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With a variational three-body calculation we study the role of the interplay between the on-site Coulomb,
Hund’s rule, and superexchange interactions on the spin-wave excitation spectrum of itinerant ferromagnets.
We show that correlations between a Fermi sea electron-hole pair and a magnon result in a very pronounced
zone boundary softening and strong deviations from the Heisenberg spin-wave dispersion. We show that this
spin dynamics depends sensitively on the Coulomb and exchange interactions and discuss its possible rel-
evance to recent experiments in the manganites.
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The interaction between itinerant carrier spins and local-
ized magnetic moments leads to ferromagnetic order in a
wide variety of systems.1 Examples include the manganese
oxides2 �manganites� R1−xAxMnO3 �R=La,Pr,Nd,Sm, . . .
and A=Ca,Ba,Sr,Pb, . . .� and the III-Mn-V ferromagnetic
semiconductors.3 Such systems are of great current interest
due to their novel potential applications. For example, the
manganites display colossal magnetoresistance,2 while ferro-
magnetic semiconductors raise the possibility of multifunc-
tional quantum devices that combine information processing
and storage on a single chip with low power consumption.4

In such materials, the magnetic and transport properties are
intimately related and can be controlled by varying the itin-
erant carrier concentration and dimensionality.

In the manganites, n=1−x itinerant electrons per Mn
atom partially fill a d band with eg symmetry. Their concen-
tration n is controlled by the hole doping x. The d-band
kinetic energy K is determined by the hopping energy be-
tween the neighboring lattice sites, t�0.2–0.5 eV. The itin-
erant electron spins interact strongly with localized spin-S
magnetic moments �Hund’s rule coupling Hexch with strength
J�2 eV� t�. S=3/2 comes from the three electrons in the
tightly bound t2g orbitals. This ferromagnetic interaction
competes with the direct antiferromagnetic interactions
�HAF� between neighboring local spins, JAF�0.01t. The
largest energy scale in the manganites is given by the on-site
Coulomb repulsion between the itinerant electrons,
U�3.5–8 eV �HU�. This Coulomb interaction is generally
difficult to treat and its effects have received less attention.
Here we focus on the role of U on the spin dynamics in the
concentration range 0.5�n�0.8 where metallic behavior is
observed in both three-dimensional �3D� and quasi-2D �lay-
ered� manganites.

The ferromagnetic order in the manganites can be inter-
preted to first approximation by invoking the double ex-
change mechanism and the J→� limit of the minimal
Hamiltonian K+Hexch.

2,5 An itinerant carrier is allowed to
hop on a lattice site only if its spin is parallel to the local spin
on that site. The kinetic energy is thus reduced when all spins
are parallel. This favors the ferromagnetic state �F�, which
describes local spins with Sz=S on all lattice sites and a
Fermi sea of spin-↑ electrons. The above spins are often
treated as classical, justified for S→�.2 In this limit, the

system can be described by a nearest-neighbor Heisenberg
model with ferromagnetic interaction. Quantum effects are
often treated perturbatively in 1/S.6,7 To O�1/S�, one thus
obtains noninteracting random phase approximation �RPA�
magnons, whose dispersion in the strong-coupling limit co-
incides with that of the nearest-neighbor Heisenberg
ferromagnet.7 Such a dispersion was observed experimen-
tally for concentrations n�0.7.8

However, strong deviations from the short-range Heisen-
berg model spin-wave dispersion were observed for n�0.7
in both 3D �Refs. 9–11� and quasi-2D manganites.12 Most
striking is the strong spin-wave softening close to the zone
boundary.9–11 This indicates a new spin dynamics in the me-
tallic ferromagnetic phase whose physical origin is still
unclear.11 The proposed mechanisms involve orbital degrees
of freedom, magnon-phonon interactions, disorder, band-
structure effects, and the Hubbard repulsion.2,6,10,11,13,19 The
zone boundary softening can be fitted phenomenologically
by adding long-range interactions to the Heisenberg Ham-
iltonian.10,11 Ye et al.11 found that the above softening in-
creases with x=1−n, while the dispersion for low momenta
only changes weakly. They argued that none of the existing
theories can explain these experimental trends.11

