³

¹Institute for Advanced Research, Nagoya University, Nagoya 464-8601 Japan

²Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan

³Geophysical Laboratory, Carnegie Institution of Washington, Washington, DC 20015, USA

(Received 15 October 2006; revised manuscript received 27 February 2007; published 11 April 2007)

In situ proton NMR spectra and T_1^{-1} and T_2^{-1} relaxation rates of filled-ice hydrogen hydrates at pressure reveal fast translational motion of the H₂ molecules within the ice frameworks. The NMR spectra to 3.6 GPa gave surprisingly narrow resonances of the H₂ guests. Pressure effects on T_1^{-1} and T_2^{-1} of the H₂ indicate that molecular rotation and diffusion contribute together to the relaxation, from which correlation times τ_{rot} and τ_{dif} were separately determined. Liquidlike fast diffusion of the H₂ with little pressure sensitivity was deduced from τ_{dif} , indicating that the ice framework allows active guest translation even in extensively compressed states.

DOI: 10.1103/PhysRevB.75.144104

PACS number(s): 62.50.+p, 66.30.-h, 07.35.+k, 76.60.-k

I. INTRODUCTION

The properties of hydrogen hydrates at high pressures are of increasing importance in solid-state physics, pure and applied chemistry, and energy engineering science.^{1–4} At pressures to 0.4 GPa, structure II hydrogen clathrate hydrate crystallizes from a fluid mixture of H₂-H₂O at moderately low temperature.^{2,3} Its high H₂:H₂O molar ratio of 1:2 is attractive as a hydrogen-storage material in a chemically benign material.³ Although the growth of this hydrate appeared too slow for such application, an improved preparation technique with >100 times faster synthesis rate was recently developed.⁵ This method uses a mixture of ice Ih and H₂ for the synthesis, with the surprisingly rapid reaction resulting from anomalously fast diffusion of hydrogen in ice Ih.⁶ Thus, hydrogen transport in ice and hydrate is a primary issue in both basic and applied hydrate researches.

A distinct feature of H_2 is its smallest size among the molecules. It is much smaller than polyhedral cages of clathrate hydrates, so that four H₂ molecules can simultaneously fill up the largest cages in the hydrate. H₂ is even smaller than intrinsic small interstices of some ice polymorphs. Thus, ice Ih may dissolve up to $\sim 0.1 \text{ mol } \%$ of H₂ into these interstices. At pressures higher than 0.4 GPa, two other ice polymorphs spontaneously dissolve a far larger amount of H₂ to produce the first discovered pair of dense hydrogen hydrates, called C_1 and C_2 .¹ These hydrates have the structures of ice II and Ic and are also called filled ices.⁷ The filled-ice II is stable to 3 GPa with a composition $H_2: H_2O=1:6$. The filled-ice Ic is stable to at least 60 GPa with $H_2: H_2O=1:1$. We emphasize that these filled ices are stable to one or two orders of magnitude higher pressure than conventional clathrate hydrates. In other words, pressure plays a very profound role in controlling the properties of these filled ices. The physics of molecular transport in the filled-ice hydrates are therefore of critical importance.

II. EXPERIMENTAL METHODS

We applied a high-resolution diamond anvil cell (DAC) NMR method to these filled ices. Pressure was generated using a specially designed nonmagnetic DAC within a magnetic field up to 7 Tesla.⁸ This DAC was designed to generate a force large enough to compress larger sample volume, which partly reconciles intrinsic low sensitivity of NMR. A diamagnetic gasket (UNS C17510) with susceptibility matched to the sample keeps the sample field homogeneous to the sub-ppm level.⁹ We designed a remarkably sensitive radio-frequency (rf) probe that enables solid-state highresolution NMR even at gigapascals. Our previous design with 5 mm in diameter¹⁰ already gave a record in its sensitivity and worked fine for NMR of liquids.¹¹ However, its sensitivity can be still insufficient for solid-state samples of broad bandwidth, especially for ice and hydrate samples that involve strongly dipolar-coupled protons. Such samples generally require higher sensitivity than those giving only sharp resonances.

According to the standard scheme of increasing hardware sensitivity of NMR,¹² we reduced the volume of rf coil while keeping the sample at its center. We fabricated a coil of four turns with $1.2 \times 2.5 \text{ mm}^2$ in a rectangular cross section and 1.2 mm in length, and made of a 75 μ m- ϕ silver wire. Note that the coil dimension is much smaller than two opposite diamond anvils with 5 mm in total thickness and 4 mm in diameter. In order to install such a small coil, we laser drilled each anvil to excavate four straight holes with 150 μ m in diameter and 2.5 mm in length, along the direction parallel to the anvil's 1.0 mm- ϕ culet surface. The drilling was made using a commercial cutting tool (COMBI Laser System, Bettonville, Wijnegem, Belgium). Like the previous design,¹⁰ direction of the rf field generated by the rf probe is parallel to the gasket surface, so that the field can dip into the sample chamber even if shielding current flows within the metallic gasket. We will report all the fabrication techniques of this rf probe separately.

