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We present results from a Monte Carlo simulation of noncompact lattice QED in three dimensions in which
an explicit anisotropy � between x and y hopping terms has been introduced into the action. Using a parameter
set corresponding to broken chiral symmetry in the isotropic limit �=1, we study the chiral condensate on 163,
203, and 243 lattices as � is varied, and fit the data to an equation of state which incorporates anisotropic
volume corrections. The value �c at which chiral symmetry is apparently restored is strongly volume depen-
dent, suggesting that the transition may be a crossover rather than a true phase transition. In addition we
present results on 163 lattices for the scalar meson propagator, and for the Landau gauge-fixed fermion
propagator. The scalar mass approaches the pion mass at large �, consistent with chiral symmetry restoration,
but the fermion remains massive at all values of � studied, suggesting that strong infrared fluctuations persist
into the chirally symmetric regime. Implications for models of high-Tc superconductivity based on anisotropic
QED3 are discussed.
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I. INTRODUCTION

QED3, i.e., quantum electrodynamics restricted to two di-
mensions of space and one of time, has recently been the
focus of some attention in the condensed-matter community,
as various versions of it are examined as candidate effective
models of high-temperature superconductivity in cuprate
compounds.

The particular model in which we are interested is that
presented in Refs. 1 and 2, which is supposed to model the
passage between the antiferromagnetic SDW �spin-density
wave� and superconducting dSC �the d denotes that the su-
perconducting order parameter has d-wave symmetry�
phases at low temperature T as the doping fraction x is in-
creased. QED3 is proposed, as reviewed below in Sec. II A,
as an effective theory of the low-energy quasiparticle excita-
tions in the neighborhood of the four nodes in the gap func-
tion ��k��. Since the dispersion relation is linear at the nodes,
the excitations can be reinterpreted as various components of
a relativistic spinor field � with four spin and Nf =2 flavor
degrees of freedom. Interaction via a minimally coupled
Abelian vector gauge potential field A� arises as a result of
phase fluctuations of �; it can then be argued that A� is most
naturally governed by an action of a Maxwell type,1,2 result-
ing in massless photon degrees of freedom which have an
alternative interpretation as the Goldstone bosons associated
with the condensation of dual vortices.3,4

QED3 is a quantum field theory whose study has a long
history �see Ref. 5 for a brief review�. The main issue is
chiral symmetry breaking ��SB�, i.e., whether chiral symme-
try, the invariance of the action under independent global
rotations of left- and right-handed helicity spinors, is spon-

taneously broken, signaled by a chiral condensate ��̄��
�0. �SB implies dynamical mass generation, i.e., the physi-
cal fermion mass M may be much greater than the “bare” or
Lagrangian mass m. This is believed to depend sensitively on
the number of fermion species Nf in the model; �SB is sup-
posed to occur only for Nf less than some critical Nfc, whose

precise value remains a goal of nonperturbative quantum
field theory.

In the condensed-matter context, the �SB order parameter
can be mapped directly into the SDW one. If �SB does not
occur �i.e., Nf�Nfc�, then the resulting theory of light fer-
mion degrees of freedom �DOF� interacting with massless
gauge degrees of freedom is proposed as a theory of the
so-called “pseudogap” region of the cuprate phase diagram,
characterized by spectral depletion in the immediate vicinity
of the Fermi energy even in the absence of a well-defined
quasiparticle peak. The main prediction of the QED3 ap-
proach is thus that if Nfc�2 the dSC and SDW phases are
connected in the T→0 limit,2 whereas if Nfc�2 they are
separated by a region of pseudogap phase.1

An important assumption in the above chain of reasoning
is that results from continuum QED3 in the isotropic limit �as
usually studied in quantum field theory� can be applied di-
rectly to the condensed-matter system, whose Lagrangian
density �3� below has kinetic terms describing a single flavor
with differing strengths or “velocities” in x and y directions
as an artifact of the transformation to the relativistic spinor
basis. This is in principle not a negligible effect; the velocity
ratio or anisotropy � in real cuprates varies with x,6 and can
be as large as seven at the onset of the dSC phase.7 Evidence
in favor of applying predictions of the isotropic theory comes
from a renormalization-group analysis, which studied small
anisotropy perturbations to the isotropic system and con-
cluded that weak anisotropy is an irrelevant perturbation.8,9

This result has been used8 with the assumption that the criti-
cal Nfc is a universal constant, unaffected by irrelevant pa-
rameters, to argue that the various estimates of Nfc in the
literature can be applied to the cuprate problem.

It should be noted here that similar ideas regarding rela-
tivistic fermions �often four-Fermi theories� have been also
been discussed in the literature relating to graphene and simi-
lar compounds, both theoretically �for example, see Refs.
10–13� and experimentally �for example, Ref. 14�. However,
this form has only an asymmetry between temporal and spa-
tial directions, whereas in what follows we treat a more gen-
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erally anisotropic system where all three Euclidean axes are
distinguished.

In our previous paper15 we made the first study of aniso-
tropic QED3 using the methods of numerical lattice gauge
theory, a nonperturbative technique with very different sys-
tematic approximations to continuum-based approaches. Us-
ing a large value of the fermion-photon coupling strength, we
studied the �SB order parameter ��̄�� on a relatively modest
163 space-time lattice as the anisotropy � is increased from
1, and provided preliminary results that suggest the existence
of a chiral symmetry restoring phase transition at a critical
value �c; moreover, we found that the “renormalized”
�R—obtained by considering the spatial decay of correlations

of pseudoscalar meson or “pion” fermion-antifermion �f f̄�
bound states—obeyed �R��, suggesting in contrast to Ref.
8 that � is in fact a relevant parameter—at least with respect
to the bound states of fermions, if not with respect to fermi-
ons themselves. Both observations suggest caution should be
used in applying isotropic QED3 directly to cuprates.

Several questions raised by Ref. 15 are addressed in the
current paper. First, we wish to understand the nature of the
chiral symmetry restoring transition, using the traditional
method of studying the transition on larger systems and ap-
plying a finite-volume scaling analysis. Results on 203 and
243 lattices, together with analyses assuming both isotropic
and weakly anisotropic finite volume scaling are presented in
Sec. III. As we shall see, the data is best fitted by an ansatz
which takes anisotropy into account, which suggests that the
value of �c in the thermodynamic limit may be considerably
larger than the estimate �c�4.5 of Ref. 15. Next, in Sec. IV

we have studied spectroscopy in another f f̄ channel with
scalar, rather than pseudoscalar, quantum numbers. This is
important for two reasons. First, as the parity partner of the
pseudoscalar the scalar should become degenerate with the
pion at large �, giving further evidence for the restoration of
chiral symmetry. Second, since the pion is the Goldstone
boson associated with �SB in the low-� phase, it is in some
sense a “distinguished particle,” and motivates us to check
the renormalized anisotropy �R using a different channel.

Finally, we present results for the fermion propagator
���x��̄�y��. Since this is not a gauge invariant object, in order
to obtain a nonzero result this has necessitated the implemen-
tation of a gauge fixing procedure, described in some detail
in Sec. V A. Our motivation comes from the arguments of
Tešanović et al.,1,16 suggesting that the massless quasiparti-
cles of the pseudogap phase acquire a small, gauge depen-
dent anomalous dimension due to their interaction with the
statistical gauge field, which may explain nonstandard scal-
ing of transport coefficients such as resistivity and thermal
conductivity in the pseudogap phase. From a numerical point
of view this has proved easily the most demanding part of
the project, requiring much computational effort to extract
any kind of signal from the statistical noise inherent in the
Monte Carlo method. Somewhat unexpectedly, we find evi-
dence for the persistence of a dynamically generated fermion
mass in the high-� phase, despite the apparent restoration of
chiral symmetry, implying the irrelevance of � with respect
to fermions. A physical scenario consistent with these obser-
vations is discussed further in Sec. VI.

