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Using numerical dynamic cluster quantum Monte Carlo results, we study a simple approximation for the
pairing interaction of a two-dimensional Hubbard model with an on-site Coulomb interaction U equal to the

bandwidth. We find that with an effective temperature-dependent coupling Ū�T� and the numerically calculated

spin susceptibility ��K−K��, the d-wave pairing interaction is well approximated by 3
2Ū2��K−K��.
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I. INTRODUCTION

Numerical calculations have shown that the dominant
contribution to the d-wave pairing interaction in the Hubbard
model comes from a spin S=1 channel.1,2 It is therefore in-
teresting to determine how well the simple random-phase
approximation �RPA� form

3

2
Ū2��K − K�� �1�

can describe this interaction. Here � is the spin susceptibility,

Ū is an effective coupling strength, and K= �K ,�n�, with
�n= �2n+1��T a fermion Matsubara frequency. Equation �1�
is the form that one expects in weak coupling.3–6 However,
we are interested in the case in which the Hubbard on-site
Coulomb interaction U is comparable to the bandwidth, since
this is the region which is believed to be appropriate for the
cuprates.7 This is also the parameter regime in which the
pairing is the strongest.2 Here, for the parameters we use
throughout this paper including a near-neighbor hopping
t=1 and U=8, the single-particle propagator and density of
states show clear evidence that one is dealing with a doped
Mott system. In particular, one sees structures associated
with upper and lower Hubbard bands as well as a conduction
band.2,8 In this case, it is unclear whether the simple form
given by Eq. �1� can adequately describe the pairing interac-
tion. We believe that there are two reasons that this is pos-
sible. First, the leading contribution of U to the d-wave pair-
ing channel vanishes due to the pairing symmetry, and
secondly, the dressed spin susceptibility �, and not the per-
turbative RPA form, will be used in Eq. �1�.

To see how well Eq. �1� can describe the pairing interac-
tion, we first discuss the fitting procedure which will be used
to determine a temperature-dependent effective coupling

Ū�T�. Following this, we compare the d-wave eigenvalue
and the K and �n dependences of the eigenfunction of the
Bethe-Salpeter equation using the interaction given by Eq.
�1�, with the results obtained using the “exact” interaction.
Throughout this paper, “exact” will refer to numerical results
obtained using a dynamic cluster approximation �DCA�

Monte Carlo technique.9–12 We will then conclude by dis-

cussing the relationship of Ū to the bare interaction.

II. FITTING THE EFFECTIVE COUPLING Ū

For the traditional low Tc superconductors, the phonon-
mediated s-wave pairing interaction is characterized by13

�2F��� = − �
�

��gp,p�
2 �

Im

�
D��p − p�,����	p���	p���

pp�

���	p��p
.

�2�

Here, D��q ,�� is the phonon propagator for polarization �
and ���	p��p represents an average over the Fermi surface
weighted by a p-dependent density of states which varies as

F

−1�p�. The coupling strength � is given by

� = 2	
0

�

d�
�2F���

�
, �3�

and it clearly depends on the phonon dynamics. However, by
substituting Eq. �2� into Eq. �3� and making use of the usual
dispersion relation, � can be conveniently expressed in terms
of the zero-frequency limit of the phonon propagator
D��q ,�=0�:

� = − �
�

��gp,p�
2 �D��p − p�,0���	p���	p���pp�

���	p��p
. �4�

At a finite temperature, D��p−p� ,0� is replaced by
1/2
D��p−p� ,0�+D��p−p� ,2�T��.

For the Hubbard model, we lack a Migdal theorem and
the pairing interaction is calculated with a dynamic cluster
quantum Monte Carlo algorithm.9–12 The dynamical cluster
approximation maps the original lattice model onto a peri-
odic cluster of size Nc sites embedded in a self-consistent
host. The essential assumption is that short-range quantities,
such as the self-energy and its functional derivatives �the
irreducible vertex functions�, are well represented as dia-
grams constructed from the coarse-grained Green’s function.
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For the problem of interest, this is a reasonable assumption
for systems where the correlations that mediate the pairing
are short ranged. To this end, the first Brillouin zone is di-
vided into Nc cells, with each cell represented by its center
wave vector K surrounded by N /Nc lattice wave vectors la-

beled by k̃. The reduction of the N-site lattice problem to an
effective Nc-site cluster problem is achieved by coarse-
graining the single-particle Green’s function; i.e., averaging

G�K+ k̃� over k̃ within a cell, which converges to a cluster
Green’s function Gc�K�. Consequently, the compact Feyn-
man diagrams constructed from Gc�K� collapse onto those of
an effective cluster problem embedded in a host, which ac-
counts for the fluctuations arising from the hopping of elec-
trons between the cluster and the rest of the system. The
compact cluster quantities are then used to calculate the cor-
responding lattice quantities.