We prepared our filled-ice samples as follows. A large 400 μ m- ϕ sample chamber was drilled into a slightly preindented gasket of 250 μ m thickness. We then partially filled the sample chamber with desired volume of H₂O along with an air bubble. The piston-cylinder (*P*-*S*) pair of the DAC was sealed to avoid H₂O evaporation and then placed into a gasloading vessel into which H₂ gas at 1500 bar was filled. To

exchange the air bubble by H_2 , the *P-S* pair was quickly opened and sealed again within a few seconds. We did not lose any H_2O during this process, which assured that the desired mixing ratio of H_2 : $H_2O \sim 1:6$ was obtained. We finally set the rf coil wire through the diamond holes for the NMR analysis.

We compressed the H₂-H₂O two-fluid sample at room temperature, while optically observing the crystal growth through the diamond. At 1.9 GPa, the whole H₂O part was suddenly frozen into an inhomogeneous mixture of ices, presumably consisting of ice VI and small amount of H₂-filled-ice II. The much larger freezing pressure than pure H_2O (at 0.9 GPa) is due to a large amount of dissolved H_2 into the water. After the freezing of the H₂O part, polycrystalline filled-ice II gradually grew by consuming the ice VI and the fluid H₂. The filled ice was growing concentrically into the ice VI body starting from the H₂ fluid pore, so that the growth rate was limited by H₂ diffusion through the filled-ice II. The growth was completed within several hours, indicating that the H₂ diffusion in the filled ice is much faster than in other solids. By further compression, a mixture of filled-ice Ic and ice VII appeared after self-decomposition of the filled-ice II, as expected from the phase diagram.¹

III. RESULTS AND DISCUSSION

Broadband powder NMR spectra were collected at 291 K with a $\pi/2 - \pi/2$ solid echo sequence with pulse spacing of 10 μ s (Fig. 1). We expected these spectra would be almost featureless due to strong dipolar coupling between its even denser ¹H spins than those in ordinary ices. The observation in both NMR spectra of sharp resonances at their near center, indicating a highly mobile species, was there surprising. The acquisition time of Fig. 1(a) was much shorter than T_2^* of L_1 , but was longer than T_2^* of L_2 and G_1 , so that the area intensity of L_1 was instrumentally reduced. The linewidth of L_1 was also instrumentally broadened. We settled this problem by using a $\pi/2$ - π Hahn-echo sequence with pulse spacing of 500 μ s. Only the L_1 component gave the Hahn echo, making it possible to obtain intrinsic line profile of L_1 , which is no longer an ideal Lorenzian (Fig. 2). In spite of this distortion, the two broadband spectra (Fig. 1) were well fitted with two Lorentzian $(L_1 \text{ and } L_2)$ and one Gaussian (G_1) peak; other combinations give statistically worse results.

We have two potentially mobile species in the filled ices, those are hydrogen-bonded protons and H₂ molecules. Both of them could give Lorentzian peaks, and the former have more positive δ than the latter.⁴ Thus L₂ is assigned to H₂O protons and L₁ is assigned to H₂. The G₁ was not detected when the sample was in the liquid state so that it did not come from the background. Its half-width (Δ_{G1}) is identical with that of static pure ices at 37±1 kHz (Ref. 13) (Fig. 1). This coincidence strongly suggests that the G₁ is assigned to the static part of the ice framework. Its extreme linewidth can only be explained by the strongest dipolar coupling within the ice. Therefore, the static G₁ protons coexist with

FIG. 1. (Color online) Solid-echo powder NMR spectra and optical micrograph of the relevant samples. The spectra were obtained with a 300 MHz and 300 W solid-state spectrometer. The typical $\pi/2$ pulse length was 1.5 μ s. For each figure, the upper part shows the observed spectrum and its fitting curve, the middle part shows model fitting peaks, and the lower part shows the residual. (a) The filled-ice II phase (C_1) . The small pore in the figure is H_2 fluid that did not react, which is about one-tenth of total H₂ in the sample. The NMR signal of H2 mostly came from the reacted filledice part because of its larger molar ratio and shorter relaxation time. 2698 transients with 1 s repetition time were averaged. (b) The mixture of filled-ice Ic (C2) and pure ice VII phases. On further compression, the bright transparent part of polycrystalline filled-ice Ic was formed by the reaction between the fluid H₂ and part of the filled-ice II. The remaining filled-ice II then decomposed into the darker part consisting of a mixture of filled-ice Ic and pure ice VII. 8000 transients with 2 s repetition time were averaged.