II. REVIEW OF THE LATTICE MODEL

A. QED3 as an effective theory of the pseudogap

The mapping of the pseudogap region of the cuprate
phase diagram onto QED3 is derived in detail in Refs. 1 and
2, and reviewed in language more accessible to particle
physicists in Ref. 15. Here we briefly summarize, starting
with the following Euclidean �imaginary time� action, also
known as the Bogoliubov-deGennes model, for d-wave qua-
siparticles in the dSC phase,

S = T �
k�,	,
n

��i
n − �k��c	
†�k�,
n�c	�k�,
n�

−
	

2
„��k��c	

†�k�,
n�c−	
† �− k�,− 
n�

− �†�k��c	�k�,
n�c−	�− k�,− 
n�…� , �1�

where c† ,c are creation and annihilation operators for elec-
trons with spin 	= ±1, 
n= �2n−1��T are the allowed Mat-
subara frequencies, the function �k� is the energy of a free
quasiparticle �which thus vanishes for k� on the Fermi sur-
face�, and ��k�� is the gap function, which can be thought of
as a self-consistent pairing field. Due to its d-wave symme-
try, � actually vanishes at two pairs of node momenta k�

= ±K� 1 , ±K� 2, with K� 1 ·K� 2=0.
Linearizing the latter functions around the nodes and de-

fining the 4-spinor �i at the node pair i as

�i
tr�q� ,
� = „c+�k�,
�, c−

†�− k�,− 
�,

c+�k� − 2K� i,
�, c−
†�− k� + 2K� i,− 
�… , �2�

we may write the following effective action describing the
behavior of the system at low T:8

S =	 d2r	
0



d��̄1
�0D� + ��−1/2�1Dx + ��1/2�2Dy��1

+ �̄2
�0D� + ��−1/2�1Dy + ��1/2�2Dx��2 +
1

2g2F��
2 ,

�3�

where �1/T, �=vF /v� 
where vF and v� are the Fermi
and gap velocities derived from the linearization of �k� and
��k��, respectively, about the nodes� is the anisotropy, �
=vFv�, and the 4�4 traceless Hermitian matrices �� obey
��� ,���=2���. The action �3� describes Nf =2 flavors of rela-
tivistic fermion � �sometimes known as nodal fermions in
this context� interacting with an Abelian gauge potential A�,
which we will often refer to as the photon, via the covariant
derivative D����+ iA�. The photon-fermion interaction
models the effect of the phase fluctuations of the pairing field
�: photon dynamics are governed by F��

2 ���
�A���2, and the
coupling g �the analogue of electron charge in textbook
QED� is related to the diamagnetic susceptibility � via g
��−1/2 �Ref. 1�.

IORWERTH OWAIN THOMAS AND SIMON HANDS PHYSICAL REVIEW B 75, 134516 �2007�

134516-2



The two velocities depend on the shape of the Fermi sur-
face, and hence on the doping of the superconductor,6,7 im-
plying that the same is true of �; at the onset of supercon-
ductivity at low T, � may be as much as O�7�.

B. Lattice model of anisotropic QED3

The formulation of isotropic QED3 on a space-time lattice
is described in detail in Ref. 17; in what follows we summa-
rize the treatment of our anisotropic model given in Ref. 15.
For N flavors of staggered lattice fermion, the following is a
QED3 action with an explicit spatial anisotropy,

S = �
i=1

N

�
x,x�

a3�i
¯ �x�Mx,x��i�x�� +



2 �
x,���

a3���
2 �x� . �4�

We define the fermion matrix Mx,x� as follows:

Mx,x� =
1

2a
�
�=1

3

���x�
�x�,x+�̂Ux� − �x�,x−�̂Ux��
† � + m���,

�5�

where �� is

���x� = �����x� �6�

and ���x�= �−1�x1+¯+x�−1, where x1=x, x2=y, and x3=�, is
the Kawomoto-Smit phase of the staggered fermion field.
The physical lattice spacing is denoted by a. The �� are
anisotropy factors, which we define as �x=�−1/2, �y =�1/2,
�t=1. The � factors ensure that the action describes relativ-
istic covariant fermions in the isotropic limit �=1.

Taking the photonlike degree of freedom ���x� to exist on
the link connecting site x to site x+ �̂, makes U��x�
�exp
ia���x�� in �5� the parallel transporter defining the
gauge interaction with the fermions; we may define a non-
compact gauge action via

����x� =
1

a2 
��
+���x� − ��

+���x�� . �7�

The dimensionless parameter  is given in terms of the QED
coupling constant via �1/g2a. It is convenient to work
wherever possible in “lattice units” such that a=1.

A certain amount of caution is mandated in applying our
results to the condensed matter-inspired QED3 model �3�,
which is derived and justified in continuum terms. Further
caution is warranted as the flavor structure of �5� does not
entirely capture the theory of Refs. 1 and 2; in the
condensed-matter-inspired theory �3� the second flavor has a
vF�1 term in the y direction and a v��2 term in the x direc-
tion so the two flavors have opposite anisotropies, reflecting
the fact that there is no physical anisotropy in the original
crystal: in our model by contrast, following the transforma-

tion to � ,�̄ variables the velocity-�-matrix structure of the
first flavor would be repeated in the second, so that there is
an overall anisotropy. We expect however that enough simi-
larities between �4� and the cuprate-inspired model persist
for us to make reasonable conjectures as to the behavior of
the latter system. This point is discussed further in Ref. 15,

where the measured values of the average plaquette along the
various planes was used to estimate the error caused by our
simplification.

It is in principle possible to perform simulations with a
lattice action corresponding more closely to the anisotropy
structure of �3�, but in this case simulations would have to be
performed with a hybrid molecular dynamics algorithm, and
results would thus contain a systematic dependence on the
time-step size used.17 This algorithm would then approxi-
mate the “correct” model via a functional measure

det M���M��−1��1/2; however, away from the continuum
limit it remains an unresolved issue as to whether the result-
ing dynamics is that of a local Lagrangian field theory.

In addition, restricting our attention to that portion of the
action involving the fermion fields, we see that the introduc-
tion of the �� factors has the effect, at least at tree level, of
rescaling the lattice spacing in the various directions as ax
= �a, ay =a / �, at=a. In orthodox lattice QCD similar
anisotropies are often introduced for technical convenience,
and to ensure Lorentz covariance of the continuum limit it is
important to check that all terms in the lattice action are
formulated with the same anisotropy, which results in a fine-
tuning problem once quantum corrections are introduced.
For instance, implementing this program for the action �4�
would require the introduction of separate gauge coupling
constants xt, yt, and xy, with a nontrivial constraint result-
ing from the physical requirement that, e.g., the speed of
light for photons is the same as that for fermions. In the case
at hand, though, the plaquette coupling  is defined the same
in all three planes. It is important to stress that in this case
the x-y anisotropy is physical, and that, e.g., the resulting
ratio ax /ay is an observable to be determined empirically. At
tree level ax /ay =�; in what follows �see Ref. 17� we define
this ratio as the renormalized anisotropy �ren and estimate it
from the spatial decay of a mesonic correlation function.
Rather than keep track of the various lattice spacings, we
prefer to think of � as a parameter of the model which can be
renormalized through quantum corrections.

C. The simulation

In Ref. 15 we simulated the dynamics of the lattice action
�4� and �5� using a hybrid Monte Carlo algorithm on a 163

lattice for � ranging from 1 to 10 and the bare mass m
=0.05, . . . ,0.01. The gauge coupling constant  was held at a
constant value 0.2 throughout—at this relatively strong cou-
pling the system is in a state of spontaneously broken chiral
symmetry at �=1. The main results of Ref. 15 are that the
chiral condensate decreases with increasing �, consistent
with a second-order chiral symmetry restoring transition at
�c=4.35�2�, and that the renormalized anisotropy �R ob-
tained by comparison of pion correlators in x and y direc-
tions obeys

�R − 1 � 2�� − 1� , �8�

implying that � is a relevant parameter.
In the calculations presented in this paper, unless other-

wise noted, the gauge configuration ensemble ��� used was
generated using the same hybrid Monte Carlo algorithm, run-
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ning for around 1000 trajectories of mean length 1.0 on L3

lattices with L=16, and the gauge coupling set to the same
value =0.2. Even-odd partitioning was used; this allowed
us to set N=1, giving us Nf =2 in the continuum limit.
Typical acceptances were 60% –70% for m=0.01, and
70% –80% for other bare mass values.