In this paper we study the concentration dependence of
the spin-wave dispersion predicted by the model Hamil-
tonian H=K+Hexch+HU+HAF,2,6,14 with a single eg orbital
per lattice site. We treat exactly the long-range magnon–
Fermi sea pair three-body correlations induced by the inter-
play between HU and Hexch with a variational wave function.
We show that such correlations lead to strong deviations
from the RPA and Heisenberg spin-wave dispersions. These
deviations, as well as the stability of the ferromagnetic order,
depend sensitively on HU. Our approach interpolates be-
tween the strong- and weak-coupling and n=0 and n=1 lim-
its with the same formalism and can therefore address the
intermediate interactions and n relevant to the manganites. At
the same time, it recovers the 1/S expansion6 and exact nu-
merical results15,16 as special cases. We find that magnon–
Fermi sea pair correlations due to U result in a pronounced
zone boundary spin-wave softening that increases with x
�similar to the experiment11� in a way that depends on U and
J. Our variational calculation sets a lower bound on the mag-
nitude of this softening.
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Method. We use the variational wavefunction �Q�
=MQ

† �F�, where the operator MQ
† conserves the total momen-

tum Q and lowers the z component of the total spin by 1.
This spin reversal can be achieved either by lowering the
localized spin z component, via the collective spin operator
Sq

−,14 or by coherently promoting an electron from the spin-↑
to the spin-↓ band; it may also be accompanied by the scat-
tering of Fermi sea pairs. Neglecting multipair excitations,
the most general MQ

† is14

MQ
† = SQ

− + �
�

X�
QcQ+�↓

† c�↑ + �
��

c�↑
† c�↑

�����
Q SQ+�−�

− +
1

2�
�

	���
Q cQ+�−�+�↓

† c�↑� , �1�

where ck

† creates a spin-
, momentum-k electron. � and

� ��� label states inside �outside� the Fermi sea. The first
two terms create a magnon of momentum Q. The last two
terms describe magnon scattering, Q→Q+�−�, accompa-
nied by electron scattering across the Fermi surface, �→�
�Fermi sea pair shakeup�. By setting �=	=0 we recover the
RPA results.14 However, here the variational parameters X�

Q,
���

Q , and 	���
Q are not restricted in any way; unlike in Ref.

17, we do not assume any particular form of momentum
dependence. By solving the full variational equations nu-
merically for fairly large N�N lattices �N�20–30�, we put
an upper bound on the spin-wave excitation energies �Q
�with respect to �F�� that converges with N and thus reflects
the thermodynamic limit. We can therefore conclude that �i�
the exact dispersion is at least as soft as our results and �ii�
�Q�0 means that �F� is not the ground state.

The wave function Eq. �1� offers several advantages. It
gives exact results in the two concentration limits n→0 �one
electron� and n=1 �half filling�. In the special cases
HU=HAF=0 and Hexch=HAF=0 it agrees very well with exact
results.14,16 Our results also become exact in the atomic limit
t→0,14,18 and should therefore treat local correlations well.
While the latter dominate in the strong-coupling limit, long-
range correlations become important as J / t and U / t
decrease.18 The experiment10,11 points out the importance of
long-range interactions. Equation �1� treats exactly all corre-
lations between a single Fermi sea pair and a magnon. The
only restriction of Eq. �1� is that it neglects contributions
from two or more Fermi sea pairs, which are, however, sup-
pressed for large S �Ref. 14� and in 1D.16,18

Results. Figure 1 shows the calculated three-body spin-
wave dispersion for U=25t 	Fig. 1�a�
 and 10t 	Fig. 1�b�
. It
compares this to the RPA result ��=	=0� and the results of
Ref. 6, which we recover by expanding the RPA to O�1/S�
and O	1/ �JS+nU�
. Figure 1�a� also compares to the
Heisenberg dispersion obtained by taking the limit J→�,
U=0 of the RPA �rather than by fitting�. The latter deviates
strongly from our intermediate-coupling results. While the
RPA agrees well with Ref. 6, the Fermi sea pair–magnon
correlations lead to a very strong softening �deviations
�100% from the RPA�.