the mobile L_2 protons within the same filled-ice frameworks. However, the chemical shift of the former (δ_{G1}) is apparently different from the latter (δ_{L2}). This discrepancy may be alleviated if we can strictly evaluate the line shape of L_2 , which could have a broad asymmetric shoulder at its lower chemical shift wing, reflecting the axial nature of chemical shift

FIG. 2. Hahn-echo spectra of L_1 which gave the intrinsic line shape. Broken lines show the central part of the solid-echo spectra shown in Fig. 1. Note the instrumentally reduced intensity of the broken line in (a).

tensor of hydrogen-bonded protons.¹⁴ Such a broad shoulder cannot be separated from G_1 , giving arbitrally lower δ_{G1} than its actual value. To determine the correct line shape of L_2 , we must have far better spectra than shown in Fig. 1, which is beyond the scope of this work.

Now we consider the nature of H_2 species. Relaxation times of L₁ were measured at two Larmor frequencies, $\omega_{\rm I}/2\pi$ =200 and 300 MHz (Fig. 3). NMR relaxation of ¹H in molecules forming a crystal is usually induced by two types of motions, which are molecular rotation and translational diffusion.¹⁵ The H₂ molecules in these filled ices are almost free rotors but their angular momentum is modulated when they collide with the surrounding ice framework. With increasing pressure, their rotational correlation time $\tau_{\rm rot}$ decreases because of the more frequent collisions of H2 with the compressed framework. The au_{rot} of the confined guest molecule is smaller than $\omega_{\rm I}^{-1}$ so that the "extreme narrowing" condition applies, where both relaxation rates $T_{1\text{rot}}^{-1}$ and $T_{2\text{rot}}^{-1}$ become identical, independent of ω_{I} , and proportionally decreasing with $au_{\rm rot}$.¹⁶ The observed T_1^{-1} is consistent with such behavior of T_{1rot}^{-1} . However, another relaxation process must contribute to T_2^{-1} , which behaves differently from T_1^{-1} .

In contrast to $\tau_{\rm rot}$, the diffusion correlation time $\tau_{\rm dif}$ increases with increasing pressure because of the increase in activation energy of diffusion, due to narrower channel size through which the H₂ molecules diffuse. Then transverse relaxation rate by diffusion $T_{2\rm dif}^{-1}$ also increases, which is consistent with the observed T_2^{-1} . Thus, we reconfirm the mobile nature of L_1 from its T_2^{-1} trend. The $T_{1\rm dif}^{-1}$ should be smaller than $T_{2\rm dif}^{-1}$ so that $\tau_{\rm dif}$ is larger than ω_1^{-1} , where the general theory of diffusion relaxation gives¹⁷

FIG. 3. Relaxation rates of L_1 . Filled circles were at 200 MHz and open circles were at 300 MHz. T_1 was measured by a saturation recovery sequence after comb pulses. T_2 was measured by a Carr-Purcell-Meiboom-Gill sequence. These sequences forced the L_2 and G_1 resonances to decay much faster than L_1 . A single exponential relaxation was observed at all pressures (inset).

$$T_{1\text{dif}}^{-1} = (\Delta_{\text{dif},X}^2 + \Delta_{\text{dif},Y}^2) \frac{\tau_{\text{dif}}}{1 + \omega_1^2 \tau_{\text{dif}}^2},$$
$$T_{2\text{dif}}^{-1} = \Delta_{\text{dif},Z}^2 \tau_{\text{dif}} + \frac{T_{1\text{dif}}^{-1}}{2},$$
(1)

where $\Delta_{\text{dif},X}$ to $\Delta_{\text{dif},Z}$ are three components of fluctuating local field felt by the diffusing nuclei (in Hz). Our filled-ice samples were fine powders without preferred orientation, which induces isotropic local field on average, $\Delta_{\text{dif},X}^2 = \Delta_{\text{dif},Y}^2 = \Delta_{\text{dif},Z}^2 = \Delta_{\text{dif},Z}$

FIG. 4. Two correlation times and D_G of the guest H₂.