The pairing interaction is given by the irreducible part of
the particle-particle vertex

pp�K;K�� � pp�K,− K;K�,− K�� , �5�

with K= �K ,�n�. One can also use the DCA to calculate the
spin susceptibility ��Q ,�n�.11,12 In an analogous manner to
Eq. �4�, we now introduce a d-wave coupling strength

−

1

2
�g�K�even

pp �K,�T;K�,�T�g�K���KK�

�g2�K��K
�6�

with the even frequency, even momentum part of the irreduc-
ible particle-particle vertex

even
pp �K,�T;K�,�T�

=
1

4

pp�K,�T;K�,�T� + pp�K,�T;− K�,�T�

+ pp�K,�T;K�,− �T� + pp�K,�T;− K�,− �T��
�7�

and g�K�= �cos Kx−cos Ky�. An effective coupling Ū�T� may
then be obtained by requiring that the d-wave coupling
strength in Eq. �6� is the same at a given temperature for the
approximate interaction one obtains by replacing pp�K ;K��
with the interaction in Eq. �1�. In Fig. 1, we show the results

for Ū�T� for two different DCA cluster sizes,23 Nc=4 and
Nc=24, for the case in which U=8 and the site filling �n�
=0.85. Here, one sees that Ū is smaller than U and decreases
at lower temperatures. We will discuss the physics that un-

derlies this effect after we explore how well 3
2Ū2��K−K��

represents pp�K ;K��.

III. RESULTS FOR THE PARTICLE-PARTICLE BETHE-
SALPETER EQUATION

The leading low-temperature eigenvalue of the particle-
particle Bethe-Salpeter equation

−
T

Nc
�
K�

even
pp �K,− K;K�,− K���̄0

pp�K�����K�� = �����K�

�8�

corresponds to an eigenfunction with d-wave symmetry.
Here, we have coarse-grained the Green’s function legs,

�̄0
pp�K��=

Nc

N �k̃�G↑�K�+ k̃��G↓�−K�− k̃��, according to the
DCA assumption. The curves with solid symbols in Fig. 2
show the d-wave eigenvalue versus T obtained from Eq. �8�
with the exact DCA interaction pp. The curves with open
symbols show the d-wave eigenvalue obtained from Eq. �8�
when pp is replaced with 3

2Ū2��K−K��. Here, we are using
DCA results for ��K−K�� as well as the single-particle
propagator G�k� that appears in Eq. �8�. One sees that with

Ū�T� determined as discussed in Sec. II, the temperature de-

FIG. 1. �Color online� The coupling strength Ū for U=8 in units
in which t=1 and a site filling �n�=0.85 calculated for two cluster
sizes Nc=4 and 24.

FIG. 2. �Color online� The d-wave eigenvalue versus T obtained
from the RPA form 
Eq. �1�� �open symbols� and from the “exact”
DCA interaction �solid symbols� for Nc=4 and 24.

MAIER, JARRELL, AND SCALAPINO PHYSICAL REVIEW B 75, 134519 �2007�

134519-2



pendence and the size of the d-wave eigenvalue are well
accounted for by the simple form of the interaction given by
Eq. �1�. For the 4-site cluster, the eigenvalue �d is larger than
that for the 24-site cluster because of the absence of pair field
fluctuations for the 4-site cluster.14

In the following, we show the results for the 24-site clus-
ter which was shown in Ref. 14 to be close to convergence
with respect to the temperature dependence of the pair field
susceptibility. The momentum dependence of the eigenfunc-
tion obtained using the approximate form of the interaction
has the same dominant �cos Kx−cos Ky� behavior as the ex-
act DCA result, as shown in Fig. 3. Furthermore, as shown in
Fig. 4, the Matsubara frequency dependences of the DCA
and the approximate interaction are remarkably similar.