The on-site Coulomb repulsion U increases the spin-wave
energies and therefore the stability of the ferromagnetic state

�F�. Figure 1�c� demonstrates this hardening along 
-X
	�0,0�→ �� ,0�
 as U increases in steps �U=5t. While ini-
tially the energies increase strongly with U, their relative
change decreases with increasing U. Nevertheless, full con-
vergence to the U→� result 	dashed curve in Fig. 1�c�
 only
occurs for very large U.

Reference 19 treated the effects of strong U by mapping
the problem to a Hamiltonian with U=0 �Ref. 14� and renor-
malized hopping t�n�. The magnon excitations were then de-
scribed within the RPA. Due to the increase in the effective
J / t�n�, U resulted in higher spin-wave energies. Here we
show that carrier-magnon correlations beyond the RPA, in-
duced by U, lead to a pronounced zone boundary softening
as compared to the RPA. This can be seen in Fig. 1�d�, which
shows the percentage deviation from the RPA at the X point
as a function of U �maximum is 100%�. While the deviations
from the RPA decrease with increasing U, they remain quite
large for the typical U.

We now focus on the dependence of the X-point energy
on n. References 9–11 found that the deviation, at this zone
boundary, of the nearest-neighbor Heisenberg model disper-
sion that fits the experiment at small Q increases with
x=1−n. The experimental dispersion along all directions in
the Brillouin zone was fitted by a Heisenberg model with
both fourth-nearest-neighbor �J4� and next-nearest-neighbor
�J1� exchange couplings; second- and third-nearest-neighbor
interactions were negligible.11 The ratio J4 /J1�x becomes
strong for n�0.7.11

Our numerical results can also be fitted very well to the
J1-J4 Heisenberg model. Figure 2 shows the behavior of
J4�n� /J1�n� �and thus the spin-wave softening� for different
J. The crucial role of the pair-magnon correlations is made
clear by comparing to the RPA. The RPA gives small J4 /J1
�in the strong-coupling limit it coincides with the nearest-
neighbor Heisenberg dispersion14�. However, the pair-
magnon correlations greatly enhance J4 /J1 �and the soften-
ing�, typically by a factor 3–4 or higher in Fig. 2. J4 /J1
increases rapidly with x=1−n until it reaches its maximum.
For large J / t, J4 /J1 increases more slowly with x. This in-

FIG. 1. �Color online� Spin-wave dispersion along different di-
rections �n=0.6, J=7t, JAF=0.012t�. �a� U=25t. �b� U=10t. �c� Di-
rection 
-X: U=10→45t in increments of 5t. �d� Deviation from
the RPA: 1−� /�RPA at X point.
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crease is sharp for smaller J, as the ferromagnetic state be-
comes less stable 	compare Figs. 2�a� and 2�d�
. On the other
hand, J4 /J1 is small for n�0.7.

Next we turn to the spin-wave dispersion for small Q. Its
behavior is characterized by the stiffness D�n�, obtained by
fitting the small-Q dispersion to the form DQ2. Figure 3�a�
compares our results to Ref. 6, Eq. �1�, and the RPA. The
pair-magnon correlations decrease D�n� by as much as
�100% as compared to Ref. 6 and by as much as �50%
from the RPA. Figure 3�a� demonstrates a plateau as a func-
tion of n, where D�n� remains fairly constant within a wide
range of n relevant to the manganites. The pair-magnon cor-
relations decrease the dependence of D on n for such con-
centrations 	compare the three curves in Fig. 3�a�
. As shown
in Fig. 3�b�, U increases the stiffness. Overall, Figs. 2 and 3
are consistent with the main experimental trends.10,11 How-
ever, in Ref. 11 D�n� was found to be fairly constant over a
wider range of n. Figures 2 and 3 show that the pair-magnon

correlations suppress the dependence of D on n while en-
hancing J4. We speculate that the differences from the ex-
periment may be due to the band-structure effects neglected
here.