$$T_{1}^{-1} = T_{1\text{dif}}^{-1} + T_{1\text{rot}}^{-1} = \frac{2}{3} \frac{\Delta^{2}}{\omega_{1}^{2} \tau_{\text{dif}}} + \alpha \tau_{\text{rot}},$$
$$T_{2}^{-1} = T_{2\text{dif}}^{-1} + T_{2\text{rot}}^{-1} = \frac{1}{3} \Delta^{2} \tau_{\text{dif}} + \alpha \tau_{\text{rot}},$$
(2)

where $\alpha = 2.74 \times 10^{12}$.¹⁶ Neglecting the first term of T_1^{-1} , which is much smaller than the second term, we have

$$\tau_{\rm rot} = \frac{T_1^{-1}}{\alpha},$$

$$\tau_{\rm dif} = \frac{3(T_2^{-1} - T_1^{-1})}{\Delta^2}.$$
 (3)

Then a random walk model gives a guest diffusion coefficient $D_G = \langle r^2 \rangle / 2n \tau_{\text{dif}}$. The $\langle r^2 \rangle$ is the mean square displacement taken from the relevant crystal structure, 1,18 and *n* is the dimension of diffusion. For rhombohedral filled-ice II, n=1is assumed because the distance to neighbor site along a axis is 4 times larger than that along the c axis. This implies the diffusion is anisotropic within each crystal. For cubic filledice Ic, n=3 is assumed, which implies the diffusion is isotropic. Figure 4 shows the estimated $\tau_{\rm rot}$, $\tau_{\rm dif}$, and D_G as a function of pressure. The diffusion activation volume of H₂ in filled-ice II, $V_G^* = RTd \log_e D_G/dP = 2.2 \text{ cm}^3/\text{mol}$, is only 40% of that volume for solid hydrogen at a comparable pressure range.¹⁹ The very small V_G^* indicates that guest molecules undergo facile translation motion over a wide pressure range. This distinctive feature arises from the delicate size balance between the guest H₂ and intrinsic interstices of the ice II framework. If the guest is larger than the interstice, the

filled ice should not form. If the guest is smaller, the filled ice might form but only at a very limited pressure regime. The H₂-filled-ice II was stable up to 2.4 GPa, which is a factor of 6 larger pressure than the stability limit of pure ice II.²⁰ It is striking that the fast molecular transport occurred throughout this much extended pressure regime.

The H₂-filled-ice Ic exhibits a factor of 20 smaller D_G than the filled-ice II at the same pressure (Fig. 4). It is still too fast as a diffusion phenomenon in solid crystalline state. Ice Ic framework has 6 times more interstices than ice II, which is more loosely interconnected and easily compressed.¹ Despite of this softness, the filled-ice Ic is stable at least to 30 GPa. It will be a suitable topic of NMR at higher pressure for which we are working now.

The D_G in filled-ice II extrapolated to zero pressure (D_G^{II}) is 3×10^{-8} cm²/s (Fig. 4). The diffusion coefficient of guest H₂ in ice Ih (D_G^{lh}) is ~10⁻⁴ cm²/s, whereas that of frame-work H₂O (D_F^{lh}) is ~10⁻¹⁰ cm²/s, both at zero pressure.^{6,20} A rather large factor of 3×10^3 difference between D_G^{II} and D_G^{Ih} should be associated with the difference in their guest occupancy. Relative to the filled ices, ice Ih interstices are only very weakly filled with hydrogen, whereas the ice II is filled by 80% of maximum guest capacity at 0.5 GPa and almost fully filled at >1 GPa.¹⁸ Thus, the guests in the latter must have many more trials to jump into the neighboring sites. In other words, actual diffusion species in the latter is guest site vacancies, rather than the guest itself. The 3×10^2 times larger D_G^{II} than D_F^{Ih} indicates that the fully filled guests in ice II are still much faster than the ice framework molecules at the condition of fastest diffusion (zero pressure and near the melting temperature). Thus, despite of the factor 3×10^2 smaller D_G due to the full packing, the previously reported "liquidlike" character of H₂ in ice Ih (Ref. 6) is also maintained in the filled-ice II. The fast synthesis of hydrogen hydrates from ice (Ref. 5) is therefore a universal feature of ices of various crystal structures at wide pressure range.

IV. CONCLUSION

NMR at high pressure of filled-ice hydrogen hydrates reveals fast molecular transport of H₂ in the ice frameworks. Molecular rotation and diffusion contribute together to the relaxation of H₂. The former correlation time is smaller than ω_{I}^{-1} , decreasing with pressure, and mainly affects T_{1}^{-1} . The latter correlation time is larger than ω_{I}^{-1} , increasing with pressure, and mainly affects T_{2}^{-1} . A liquidlike diffusion coefficient with little pressure sensitivity was deduced from the latter. The fast transport of H₂ is a universal feature of ice polymorphs that have interstices within their structures.