In this paper we have extended our study to a range of
volumes: datasets for the 203 and 243 lattices typically con-
tain 700 and 600–700 trajectories per point with acceptances
of 82% –94% and 75% –82%, respectively. In the studies of
fermion propagation presented in Sec. V, gauge-fixed con-
figurations were generated on a 163 lattice and consisted of
�30 000 trajectories per point with an acceptance rate of
79% –87%.

III. SUSCEPTIBILITIES AND FINITE SIZE SCALING

We begin the presentation of our results with measure-
ments of longitudinal susceptibility and the chiral condensate
as L is varied. This is necessary to pin down the nature of the
chiral symmetry restoring transition with more precision.
Apart from the intrinsic theoretical interest, there are impor-
tant phenomenological issues at stake. First, it is important to
know the value of the critical anisotropy �c at which the
transition takes place in the continuum and thermodynamic
limits, since in principle this is a physically observable pa-
rameter in real cuprates.6 Second, the order of the phase
transition is important; were it either first order or a cross-
over, then an immeasurably small but nonvanishing conden-
sate may persist in the high-� “chirally restored phase,”
meaning that antiferromagnetic order can survive the
transition.15 As we shall see below, the results we have been
able to obtain with our resources have not settled the issue
unequivocally; it seems likely that a model of finite volume
scaling which takes account of the anisotropy is required.

A. Finite size scaling of the condensate

Here we present the results of a preliminary study of the
finite size scaling of the chiral condensate and longitudinal
susceptibility at fermion mass m=0.01, the smallest of the
bare masses examined in Ref. 15. We define the chiral con-
densate in terms of the trace of the inverse of the fermion
matrix M,

��̄�� = −
1

V

� ln Z

�m
=

1

V
�tr M−1� , �9�

and the longitudinal susceptibility in terms of its derivative,

�l =
���̄��
�m

=
1

V

��tr M−1��tr M−1��

− �tr M−1�2 − �tr�M−1M−1��� . �10�

Note that Eq. �10� includes diagrams which are both con-
nected and disconnected in terms of fermion lines; both con-
tributions were calculated.

In the vicinity of the phase transition �l should peak at an
anisotropy �peak which should tend towards the critical value
�c in the thermodynamic limit. Examining the plot of the

longitudinal susceptibility as the size of the lattice is varied
�Fig. 1�, we observe that the peak shifts to the right-hand side
by an amount that decreases as the lattice size increases; this
suggests that a second-order transition might occur at a finite
value of �c in the thermodynamic limit. Unexpectedly, how-
ever, the magnitude of the peak appears suppressed as the
lattice size increases. This may have several possible causes:

�i� The magnitude of the peak does increase, but the
width of the peak as the lattice volume increases narrows
such that it falls between the available data points and is not
detected. The rounded shape of the curves suggests that this
is unlikely.

�ii� This is not a second-order phase transition; perhaps
we are observing a crossover instead. If there is a crossover
between the two phases, and not a genuine second-order
phase transition, then a small chiral condensate is expected
to persist in the high-� phase. Some analytic approaches pre-
dict dimensionless condensates 2��̄�� as small as O�10−4�.18

Attempts to rule out this possibility regarding the chiral
phase transition in studies of isotropic QED3 with various Nf
such as Refs. 5 and 17 have not proven to be successful, and
it is also likely to be as difficult in this case.

�iii� Our system has an anisotropic coupling between the
gauge and fermion fields. The effects of this could be diffi-
cult to account for in the standard finite size scaling devel-
oped for phase transitions in isotropic systems; we should
turn our attention to the scaling of anisotropic systems in-
stead. In the statistical mechanics literature, one observes
two models of this scaling:

Weak anisotropy. In these systems, there exist different
correlation lengths in different directions; these correlation
lengths can be rescaled such that the system is effectively
isotropic in the scaling region �Ref. 19 and references
therein, notably Refs. 20–22�. We examine this possibility in
detail below.

Strong anisotropy. In these systems in addition to correla-
tion lengths, the critical exponent � is different in different
directions �Refs. 22 and 23 and references therein�. The scal-
ing behavior of these systems is very sensitive to the shape

FIG. 1. �Color online� �l for various lattice sizes and
m=0.01.
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of the lattice, and is difficult to treat with data generated on
cubic lattices; it is mentioned here as an issue worthy of
further investigation.

Since our data is restricted to that generated on a square
lattice, we will examine only weak anisotropic scaling as
compared to isotropic scaling.

1. Isotropic scaling

First, we shall discuss the scaling of the system if it is
assumed intrinsically isotropic. As argued in Ref. 24, we can
use the scaling behavior of the system as we vary L in order
to determine how the finite volume affects the equation of
state. We do this by treating the inverse linear size of the
lattice, L−1, as an irrelevant scaling field and use the follow-
ing as our ansatz, where k= ��−�c�:

m = B��̄��� + A�k + CL−1/����̄���. �11�

Here �, �, and ���−��−1 have their usual meanings as
critical indices describing a continuous phase transition.

2. Weakly anisotropic scaling

In this case, we wish to account for the distortion of the
correlation lengths of the system along the x and y axes by
��1. Finite size effects enter into the scaling whenever

�� � L�, �12�

where �� is the correlation length in the direction � and L� is
the length of the lattice in that direction. We introduce three
irrelevant scaling fields: L1

−1, L2
−1, and L3

−1, defining them in
terms of L, the number of lattice spacings along one dimen-
sion of the system, by rescaling �� �Refs. 19–22� such that

�1
re = �2

re = �3
re. �13�

Since �to a first approximation� �1
re=�−1�, �2

re=��, and
�3

re=� �where � is the correlation length of the isotropic sys-
tem�, this gives

��1
re = �−1�2

re = �3
re. �14�

This rescaling of the correlation lengths is equivalent to re-
sizing the lattice, thus 
from consideration of �12��

L1 = �L, L2 = �−1L, L3 = L . �15�

So, we can write

Veffects = C� 1

L3
�1/�

+ D� 1

L2
�1/�

+ E� 1

L1
�1/�

= C� 1

L
�1/�

+ D��
L
�1/�

+ E� 1
�L

�1/�

� R��;C,D,E�L1/�. �16�

This motivates the replacement

C

L1/� → R��;C,D,E�L−1/� �17�

in �11�, which we may then use to study the scaling if weak
anisotropy is assumed.

3. Results and discussion

We should note that the above equations are only good
descriptions of the behavior of the system near to a continu-
ous phase transition. We have attempted fits to the finite-
volume equation of state �11� using data from 163, 203, and
243 with m=0.01. To ensure stability of the fit we found that
it was also necessary to include the m=0.02 data for the 163

lattice, presented in Ref. 15, giving 34 data points in all.
In addition, in order to increase the tractability of our fits,

we have made use of the following hyperscaling relation
�with dimensionality set to 3�:

� =
�� + 1�

3�� − ��
�18�

which reduces the number of free parameters in our fit to six
assuming isotropic scaling and eight assuming weakly aniso-
tropic.

Results from fitting the chiral condensate data to �11� are
shown in Table I. The quantities shown with a superscript
dagger were obtained through the following relations:

� =
5 − �

1 + �
,  =

1

2
��1 + ��, � = � −

1


. �19�

The equation-of-state fits found on 163 are plotted in Fig.
2 �in fact, the original figure shown in Ref. 15 had incorrect
curves, and �c was not located correctly, although the values
of the critical exponents given were correct, and the conclu-
sions of that paper remain unaffected�; for comparison the
equations of state, together with the fitted data and the ex-
trapolation to the chiral limit m→0, are plotted in Fig. 3.
The following features are perhaps the most intriguing. The
critical indices are compatible for both fits—however, the
value of �c is not only different from the value �c=4.35�2�
derived from fitting to the 163 data alone,15 but is signifi-
cantly different between the two forms of the finite scaling
fit. This suggests not only that finite size effects play a sig-
nificant role in the behavior of this system, but that the ef-

TABLE I. Equation-of-state fit results, allowing for finite size
scaling. Daggered values are calculated from hyperscaling relations
�see main text�.