IV. EFFECTIVE Ū„T…

By fitting Ū�T� so that the d-wave strength of the approxi-
mate interaction is equal to that of the exact DCA interaction,
we have found that the approximate form 
Eq. �1��, does an
excellent job in describing the d-wave eigenvalue and eigen-
function. From a purely phenomenological point of view, this
is an important result. It means that to the extent that the
Hubbard model gives an appropriate description of the cu-
prates, inelastic neutron-scattering experiments which give
Im��q ,�� provide a way of determining the momentum and
frequency structure of the pairing interaction. A similar
analysis was applied to the heavy fermion superconductor
UPT3.15,16

One would like to have a better understanding of Ū. As
previously discussed in Refs. 17 and 18 and more recently in
Refs. 1 and 2, the irreducible particle-particle vertex can be
decomposed into a fully irreducible two-fermion vertex �irr
plus contributions from particle-hole channels, as illustrated
in Fig. 5. These particle-hole channels can be separated into
density �S=0� and magnetic �S=1� channels. For the even
frequency, even momentum part of pp that is of interest, one
has

even
pp �K,K�� = �irr,even�K,K�� +

1

2
�d�K,K�� +

3

2
�m�K,K��

�9�

with the even frequency, even momentum part of the fully
irreducible two-particle vertex �irr,even and

�d/m�K,K��

=
1

2

d/m

red �K − K�,�n − �n�;K�,�n�;− K,− �n�

+ d/m
red �K + K�,�n − �n�;− K�,�n�;− K,− �n�

+ d/m
red �K − K�,�n + �n�;K�,− �n�;− K,− �n�

+ d/m
red �K + K�,�n + �n�;− K�,− �n�;− K,− �n�� .

�10�

Here, K= �K ,�n� and d/m
red are the two-particle reducible con-

tributions to the full four-point vertex d/m calculated in the
S=0 �d� or S=1 �m� channel, i.e., d/m

red �Q ;K ;K��
=d/m�Q ;K ;K��−d/m

ph �Q ;K ;K��, where d/m
ph is the irreduc-

ible vertex in the corresponding channel. The center of mass

FIG. 3. �Color online� The momentum dependence of the
d-wave eigenvector ��K ,�n� for �n=�T and T=0.33 of the ap-
proximate interaction 
Eq. �1�� compared to the exact DCA interac-
tion even

pp . ��K ,�n� has been normalized to its value at K= �� ,0�.

FIG. 4. �Color online� The frequency dependence of the d-wave
eigenvector ��K ,�n� for K= �� ,0� and T=0.33 of the approximate
interaction 
Eq. �1�� compared to the exact DCA interaction even

pp .
��K ,�n� has been normalized to its value at �n=�T.

FIG. 5. Decomposition of the irreducible particle-particle vertex
pp into a fully irreducible vertex �irr plus reducible particle-hole
contributions in the cross channel. Here,  denotes the full two-
particle vertex and ph the irreducible particle-hole vertex.
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and relative wave vectors and frequencies in these channels
are labeled by the first, second, and third arguments, respec-
tively. In Fig. 6, the d-wave projection 
Eq. �6�� of
even

pp �K ,K�� along with the three contributions on the right-
hand side of Eq. �9� is plotted versus the temperature. As
expected, the dominant contribution comes from the mag-
netic �S=1� term. The fully irreducible channel is relatively
ineffective, but at low temperatures, the charge density
�S=0� channel acts to reduce the effective d-wave pairing
strength. This is one of the reasons for the decrease found in

Ū�T�. A similar effect is found in the simple RPA treatment,
where the effective pairing interaction is Vspin−Vcharge. How-
ever, the RPA result for Vcharge does not vary as strongly with
the temperature.

In addition, from Fig. 5, one can see that even if one were

to just consider the magnetic channel, Ū would be a more
complicated object. The coupling to the S=1 susceptibility is
given by an irreducible particle-hole vertex ph, which de-
pends on K−K� as well as on internal momenta and Matsub-
ara frequencies. In Fig. 7, we show results for

̄ph =  �g�K��m�K,�T;K�,�T�g�K���KK�

�g�K��even�K,�T;K�,�T�g�K���KK�
�1/2

, �11�

where �even is the even frequency, even momentum part of
the spin susceptibility � obtained in an analogous manner to

Eq. �7�. One can see that this estimate for ̄ph is smaller than

U. This is consistent with estimates for the spin effective
interaction in a two-particle self-consistent approach19,20 and
the results of earlier quantum Monte Carlo calculations21,22

which found that the electron-spin fluctuation vertex de-
creased with decreasing temperature for all momentum trans-
fers.

V. CONCLUSION

To conclude, this work has shown that the momentum and
frequency dependencies of the d-wave pairing interaction for
the Hubbard model in the parameter regime which is be-
lieved to be appropriate to the cuprates are well approxi-
mated by the spin susceptibility. The strength of the coupling

when written in the RPA form 3
2Ū2�T� requires a

temperature-dependent effective Ū�T�, which is reduced
from the bare U and decreases at lower temperature in order
to phenomenologically account for the effect of the charge
channel and vertex corrections.
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