ACKNOWLEDGMENTS

The authors thank N. Miyajima, K. Niwa, and E. Gregoryanz for helping hydrogen gas sampling into DAC. One of the authors (T.O.) acknowledges the Japan Society for the Promotion of Science. This work was supported by Ministry of Education (Japan), DOE No. (DE-FG02-06ER46280), NSF, and NASA.

- ¹W. L. Vos, L. W. Finger, R. J. Hemley, and H. Mao, Phys. Rev. Lett. **71**, 3150 (1993); W. L. Vos, L. W. Finger, R. J. Hemley, and H. Mao, Chem. Phys. Lett. **257**, 524 (1996).
- ²Y. A. Dyadin, E. G. Larionov, A. Y. Manakov, F. V. Zhurko, E. Y. Aladko, T. V. Mikina, and V. Y. Komarov, Mendeleev Commun. 9, 209 (1999).
- ³ W. L. Mao, H. K. Mao, A. F. Goncharov, V. V. Struzhkin, Q. Guo, J. Hu, J. Shu, R. J. Hemley, M. Somayazulu, and Y. Zhao, Science **297**, 2247 (2002); W. L. Mao and H. K. Mao, Proc. Natl. Acad. Sci. U.S.A. **101**, 708 (2004); K. A. Lokshin, Y. Zhao, D. He, W. L. Mao, H. K. Mao, R. J. Hemley, M. V. Lobanov, and M. Greenblatt, Phys. Rev. Lett. **93**, 125503 (2004).
- ⁴L. J. Florusse, C. J. Peters, J. Schoonman, K. C. Hester, C. A. Koh, S. F. Dec, K. N. Marsh, and E. D. Sloan, Science **306**, 469 (2004); H. Lee, J. W. Lee, D. Y. Kim, J. Park, Y. T. Seo, H. Zeng, I. L. Moudrakovski, C. I. Ratcliffe, and J. A. Ripmeester, Nature (London) **434**, 743 (2005).
- ⁵K. A. Lokshin and Y. S. Zhao, Appl. Phys. Lett. **88**, 131909 (2006).
- ⁶H. L. Strauss, Z. Chen, and C.-K. Loong, J. Chem. Phys. **101**, 7177 (1994).
- ⁷J. S. Loveday, R. J. Nelmes, M. Guthrie, D. D. Klug, and J. S. Tse, Phys. Rev. Lett. 87, 215501 (2001).
- ⁸T. Okuchi, Phys. Earth Planet. Inter. **143-144**, 611 (2004).
- ⁹T. Okuchi, R. J. Hemley, and H. K. Mao, in Advances in High-

Pressure Technology for Geophysical Applications, edited by J. Chen, Y. Wang, T. Duffy, G. Shen, and L. Dobrzhinetskaya (Elsevier, New York 2005), p. 503.

- ¹⁰T. Okuchi, R. J. Hemley, and H. K. Mao, Rev. Sci. Instrum. **76**, 026111 (2005).
- ¹¹T. Okuchi, G. D. Cody, H. K. Mao, and R. J. Hemley, J. Chem. Phys. **122**, 244509 (2005).
- ¹²D. I. Hoult and R. E. Richards, J. Magn. Reson. (1969-1992) 24, 71 (1976).
- ¹³S. W. Rabideau and E. D. Finch, J. Chem. Phys. **49**, 4660 (1968).
- ¹⁴R. J. Wittebort, M. G. Usha, D. J. Ruben, D. E. Wemmer, and A. Pines, J. Am. Chem. Soc. **110**, 5668 (1988).
- ¹⁵M. Bloom and I. Oppenheim, in *Intermolecular Forces*, edited by Hirschfelder (Interscience Publishers, New York, 1967), p. 549.
- ¹⁶A. Abragam, *The Principles of Nuclear Magnetism* (Clarendon, Oxford, 1961).
- ¹⁷C. P. Slichter, *Principles of Magnetic Resonance*, 3rd ed. (Springer-Verlag, Berlin, 1990).
- ¹⁸C. Lobban, J. L. Finney, and W. F. Kuhs, J. Chem. Phys. **117**, 3928 (2002).
- ¹⁹S.-H. Lee, M. S. Conradi, and R. E. Norberg, Phys. Rev. B 40, 12492 (1989).
- ²⁰ V. F. Petrenko and R. W. Whitworth, *Physics of Ice* (Oxford University Press, New York, 1999).