Quantity Isotropic Weakly anisotropic

A 0.0393�8� 0.0111�7�
B 1.28�8� 1.02�6�
C 368�16� −755�338�
D 527�78�
E −716�447�
�c 7.66�5� 12.3�6�
� 3.40�6� 3.33�6�
� 0.991�7� 1.01�1�
† 0.41�1� 0.433�3�
�† 0.363�6� 0.386�7�
�† 0.61�2� 0.62�2�
�2

DOF
162 6
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fects of the anisotropy should be taken into consideration in
future studies of the system. It is also worth noting that the
value of the �2 /DOF is significantly better for the aniso-
tropic scaling. Note also that for the weakly anisotropic fit,
the sign of the coefficient of L2, D is different from those of
L1 and L3, Cand E. This may reflect the expectation follow-
ing �15� that �2�L over a much wider region of � than is the

case for the other two directions. Contra the fitting results of
Ref. 15, which were confined to a single lattice size, �
�1.00 with both equations; however, it is plausible that this
is due to an insufficient spread of mass values in the data set.

Whether the actual value of the weakly anisotropic �c is
in fact 12.3�6� seems doubtful; we must note that the ex-
trapolation is well outside the region of � for which we have
any data. An interesting possibility is that it could also indi-
cate that there is no phase transition and that the fit could be
attempting to compensate for its absence by giving it a value
in the unexplored region. If this behavior were to persist for
a more extensive data set, this hypothesis could be validated.

IV. SCALAR SECTOR

The scalar meson is the parity partner of the pseudoscalar
pion bound state studied in Ref. 15. In a phase with broken
chiral symmetry the pion is a Goldstone boson, and hence is
much lighter than the scalar. One signal for restoration of
chiral symmetry is the recovery of degeneracy between sca-
lar and pseudoscalar in the m→0 limit. The propagator of
the scalar is defined in terms of the fermion fields as follows:

C	��x�� = �
���

�
x�

��̄��0��̄��x�� . �20�

Due to the nature of the flavor structure of staggered lat-
tice fermions, propagation in this channel is prone to mixing
with low mass bound states with different spin quantum
numbers.24 Where this contamination is significant, the
propagator takes on a sawtooth shape, and we must thus fit a
four parameter function, such as that in �22� below, so that
we can distinguish propagation in the channel of interest.

In the following we distinguish between propagation in
the Euclidean time direction �, yielding information on the
excitation spectrum in the channel in question, e.g., the
bound-state mass, and propagation in the spatial directions x,
y, where the corresponding quantity is the inverse screening
length. Of course, in an isotropic system the two cases are
equivalent in the infinite volume limit.

A. Temporal propagator

Least-squares fitting of the function

C	��x�� = A�e−m	�x� + e−m	��L�−x��� , �21�

�with � chosen to be �� to data from 163 lattices proved to be
difficult within the chirally broken phase—the propagator
data was exceedingly noisy, and care had to be taken in order
to isolate the ground state signal from the excited states—but
as the values moved into the chirally restored region the
procedure became easier to perform. The results are listed in
Table II, and plotted in Fig. 4, alongside the pion masses of
Ref. 15 for each bare mass at �=10.00.

It can be seen from the figure that there are two regimes
of scalar behavior; below �c, where fitting is quite difficult,
m	 is more or less constant as � increases �if we go by the
m=0.01 data and ignore the outlier at �=3.00� up to ��5
�i.e., ���c as estimated on 163�, whereupon we find that m	

begins to converge with m� as � increases into the chirally

FIG. 2. �Color online� The corrected plot of the chiral conden-
sate and the equation-of-state fits on a fixed volume 163.

FIG. 3. �Color online� Equation-of-state fits for �a� the isotropic
case and �b� the anisotropic case on various lattice sizes and in the
thermodynamic, zero mass limit. 163 results are taken from Ref. 15.
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restored region. Figure 5 shows this in more detail for m
=0.01.

We should point out that the jump in the value of m	� at
�=3.00 and m=0.01 �and likely that of m	y at �=4.00, m
=0.05, see below� is likely to be due to the frequent occur-
rence of abnormally small eigenvalues of the Dirac operator

that overlapped with the meson source during our measure-
ment of the propagator, similar to that seen in the Thirring
model simulations of Ref. 25. The overall trend is consistent
with the scalar becoming degenerate with the pion at large �,
consistent with manifest chiral symmetry. There is thus no
evidence for persistence of chiral symmetry breaking at large
� from the light meson spectrum.

B. Spatial propagators

The spatial scalar masses were also obtained by least-
squares fitting to the propagator. For the x-direction �Table
III� and the �=1.00 y-direction �Table IV� correlation func-
tions, we used the fit function �21�, and selected the fit win-
dow so as to exclude higher mass states. For ��1.00, the
y-direction correlation function exhibits a sawtooth behavior,
motivating the following fit:

C	y = A�e−m	yy + e−m	y�Ly−y�� + �− 1�yB�e−My + e−M�Ly−y�� ,

�22�

which proved acceptable across the full range of � if a fixed
fitting window of space slices 1–15 was used. As with the
temporal scalar propagators, those in the chirally symmetric
phase were easier to fit than those in the chirally broken
phase. It is also worth noting that in the symmetric phase the
value of the correction mass M was often consistent with
zero for m=0.01 and m=0.03.

We have plotted m	x against � in Fig. 6, and m	y against
� in Fig. 7. The trends previously observed for pions in Ref.
15 are repeated here: the value of m	x increases with �. In
addition, as we have seen with m	�, it appears that there is
convergence between the m	x and the m�x values, most no-
tably for m=0.01 
compare m	x=0.32�4� and m�x

=0.211�1� at �=1.00 with m	x=2.62�2� and m�x=2.58�2� at
�=10.00�. Just as in Fig. 4, there is a change in behavior
around ��5, suggesting a change in behavior as the scalar
masses begin to converge on the pion masses within the
chirally symmetric phase, once again consistent with the
pion and scalar being parity partners.

TABLE II. Scalar masses m	� in the � direction on a 163 lattice,
for various masses.

m � m	 �2 /DOF Fit window

0.01 1.00 0.43�6� 1.991 2–14

2.00 0.40�8� 1.882 2–14

3.00 1.04�2� 1.323 1–15

4.00 0.47�3� 1.045 1–15

5.00 0.43�3� 1.144 5–11

6.00 0.55�1� 1.119 1–15

7.00 0.65�1� 0.339 1–15

10.00 0.91�2� 0.984 3–13

0.03 1.00 0.8�2� 1.177 2–14

2.00 0.6�1� 1.089 2–14

3.00 0.7�2� 0.923 2–14

4.00 0.8�1� 0.397 2–14

5.00 0.75�4� 1.351 2–14

6.00 0.78�4� 0.983 3–13

7.00 0.82�2� 0.505 1–15

10.00 1.07�2� 1.273 1–15

0.05 1.00 1.0�2� 2.519 2–14

2.00 1.2�7� 1.036 2–14

3.00 0.6�1� 1.806 2–14

4.00 1.0�2� 0.745 2–14

5.00 1.4�1� 0.739 2–14

6.00 0.95�5� 1.376 2–14

7.00 1.05�5� 0.635 2–14

10.00 1.16�2� 0.662 1–15

FIG. 4. �Color online� Scalar masses in the � direction. Straight
lines represent the pion masses at �=10.00, taken from Ref. 15.
m=0.05 values are omitted due to the size of their error bars.

