
Signatures of retroreflection and induced triplet electron-hole correlations
in ferromagnet–s-wave-superconductor structures

J. Linder1 and A. Sudbø1,2

1Department of Physics, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
2Center for Advanced Study, The Norwegian Academy of Science and Letters, N-0271 Oslo, Norway

�Received 22 December 2006; revised manuscript received 8 February 2007; published 12 April 2007�

We present a theoretical study of a ferromagnet–s-wave-superconductor junction to investigate the signa-
tures of induced triplet correlations in the system. We apply the extended Blonder-Tinkham-Klapwijk formal-
ism and allow for an arbitrary magnetization strength and direction of the ferromagnet, a spin-active barrier,
Fermi-vector mismatch, and different effective masses in the two systems. It is found that the phase associated
with the xy components of the magnetization in the ferromagnet couples with the superconducting phase and
induces spin triplet pairing correlations in the superconductor, if the tunneling barrier acts as a spin filter. This
feature leads to an induced spin-triplet pairing correlation in the ferromagnet, along with a spin-triplet electron-
hole coherence due to an interplay between the ferromagnetic and superconducting phases. As our main result,
we investigate the experimental signatures of retrorelection, manifested in the tunneling conductance of a
ferromagnet–s-wave-superconductor junction with a spin-active interface.
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I. INTRODUCTION

The proximity effect1 in a normal/superconductor �N/S�
junction refers to the induced superconducting �SC� correla-
tions between electrons and holes in the normal part of the
system. Even far away from the junction �typically distances
much larger than the superconducting coherence length ��
where the pairing potential is identically equal to zero, these
correlations may persist. Consequently, the proximity effect
is responsible for a plethora of interesting physical phenom-
ena, including the Josephson effect in S/N/S junctions,2 the
spin-valve effect in ferromagnet/superconductor �F/S�
layers,3 and the realization of so-called � junctions, which in
particular have received much attention both theoretically4

and experimentally5 during the past decades. The under-
standing of Andreev-reflection processes6 is crucial when
dealing with the proximity effect in N/S systems. Roughly
speaking, this phenomenon may be thought of as a coher-
ently propagating electron with energy less than the super-
conducting gap � incident from the N side of the barrier
being reflected as coherently propagating hole, while in the
process generating a propagating Cooper pair in the S. Such
processes are highly relevant in the context of transport prop-
erties of N/S heterostructures in the low-energy regime and
have proven to be an effective tool in probing the pairing
symmetry of unconventional SCs �see Ref. 7 and references
therein�.

In recent years, the fabrication of ferromagnet-
superconductor heterostructures has been subject to substan-
tial advances due to the development of techniques in mate-
rial growth and high quality interfaces.8,9 With an increasing
number of recently discovered unconventional superconduct-
ors with exotic pairing symmetries,10–12 there exists an ur-
gent need to refine the traditional methods, such as tunneling
spectroscopy, in order to correctly identify the experimental
signatures which reveal the nature of the pairing potential for
such superconductors. For one thing, this amounts to taking
into account effects which are known to be present in tun-

neling junction experiments and that may significantly influ-
ence the conductance spectra, such as local spin-flip pro-
cesses and the nonideality of the interface.13 Also, with the
aim of producing theoretical tools that may serve as a guide
for identifying the superconducting pairing symmetry,
possible spin-filter effects of interface in ferromagnet-
superconductor heterostructures warrant attention.14

Studies of quantum transport in F/S junctions have a long
tradition for both conventional and unconventional pairing
symmetries in the superconductor.15–17,19 Currently, such sys-
tems have become the subject of much investigation, not
only due to their interesting properties from a fundamental
physics point of view, but also because such heterostructures
may hold great potential for applications in nanotechnologi-
cal devices. An important characteristic of most F/S junc-
tions is that, unlike N/S junctions, retroreflection is absent
for the hole in the F part of the system. This means that the
reflected hole, which carries opposite spin of the original
electron, does not retrace the trajectory of the incoming elec-
tron. The absence of retroreflection is due to the presence of
an exchange interaction. Previous studies of such systems
have primarily focused on a magnetization lying in the plane
of the F/S junction, where in most cases the barrier contains
a pure nonmagnetic scattering potential.15–17 Kashiwaya
et al.19 included the effect of a magnetic scattering potential
in this type of junction—i.e., spin-active barriers—and very
recently, it was suggested by Kastening et al.20 that the pres-
ence of both intrinsic and spin-active scattering potentials in
the barrier of a S/S junction may lead to qualitatively new
effects for the Josephson current. So far, the influence of the
F phase associated with the planar magnetization perpen-
dicular to the interface has been largely unexplored, although
Ref. 20 considers the one-dimensional �1D� case of this situ-
ation.