We now turn to the origin of the zone boundary softening
and show that it is dominated by strong correlations due to
U. We set JAF=0. Similar to Ref. 14, the spin-wave disper-
sion �Q is determined by the amplitude X�

Q, Eq. �1�,
describing the coherent spin ↑→spin ↓ electron excitation
����X�� and by the amplitude �, describing magnon-pair
scattering. The dominant new effect here comes from the
renormalization of X� by the scattering, due to U, of a
spin ↑→spin ↓ excitation with a Fermi sea pair. The corre-
sponding interaction process is described by the amplitude 	
in Eq. �1� and is shown schematically in Fig. 4�a�. The Fermi
sea pair �� ,�� is created by interacting with the spin-↓ elec-
tron via U. Such scattering gives a contribution proportional
to U���	���

Q to X�
Q. In Fig. 3�c� we plot this correlation

contribution, both for Q close to the X point and for small Q,
as a function of momentum � for n=0.6 where the softening
is pronounced. We consider momenta � �Q ��x, the contri-
bution 	�� and momenta ��Q ��y, the contribution 	��.
As can be seen in Fig. 3�c�, the largest correlation contribu-
tion comes for � �Q close to the Fermi surface �which for the
concentrations of interest is close to the zone boundary� and
for Q close to the zone boundary. In Fig. 3�d� we compare
the spin-wave energy from the full calculation with the re-
sults obtained by neglecting 	� and/or 	�. It is clear that the
strong softening of the spin-wave dispersion as compared to
the RPA comes from 	�, i.e., from the renormalization of X�

by the scattering of a spin ↑→spin ↓ excitation with a Fermi
sea pair for momenta � along 
-X.

With decreasing J / t, the magnon energy for intermediate
n turns negative at the X point while the magnon stiffness is
still positive. This variational result allows us to conclude
that the ferromagnetic state is unstable. On the other hand,
for small n, the spin-wave energy first turns negative at the
�� ,�� point �antiferromagnetic correlations�. Finally, for
larger n, the spin-wave energy turns negative at small mo-
menta first, D�0. By identifying the minimum value of J,
Jc�n�, where �Q�0 for all momenta, we can definitely con-
clude, due to the variational nature of our calculation, that

FIG. 2. �Color online� J4�n� /J1�n� for JAF=0.012t, U=25t ex-
tracted by fitting our results to the first- plus fourth-nearest-
neighbor Heisenberg model. The same behavior is exhibited by the
spin-wave softening compared to the Heisenberg model.

FIG. 3. �Color online� �a� Comparison of different approxima-
tions for D�n� �J=7t, U=25t�, �b� the effect of U on D�n�, �c�
contribution of magnon-pair correlations for different momenta, and
�d� origin of magnon softening. JAF=0.012t.

FIG. 4. �Color online� �a� Schematic describing the scattering of
spin ↑→spin ↓ electronic excitation with Fermi sea pair �� ,�� due
to U. �b� Jc�n� for JAF=0.012t, U=25t. For J�Jc, the ferromag-
netic state �F� is not the ground state.
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the ground state is not ferromagnetic for J�Jc. On the other
hand, for J�Jc, the stability of �F� is not guaranteed.

Jc�n� is shown in Fig. 4�b�. By comparing to the RPA, it is
clear that the pair-magnon correlations lead to a very pro-
nounced upward shift of the ferromagnetic phase boundary.
While for large n the correlation effects diminish, and the
RPA becomes exact at n=1, for n�0.7 the deviations from
the RPA exceed 100%. As n decreases further, the RPA fails
completely and we can conclude that it grossly overestimates
the stability of the ferromagnetism. Even though additional
effects �e.g., phase separation2,6 and charge ordering20� will
further increase Jc�n� for some n, our variational calculation
allows us to conclude that Fermi sea pair–magnon correla-
tions are strong in the manganites and should be treated be-
yond the mean field theory of Refs. 6 and 20.

We conclude that nonperturbative long-range electron-
hole pair-magnon correlations play a very important role in
the spin dynamics of the manganites. Most important is the

strong softening of the spin-wave dispersion and the de-
crease in the stability of the ferromagnetic state. These cor-
relation effects depend sensitively on the on-site Coulomb
repulsion and on its interplay with the magnetic exchange
and superexchange interactions. We propose that the scatter-
ing of magnons by charge excitations plays an important role
in interpreting recent experiments.11 Our work can be ex-
tended to other itinerant ferromagnetic systems 	e.g.,
III�Mn�V semiconductors
 that are far from the strong-
coupling limit. The correlations discussed here should also
play an important role in the ultrafast magnetization dynam-
ics measured by pump-probe optical spectroscopy.21
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