FIG. 5. �Color online� Scalar and pion masses �from Ref. 15� in
the � direction for m=0.01.
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In the case of the y-direction masses, there is no pion data
within the chirally symmetric phase with which to compare
our results. The quality of the scalar data is also not that
good, for the reasons mentioned above. It is less clear
whether the change in the behavior between phases is present

here; it is likely to be quite small, and in any case the errors
easily obscure it. Our only conclusion is, then, that the value
of m	y decreases as we increase �; this is reinforced by the
behavior of the geometric mean of m	y and m	x above �
�5��c �Fig. 8�; while there is a slight increase as we ap-
proach �c �though the large error bars make it difficult to
determine to what extent this is a genuine effect�, above it,
the geometric mean appears to remain fairly constant, which
implies that m	y is decreasing, as m	x is increasing in this
region.

C. Renormalized anisotropy

Taking �R	 to be the ratio of m	x and m	y �Fig. 9�, we find
that it is relevant above �c �more so, in fact, than for pions;
cf. Fig. 8 of Ref. 15�; however, in contrast to the pion case
there appears to be a clear mass dependence below �c. It is
difficult to tell whether this is a real effect or merely an
artefact of the propagator fitting. On the assumption that the
behavior for m=0.01 is more or less linear, we fitted the data
for 1.00���7.00 to

R	 =
��R	 − 1�
�� − 1�

, �23�

and acquired R	=2.8�1�, with �2 /DOF=1.77. This appears
slightly larger than R��2.1 �Ref. 15�, suggesting that the

TABLE III. Effective scalar mass m	x in the x direction.

m � m	x �2 /DOF Fit window

0.01 1.00 0.32�4� 1.052 2–14

2.00 1.0�2� 0.856 1–15

3.00 2�1� 0.874 1–15

4.00 1.04�8� 0.645 1–15

5.00 1.28�3� 1.215 1–15

6.00 1.53�2� 1.153 1–15

7.00 1.83�2� 0.734 1–15

10.00 2.62�2� 0.55 1–15

0.03 1.00 0.7�2� 1.643 2–14

2.00 1.2�2� 1.495 1–15

3.00 1.7�7� 1.021 1–15

4.00 1.8�3� 0.577 1–15

5.00 2.3�2� 1.09 1–15

6.00 2.2�1� 1.596 1–15

7.00 2.3�1� 0.984 2–14

10.00 2.80�3� 0.853 1–15

0.05 1.00 0.7�1� 2.485 2–14

2.00 1�1� 0.47 2–14

3.00 2.2�4� 0.981 1–15

4.00 3�3� 0.967 1–15

5.00 2.5�4� 0.842 1–15

6.00 2.6�2� 0.637 1–15

7.00 2.8�2� 0.906 1–15

10.00 3.20�7� 1.029 1–15

TABLE IV. Effective scalar mass m	y in the y direction.

m � m	y �2 /DOF Fit window

0.01 1.00 0.41�6� 0.56 2–14

2.00 0.25�5� 1.469 1–15

3.00 0.2�1� 1.923 1–15

4.00 0.13�2� 1.548 1–15

5.00 0.09�2� 2.142 1–15

6.00 0.1�2� 1.227 1–15

7.00 0.1�5� 0.608 1–15

10.00 00�11� 1.735 1–15

0.03 1.00 0.8�2� 0.721 2–14

2.00 0.59�7� 1.732 1–15

3.00 0.7�3� 1.076 1–15

4.00 0.50�6� 7.661 1–15

5.00 0.15�4� 1.015 1–15

6.00 0.12�9� 1.351 1–15

7.00 0.10�8� 0.798 1–15

10.00 0.1�2� 1.55 1–15

0.05 1.00 0.9�2� 0.676 2–14

2.00 2.9�6� 8.468 1–15

3.00 0.8�3� 4.308 1–15

4.00 0.28�7� 1.315 1–15

5.00 0.19�5� 2.097 1–15

6.00 0.15�4� 1.636 1–15

7.00 0.12�5� 1.818 1–15

10.00 0.1�3� 1.87 1–15

FIG. 6. �Color online� The scalar screening mass in the x direc-
tion, msx, on a 163 lattice. The straight lines represent m�x at a value
of �=10.00.
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behavior of scalar particles is affected by the anisotropy to a
greater extent than that of the pions.

More data is needed before we can make definitive state-
ments. In addition, it should be noted that we cannot rule out
the existence of a change in behavior around �c for the val-
ues of �R�—the pion data of Ref. 15 does not extend far
enough. Based on the parity partnership of pions and scalars,
we propose the following hypothesis: that in the chirally re-
stored phase, the magnitude of �R	 will gradually approach
that of �R�. The required data would best be generated on
considerably larger lattices, with better statistics and perhaps
with improved operators in order to avoid some of the issues
with the data examined here.

V. FERMION SECTOR

In this section we report for the first time on studies of the
fermion propagator ���x��̄�y��. Large nonperturbative cor-

rections to this Green function in the chiral limit m→0 have
been proposed as an explanation of non-Fermi liquid behav-
ior in the nonsuperconducting region of the cuprate phase
diagram.1 An important challenge, both technical and con-
ceptual, which must be faced is that the fermion propagator
in QED is not a gauge invariant object, and can only by
calculated, either analytically or numerically, if a gauge-
fixing procedure is specified.26 The dependence of the results
on the choice of gauge is a thorny issue;16,27–29 here we will
content ourselves with specifying Landau gauge, i.e., ��A�

=0 in continuum notation �implying that only transverse de-
grees of freedom are retained in the photon propagator�, and
performing a fully nonperturbative calculation on a 163 lat-
tice. In what follows we will first devote some considerable
attention on the technicalities of fixing an unambiguous
gauge for lattice gauge fields U�, and then report our results
for the fermion propagator. Our strategy in this exploratory
study is to calculate the physical �i.e., renormalized� fermion
mass mf for fixed bare mass m as a function of the anisotropy
parameter �. Apart from the fact that this is the simplest
quantity to extract �by fitting to a decaying exponential�,
there is the theoretical motivation that mf, given by the po-
sition of a pole in the complex k plane, is gauge invariant, at
least to all orders in perturbation theory. As previously, we
will distinguish between propagation in temporal and spatial
directions.

A. Gauge fixing

In order for the measurement of a gauge variant quantity
such as the fermion propagator to be performed, we must
impose a gauge condition which selects a unique set of
gauge configurations from the infinite number of copies gen-
erated by local gauge transformations of the form �in this
section we will denote the lattice site by a suffix�

��x � ��x
� = ��x + ���x, �24�

where on a lattice finite difference operators are defined as

FIG. 7. �Color online� The scalar screening mass in the y direc-
tion, msy, on a 163 lattice. We omit the anomalous m=0.05, �
=2.00 value since its inclusion obscures the general trend of the
data, and the m=0.01, �=10.00 value due to the size of its error
bars.

FIG. 8. �Color online� The geometric mean of the scalar screen-
ing masses, msymsx, on a 163 lattice.