It is therefore the purpose of this paper to investigate two
interesting features that arise in a F/S junction in the pres-
ence of planar magnetization components: �i� the interplay
between the planar magnetization and the presence of a spin-
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active barrier may restore retroreflection for a given param-
eter range, and �ii� the resulting induced electron-hole pair
correlations exhibit a coupling between � and the S phase �.
Since our findings suggest that the traditional picture of ab-
sent retroreflection does not hold for planar magnetization
with respect to the junction in the presence of a spin-active
barrier, we argue that these results are of major importance in
the study of F/S junctions. The presence of retroreflection in
a F/S junction thus influences the spin-charge dynamics in a
significant way, giving rise to new possibilites of quantum
transport involving charge and spin flow in such a hetero-
structure. Elucidating the consequences of this is of funda-
mental importance. It is also of considerable importance in
device fabrication, since our results imply that the spin-
active properties of a tunneling barrier play a crucial role.

This paper is organized as follows. In Sec. II, we define
the model we study and set up definitions of the scattering
amplitudes to be considered. In Sec. III we investigate what
conditions are necessary for retroreflection to occur. In Sec.
IV, we give our results for the conductance. In Sec. IV A, we
consider the influence of Fermi-vector mismatch on the con-
ductance spectrum G�E�, in Sec. IV B we consider the effect
of exchange energy on G�E�, in Sec. IV C we consider the
effect of differing effective masses across the tunneling junc-
tion on G�E�, and in Sec. IV D we consider the effect on
G�E� of varying the relative strength of magnetic and non-
magnetic scattering potentials in the contact region between
F and S. In Sec. V we provide a discussion of results, includ-
ing a comparison of our results to earlier ones on similar
problems. We highlight what our new findings are compared
to earlier results. Finally, Sec. VI summarizes our results.

II. MODEL AND FORMULATION

We define our model as follows. Consider a 2D F/S junc-
tion as illustrated in Fig. 1. As is seen from the figure, � is
the angle of incidence for electrons with spin 	 that feel a
barrier strength V	�x�= �V0−	Vs�
�x�, where V0 and Vs are
the nonmagnetic and magnetic scattering potentials, respec-
tively; i.e., the barrier is spin active.19 Physically, this means

that the barrier acts as a spin filter. Furthermore, �A is the
angle of reflection for particles with spin −	. The
Bogoliubov–de Gennes �BdG� equations that describe the
quasiparticle states ��x ,y� with energy eigenvalues E in the
two subsystems are given by

�Ĥ0�x,y� �̂�x�

− �̂†�x� − Ĥ0
T�x,y�

���x,y� = E��x,y� , �1�

where we have defined the single-particle Hamiltonian

Ĥ0�x,y� = − �xy
2 /�2mF��− x� + 2mS��x�� − �̂ · M��− x�

+ diag„V↑�x�,V↓�x�… , �2�

while �̂�x�=i	y
ˆ ��x�. We allow for different effective masses

in the two systems, given by mF and mS. The magnetic ex-
change energy splitting is denoted

M = �Mxy
2 + Mz

2�1/2, �3�

where Mxy
2 =Mx

2+My
2 is the planar contribution of the mag-

netic exchange energy, while 2Mz is the energy splitting be-
tween spin-↑ and spin-↓ bands. The quasiparticle wave vec-
tors are then given by

k	 = �2mF�EF + 	M� ,

q = �2mSES, �4�

in the F part and S part of the system, respectively, where Ei
is the Fermi energy. We have made use of the standard ap-
proximation Ei��. Moreover, we take the S order param-
eter to be constant up to the junction such that ��� ,x�
=�ei���x�. Solving the BdG equations, the wave functions
 on the F side and � on the S side become