FIG. 9. �Color online� The renormalized � with respect to sca-
lars, �R	, on a 163 lattice, together with a linear fit for m=0.01 �the
dashed line is the quadratic fit, the filled line the linear�. �=10.00
has been omitted due to the size of the error bars.
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��fx = fx+�̂ − fx, �̄�fx = fx − fx−�̂; �25�

and �x is any scalar function defined on the lattice sites.
For this study, we shall impose a latticized form of the

Landau gauge condition

�
�

�̄���x
� = 0, �26�

which is the extremum of

F�
�� = �
x

�
�=1

3

���x
� �2, �27�

corresponding to the following functional in terms of con-
tinuum gauge fields:

F
A� =	 d3xA��x�A��x� . �28�

In order to proceed, modifications must be made to this
minimal gauge condition �henceforth referred to as the
mLandau gauge�. This is because it suffers from the so-
called Gribov ambiguity.30

1. The Gribov problem in QED3

When gauge fixing is performed nonperturbatively, it may
not always be possible to guarantee that there is a unique
minimum of the functional F
��. In numerical simulations,
this can lead to a distortion of the results due to the under-
lying ambiguity.31 The problem is normally associated with
non-Abelian gauge fields in the continuum; however, it exists
for Abelian fields on the lattice due to the toroidal boundary
conditions,32 which give rise to zero modes which cannot be
removed by local gauge transformations and is especially
acute for compact �cQED3� formulations of the gauge fields
as it allows for the existence of topological defects �such as
double Dirac strings in 2+1 dimensions or double Dirac
sheets in 3+1 dimensions� whose creation or annihilation
leaves the action unchanged.33

Since we make use of a noncompact formulation of QED3
�ncQED3� in this study, it seems that the only problem we
might have to deal with is the former. The modified iterative
Landau gauge �henceforth referred to as the miLandau
gauge�34–36 has often been used in order to deal with the
problems due to the existence of zero modes created by the
boundary conditions of the lattice; however, it has not �as far
as we are aware� been checked that there are any other
sources of Gribov copies in this gauge. So, in what remains
of this section, we shall describe miLandau gauge and
present results that demonstrate that it does deal with the
problem effectively, at least for the values of the parameters
simulated in this paper.

2. The miLandau gauge for ncQED3

First, we note that on the lattice we cannot rotate
��
����

�+a�, where a� is an arbitrary constant vector field, if
we wish to preserve the gauge invariance of the Polyakov
and Wilson lines �defined to be products of the parallel trans-

porters U�x along contours which are closed by periodic
boundary conditions in the temporal and spatial directions,
respectively�. Instead, the form of the allowed gauge rota-
tions is restricted to a�= n2�

L�
, where n is an arbitrary integer.

Using �̄�= 1
V�x��x as the value of a constant background

field �our zero mode� we should expect the gauge degrees of
freedom remaining after the mLandau gauge is fixed to van-
ish if we rotate

��
� � ��

� +
n2�

L�
�29�

such that − �
L�
��̄��

�
L�

. 
A similar prescription, the zero-

momentum Landau gauge37 sets �̄�=0. The difference be-
tween this and miLandau gauge in the thermodynamic limit
�L�→� � should be minimal.35�

�i� We fix the mLandau gauge using a steepest descent
algorithm.38

�a� Given a gauge configuration ���, for each site
we calculate the value of Gx=���̄���x.

�b� If 1
V�xGx�R, where R is the floating point

value 10−6, we terminate the algorithm here. Otherwise, we
continue.

�c� We rotate ��x����x�−���x on every link of
every lattice site, where �x=�Gx, and � is a tunable param-
eter �here set to a value of 0.2�, used to optimize conver-
gence.

�d� We repeat until the halting criterion is fulfilled.

�ii� Once mLandau gauge fixing is complete, we calculate

�̄� for �=1̂.

�iii� If �̄��− �
L�

:

Add
2�

L�
to each ��x until −

�

L�
� �̄� �

�

L�
.

�iv� If �̄��
�
L�

:

Subtract
2�

L�
from each ��x until −

�

L�
� �̄� �

�

L�
.

�v� Otherwise, leave each ��x unchanged.

�vi� Repeat the above for the remaining directions �=2̂,

3̂.

3. A test of this prescription in ncQED3

We wish to check that miLandau gauge removes Gribov
copies from our measurements, by testing the effects of im-
posing miLandau gauge on randomly generated gauge copies
of a set of gauge configurations.39,40 The results were gener-
ated for �=1.00 and �=10.00 on a 163 lattice for =0.2 and
m=0.03, the extreme values of the range at which we wish to
measure the propagator. 200 mother configurations were
generated, and for each mother we created three 500 configu-
ration ensembles corresponding to one of the following ran-
dom gauge transformations:
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Group A. For all x and �, ��x���x−���x where �x is a
random number between −9 and 9.

Group B. For all x and �, ��x���x+n�
2�
L�

, where n� is a
random integer—either 1, 0 or −1.

Group C. We perform both the transformation performed
on group A and that performed on group B.

During the gauge fixing of each configuration, we moni-
tored both the average value, Fav of the gauge fixing func-
tional �27� at each site and the value of the function L
= 1

V�xGx, with Gx defined in Sec. V A 2, for each iteration of
the fixing. The behavior of these parameters for a typical
configuration is shown in Fig. 10.

We may also define a “variance” dF,37 which measures
the difference in the minimized values of the gauge func-
tional Fmin in a particular ensemble of a mother and associ-
ated daughter copies:

dF = maxij
Fmin i − Fmin j� . �30�

with i , j=1, . . . ,N, where N is the number of daughter con-
figurations in the ensemble. If there are no Gribov copies
present, this quantity should be zero �more realistically, in a
numerical simulation we expect it to be of the order of the
residual, 10−7�, otherwise we expect a large value.

The results of our simulations at �=1.00 and �=10.00
with respect to Gribov copies were identical; we display fig-
ures for the former case, but our comments should be inter-
preted as generalizing over both values of �. Figures 11 and
12 plot Fmin and dF for the ensembles generated using each

procedure.
Group A. Here we find that while the value of Fmin is

appreciably different in miLandau gauge from that in mLan-
dau gauge �indicating that zero modes exist and have been
gauge rotated away in the former�, dF is of the order of 10−7,
suggesting that the random gauge transformations used here
do not usually generate Gribov copies.

Group B. Unlike the above case, here we can see that
there are in fact Gribov copies in the mLandau gauge: dF is
between 4 and 5 for �=1.00 and 5 and 6 for �=10.00. How-
ever, this is not the case for miLandau gauge. Here, as be-
fore, dF in miLandau gauge is of the order of 10−7, and thus
we can conclude that it rids us of the Gribov copies intro-
duced by the random gauge transformation.

Group C. Here, the crucial observation is that �to within
10−7�, the results for these random gauge transformations are
identical to those of group B. Indeed, it would be worrying
were it otherwise; the effects of the two sets of transforma-
tions should be additive, so one would expect only group B’s
transformations to have any effect.

It is clear from the above that only shifts in the constant
background field appear to contribute to gauge copies, and
these are readily dealt with through the addition of further
constraints to the minimal gauge fixing condition, via the
choice of miLandau gauge. This stands in strong contrast to
the case of cQED3, where the compact Wilson gauge action
allows for the existence of additional topological defects33

which are also solutions of the equations of motion and
therefore are Gribov copies.

This “desert landscape” with respect to Gribov copies is
not a disappointment—in fact, it is precisely the situation
desired; one can be sure that the gauge has been fixed as in
an unambiguous fashion.

FIG. 10. �Color online� Typical behavior of Fav �a� and L �b�
during gauge fixing. The plateau towards the middle of �a� corre-
sponds to the area where �b� is converging on zero �that is to say,
approaching the mLandau gauge�; the fall off beyond the 100th and
fourth interaction is due to the imposition of the full miLandau
gauge. The first few points of both plots have been omitted so that
this behavior is visible.

FIG. 11. �Color online� Plots of Fmin at �=1.00 for groups A, B,
and C. Fmin for B and C are identical to within 10−7.
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B. The Fermion propagator

In this section, we present measurements of the fermion
propagator in the temporal and spatial directions,

Cf��x�� = �
���

�
x�=A

���0��̄�x�� ,

A = � 2y� even numbered slice,

2y� + �̂ odd numbered slice,
�31�

where the sum on x only includes sites which are displaced
from the origin by an even number of lattice spacings in each
of the two transverse directions.24,26 We have also imposed
noncompact miLandau gauge using the procedure outlined in
Sec. V A 2. As mentioned previously, the calculation of Cf�
required the generation of around 30 000 trajectories of mean
length 1.0 per �-point in order to extract a signal from the
considerable noise; for a dynamical fermion simulation this
amounts to a large effort, requiring between 1 and 3 weeks
per point to complete. Because of this difficulty, the error
bars of our measurements remain sizable.

1. Temporal propagator

We extracted the fermion mass mf� in the temporal direc-
tion from the propagator data via the function

Cf���� = A
e−mf�� − �− 1��e−mf��L�−��� �32�

using correlated least-squares fitting; the results are recorded
in Table V and Fig. 14.

First we should first examine Fig. 13, which shows ex-
amples of fermion propagators in the chirally restored phase
��0.5. The following should be noted:

�i� The central area of each propagator is fairly flat, with
large error bars �true of both phases�. In this region the signal
is overwhelmed by the noise and is consistent with zero. The
size of the window containing data points exhibiting this
behavior decreased as the number of configurations in the
sample was increased, suggesting that the cause is insuffi-
cient statistics. Because of this, it proved necessary to use
fitting windows that are wider than the noisy region in order
to extract a mass from the propagator. As in previous studies
of elementary fermion propagation,24 no indication of con-
tamination from excited states was seen within those win-
dows.

�ii� Figure 13 also illustrates an interesting feature of the
fermion propagators for ��5: the onset of a sawtooth-type
behavior visible in the logarithmic plots that, although rela-
tively small, grows more pronounced with increasing �.
Since it is hard to distinguish it from noise, we performed fits
of �32� to �i� all of the time slices and �ii� to only the odd
numbered time slices for the propagators exhibiting this be-
havior. Ideally, a four-parameter fit is preferred to �ii�, but
these proved to be unstable.

The lines of best fit for both �i� and �ii� are included in
Fig. 13 for purposes of comparison, and the masses extracted
are included in Table V and Fig. 14.

It is worth discussing the origin of the sawtooth behavior.
The chiral symmetry preserved by the lattice model �4� and
�5� in the limit m→0 is the U�1� rotation

��x� � exp
i��x����x�, �̄�x� � exp
i��x���̄�x� ,

�33�

where the phase ��x���−1�x1+x2+x3 distinguishes between
even �e� and odd �o� sites. In the chiral limit the only non-
vanishing entries of the fermion propagator matrix are Moe

−1

and Meo
−1; for small but nonzero m it should still be the case

in the chirally symmetric phase that �Moe
−1�, �Meo

−1 � � �Mee
−1�,

�Moo
−1�. In the time-slice correlator Cf��x�� defined in �31� this

implies that the signal should be much larger if x� is odd.
Figure 13 shows that the sawtooth behavior of the curve is
not especially pronounced, and it is at present unclear to
what extent the phenomenon is connected with the restora-
tion of chiral symmetry.

Figure 14 shows that for ��5.00, mf� increases with �.
The behavior above �=5 depends on the type of fit—for fit
�ii� we see that the behavior shows a nonzero mass in the
region, which is more or less constant. Fit �i� also shows the
existence of a nonzero mass, but with more noise, possibly
since it does not account for the sawtooth behavior.

Regardless of the method chosen for the fitting of the
propagators, there is clearly a nonzero dynamically generated
fermion mass in the chirally restored phase. This is
unexpected—dynamical mass generation usually implies
��̄���0, and chiral symmetry restoration usually implies
massless fermions 
cf. Figs. 14 and 17 of Ref. 24, illustrating
light fermion propagation on a 163 lattice in the chirally sym-

FIG. 12. �Color online� Plots of the variance dF at �=1.00 for
groups A, B, and C. dF groups for B and C are identical to within
10−7.
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metric phase of the three-dimensional �3D� Thirring model�.
This seems to indicate that we are observing an unusual kind
of chiral symmetry restoration; we shall return to this issue
in due course.

2. Spatial propagators

We fit the spatial propagators to the following function:

Cf��x�� = A
e−mf�x� + �− 1�x�e−mf��L�−x��� , �34�

the change in sign compared to Eq. �32� being due to the use
of periodic boundary conditions for the fermion fields in spa-
tial directions, and antiperiodic boundary conditions, consis-
tent with the imaginary time formalism used in �1�, in the
temporal direction.

Figure 15 shows the absolute values of propagators in the
y direction for ��5.0. The propagators exhibit a more pro-
nounced form of the sawtooth behavior than Cf� �Cfx do not

TABLE V. Fermion masses mf� in the � direction on a 163

lattice, with m=0.03.

� m �2 /DOF Fit window

Fit 1.00 1.00�2� 1.753 2–14

all time slices 3.00 1.17�2� 1.696 1–15

4.00 1.33�7� 0.919 2–14

5.00 1.56�3� 0.827 1–15

6.00 1.5�2� 1.211 2–14

7.00 1.3�2� 1.031 2–14

10.00 1.7�5� 1.015 2–14

Fit only 6.00 1.58�9� 0.546 1–15

odd time slices 7.00 1.6�1� 1.228 1–15

10.00 1.8�2� 0.863 1–15

FIG. 13. �Color online� Comparison of all time-slice and odd time-slice fits on �a� a linear scale, and �b� logarithmic scales for � of 6.00,
7.00, and 10.00 in descending order. The error bars represent unbinned, raw, statistical errors.
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exhibit this behavior at all�. Unlike in the case of the pions in
Ref. 15, this is not due to the fermion becoming light, as one
can surmise from the slope of the curve.

As for the sawtoothed propagators in the � direction, we
performed fits only to odd y, as four-parameter fits proved
unstable. The resulting screening masses are shown in Tables
VI and VII. We can see that the fermions follow the same
general trend as � increases as the pions in Ref. 15—those in
the x direction grow heavier, and those in the y direction
grow lighter; anomalies in the data �e.g., at �=6.00� are
likely to be due to noise.

The geometrical mean mfxmfy increases from 1 to
�1.75�20� as we move into regions of large anisotropy,
which suggests that some small dynamical effect may come
into play over and above that of the anisotropies themselves
�Fig. 16�. This could correspond to a renormalization of the
parameter � in the Lee and Herbut model to a value other
than unity, as ���a����−1a�=�a.8

3. Renormalized anisotropy

The renormalized fermion anisotropy �Rf =mfx /mfy is dis-
played in Fig. 17. It is a measurement of the relevance of
��1 relative to the particle in question. We find that the
anisotropy parameter for fermions is irrelevant in the renor-
malization group sense, as expected from Refs. 8 and 9; that
is

Rf =
��Rf − 1�
�� − 1�

� 1. �35�

Indeed, if we fit the above function to the data for 1��
�7.00, we find Rf =0.41�4�, with a �2 /DOF of 1.67. This is
striking, as the anisotropy is quite clearly relevant in the
cases of pions,15 and scalars as shown in Sec. IV C. The
implication is that as � increases, the fermion-antifermion
bound states become increasingly 1+1-dimensional, only
able to propagate in the y-� plane 
in the original condensed-

matter-inspired model �3� f f̄ excitations associated with the
other “flavor,” i.e., node pair, would be confined to the x-�
plane�. The only excitations able to explore the whole
2+1-dimensional space are the elementary fermions. This
point will be further discussed below.

VI. DISCUSSION

Here we summarize the main results of our study, and
speculate as to the behavior of QED3 as the anisotropy � is
increased.

We applied a finite volume scaling analysis to data from
163, 203, and 243 systems in an attempt to determine the

TABLE VI. Fermion masses mfx in the x direction on a 163

lattice, with m=0.03.

� m �2 /DOF Fit window

1.00 0.97�1� 2.540 1–15

3.00 1.6�2� 1.839 2–14

4.00 2.1�1� 1.233 1–15

5.00 2.7�2� 0.579 1–15

6.00 2.6�2� 1.097 1–15

7.00 3.6�7� 0.800 1–15

10.00 5�2� 0.793 1–15

TABLE VII. Fermion masses mfy in the y direction on a 163

lattice, with m=0.03.

� m �2 /DOF Fit window

Fit 1.00 1.1�2� 0.887 4–12

all time slices 3.00 1.04�5� 0.951 3–13

4.00 0.9�1� 0.907 4–12

Fit only 5.00 0.82�1� 2.475 1–15

odd time slices 6.00 0.80�1� 1.794 1–15

7.00 0.80�1� 0.689 1–15

10.00 0.80�1� 0.405 1–15

FIG. 14. �Color online� The renormalized fermion mass, mf,
measured in the Landau gauge on a 163 lattice for m=0.03.

FIG. 15. �Color online� Plot of the fermion space-slice propaga-
tor, for 5.00���10.00 on a 163 lattice, along with the fitted
curves. Note how the sawtooth behavior becomes more prominent
as � increases, except on time slices between 6 and 10, where noise
dominates. The errors here are unbinned.
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order of the phase transition. There is no evidence for a
diverging susceptibility as the volume increases, and remark-
ably the value �c marking the apparent transition appears to
be very sensitive to system size; our fits assuming an isotro-
pic model of finite volume corrections yield �c=7.66�5�,
which once the possibility of anisotropic corrections is ad-
mitted drifts out to �c=12.3�6�. Since the latter value lies
outside our range of simulated parameters, it casts doubt on
our original claim15 that a true chiral symmetry restoring
transition is taking place. Rather, an interpretation of the
transition in terms of a crossover from strong to weak cou-
pling regimes seems admissible—very similar to the transi-
tion observed in simulations of isotropic QED3.5,17 As in
those studies, it appears to be a very difficult task to deter-
mine computationally whether chiral symmetry is actually
broken in the weak coupling regime, reflecting the fact that
QED3 may be a model with an abnormally large separation
between the scale of dynamical symmetry breaking � and
the natural mass scale g2. It should be stressed, however, that
the studies of the pion and scalar spectra in Sec. IV are
consistent with a chirally restored vacuum at large �.

What does seem clear is that any successful model of the
finite volume scaling must take anisotropy into account—
here our analysis assumed weak anisotropy, but models with
differing critical exponents in different directions cannot be
excluded. Unfortunately, the cure for these many uncertain-
ties is to accumulate data from many more values of L and
m, which is beyond our current resources.

However, it is intriguing to note that from Refs. 6 and 15,
we can estimate that at T=0 we enter the dSC phase �and
QED3 ceases to be a valid effective field theory of the cu-
prates� somewhere in the region 6���8. Even taking the
isotropic estimate �c=7.66�5� as the correct one, therefore, it
is uncertain whether the intermediate pseudogap phase be-
tween SDW and dSC can actually exist. This raises a matter
of some importance to future research: if � affects the be-
havior of the system �that is, if � is relevant, or if � is
irrelevant but Nfc is not universal�, does it do so enough to
make a difference in the condensed-matter systems for which
anisotropic QED3 is intended as an effective theory?

Our studies of the propagation of f f̄ bound states in the
scalar channel showed evidence for degeneracy between sca-
lar and pseudoscalar as � increases, although the propagator
data are markedly noisier in the scalar case. This is consis-
tent with chiral symmetry restoration, but bearing in mind
the cautious note of the preceding paragraphs, we should
note that a very soft symmetry breaking cannot be excluded.
Another important result is that the renormalized anisotropy
�R	��R�, implying that anisotropy is a relevant perturbation
for both sets of particles. More graphically, this means that
for large � f f̄ bound states are effectively constrained to
propagate in just the y direction, and their dynamics are es-
sentially 1+1 dimensional.

The most significant result has emerged in the fermion
sector, where we have found evidence that dynamical mass
generation persists even once the apparent restoration of chi-
ral symmetry has set in. Note that this result explains a rather
surprising result reported in Ref. 15; namely, the average
plaquette action 

2 ����
2 � increases with �, implying that

screening due to virtual f f̄ pairs in the quantum vacuum
actually decreases with �, in contradiction to what would be
expected if light fermion degrees of freedom were important
in the high-� regime. The sawtooth structure that develops as
� increases may also be a sign of chiral symmetry restora-
tion, although a study with m varying, beyond our current
resources, would be needed to confirm this hypothesis.

The fact that a nonzero dynamically generated fermion
mass accompanies the chirally restored phase suggests that
the symmetric phase is of an unusual kind. Witten41 has ex-
amined a similar situation in the Gross-Neveu model in 1
+1 dimensions; ��̄��=0 and a dynamically generated mass
may coexist if the following are the case:

�i� The physical fermion is a branch-cut, not a pole, in
momentum space, and lacks the same quantum numbers as
the bare, massless fermion field  �the former has zero
chirality—i.e., is chirally neutral—whereas the bare fermion
has a nonzero chirality�. It follows that chiral symmetry tells
us nothing about the value of the dynamically generated fer-
mion mass—the system behaves in a chirally symmetric
fashion in most respects apart from the existence of this
mass.

FIG. 16. �Color online� Fermion screening masses mfx, mfy, and
the geometric mean mfxmfy, versus �, on a 163 lattice. Lines do
not correspond to fits.

FIG. 17. �Color online� The renormalized �, �rf, together with a
fitted curve, on a 163 lattice.
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�ii� There exists a massless �pseudo�scalar boson, which
interacts strongly with the fermion and carries the chiral cur-
rent. Interactions between it and the  field �which is distinct
from the observed physical fermion� are chirality changing.
The interaction between  and the boson modifies the
chirally asymmetric portion of the fermion propagator, caus-
ing it to vanish.

It is important to note that the scalar field in this example
is not a Goldstone boson, which must be weakly interacting.
In the 1+1-dimensional Gross-Neveu model the formation of
Goldstone bosons is prohibited by the Coleman-Mermin-
Wagner theorem,42,43 which states the impossibility of spon-
taneously breaking a continuous global symmetry in 1+1
dimensions. A similar phenomenon has been observed in
simulations of the 2+1d Gross-Neveu model at nonzero T.44

While perhaps it is not clear how to define the effective
dimensionality of an anisotropic theory, we take from this
analogy the notion that infrared fluctuations remain impor-
tant in the chirally symmetric phase; in other words the in-
teraction between fermion and scalar degrees of freedom is
strong.

In support of this hypothesis applying in the current situ-
ation, we point out that the mass ratios mf :m� :m	 vary from
1:0.2:0.4 at �=1, consistent with broken chiral symmetry, to
1.8:0.9:0.9 at �=10, consistent with restored chiral symme-
try, but in which the scalar bound states are still tightly
bound and light compared with the fermion mass scale. This
should be contrasted with the “orthodox” chiral symmetry
restored scenario mf :m� :m	�0.5:1 :1 observed in the 3D
Thirring model and portrayed in Fig. 17 of Ref. 24.

It should be noted that the situation in which dynamical
mass generation without symmetry breaking is observed is
sometimes referred to as pseudogap behavior �we thank Kurt

Langfeld for bringing this to our attention�. We must caution
against confusing this with the pseudogap phase of the cu-
prate which we are modeling; while they share some behav-
ior in common �in both cases, we observe the phase disor-
dering of an order parameter�, they refer to different
phenomena—the former referring to a phase of the putative
effective theory, and the latter to that of the behavior of the
full description of the superconductor from which it is de-
rived.

Another important observation in the fermion sector is
that �Rf�� implying anisotropy is an irrelevant perturbation,
i.e., fermions remain 2+1d particles as � increases, although
scalar-mediated interactions among the fermions must be an-
isotropic. It will be a theoretical challenge to formulate an
effective description incorporating these features.

In many ways our study has raised more questions than it
has answered; its main results have not been predicted by
analytic treatments of the system performed so far. This may
raise questions regarding the conception of the pseudogap in
those models of HTc superconductivity—such as that of Ref.
1—which require the presence of massless fermions in the
chirally symmetric phase, since it appears that the expected
link between a nonvanishing chiral condensate and a dy-
namically generated fermion mass is broken. However, it is
too early to make definitive statements; the fermion propa-
gator should be measured in a number of gauges, so that we
can be certain as to how much �if any� of the observed be-
havior is an artefact of Landau gauge. Ultimately, more data
on how the dynamically generated fermion mass behaves as
the chiral, thermodynamic and continuum limits are ap-
proached will be needed. Anisotropic QED3 appears to be
every bit as computationally demanding and as fascinating as
its isotropic counterpart.
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