�x,y� = eikyy�	
s↑a

s↑be−i�

0

0

eik↑ cos �x +	

− s↓bei�

s↓a

0

0

eik↓ cos �x

+ re
↑	

a

be−i�

0

0

e−ik↑Sx + re

↓	
− bei�

a

0

0

e−ik↓S̃x

+ rh
↑	

0

0

a

bei�

eik↑Sx + rh

↓	
0

0

− bei�

a

eik↓S̃x� ,

FIG. 1. �Color online� Schematic overview of the relevant scat-
tering processes that take place at the F/S interface. We take into
account the possibility of retroreflected holes with equal spin as the
incoming electron. This is due to the presence of spin-flip processes
manifested in the form of planar magnetization and a spin-active
barrier.
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��x,y� = eikyy�te
↑	

u

0

0

ve−i�

eiq cos �sx + te

↓	
0

u

− ve−i�

0

eiq cos �sx

+ th
↑	

0

− vei�

u

0

e−iq cos �sx + th

↓	
vei�

0

0

u

e−iq cos �sx� .

�5�

The elements entering in the wave functions above describ-
ing the quasiparticles read

a =
1

�1 + �Mxy/�M + Mz��2
, b =

aMxy

M + Mz
, �6�

for the F part, while the superconducting coherence factors
read

u =�1

2
+

�E2 − �2

2E
,

v =�1

2
−

�E2 − �2

2E
. �7�

We denote the F phase by � and S phase by �. Note that
tan �=−My /Mx, such that the physical interpretation of the F
phase is directly related to the direction of the magnetization
in the xy plane characterized by the azimuthal angle. An
incoming electron with spin ↑ is described by �s↑=1,s↓=0
while a spin-↓ electron is given by �s↑=0,s↓=1. For conve-

nience, we also introduce S=s↑ cos �+s↓ cos �A and S̃
=s↑ cos �A+s↓ cos �. The boundary conditions for these
wave functions read

F�0,y� = �S�0,y� ,

�S��x,y��x=0

2mS
−

F��x,y��x=0

2mF
= V0 − Vs� , �8�

where �= �1,−1,1 ,−1�T and a prime denotes derivation with
respect to x. Translational invariance along the ŷ direction
implies conservation of the momentum ky. This allows us to
determine �s and �A as follows:

�s↑k
↑ + s↓k

↓�sin � = q sin �s,

�s↑k
↑ + s↓k

↓�sin � = �s↑k
↓ + s↓k

↑�sin �A. �9�

III. PRESENCE OF RETROREFLECTION

Several cases may now be studied, such as different ef-
fective masses in the F and S parts, Fermi-vector mismatch,
and the presence of a spin-active barrier. Solving Eq. �8� for
the wave functions in Eqs. �5�, one is able to obtain explicit
expressions for the reflection coefficients of the scattering

problem. This amounts to solving for 16 unknown coeffi-
cients, and their derivation may be found in the Appendix .
While the expressions for their amplitudes are quite cumber-
some, their phase dependences are simple and illustrate the
new physics. In Table I, we provide this phase dependence
for the cases of incoming ↑ and ↓ electrons.36 It is seen that
a coupling between � and � is present in the phase of the
hole with the same spin 	 as the incident electron. Ordi-
narily, retroreflection is absent in the Andreev-scattering pro-
cess at the F/S junction such that the reflected hole and the
incident electron carry opposite spins. However, it is clear
from Table I that were a hole with spin 	 to be generated in
the scattering process, it would carry information about both
the F and S phases. We interpret this as induced spin-triplet
pairing correlations in the S part of the system, along with
an electron-hole correlation in the ferromagnet.

Although the phase dependence of the reflection coeffi-
cients displayed in Table I is intriguing, it remains to be
demonstrated that the amplitudes of these coefficients are
nonzero. To illustrate that this is so, consider Fig. 2 where we
have plotted the probability coefficients �that differ from the
reflection coefficients by a prefactor; see Eq. �19�� for normal
incidence �=0; their derivation may be found in the Appen-
dix. In �a�, we have no exchange energy and a purely non-
magnetic interfacial resistance, from which the result of Ref.
22 is reproduced. In �b�, we have allowed for an exchange
energy Mz=0.5EF, which results in a reduction of the
Andreev-reflection amplitude. This is a consequence of the
reduced carrier density of the spin-↓ band due to the pres-
ence of a magnetic exchange energy. In the extreme limit of
a completely spin-polarized ferromagnet, Mz=EF, the subgap
conductance is completely absent since there are no charge
carriers in the spin-↓ band at the Fermi level. In �c�, we also
incorporated the effect of a magnetic scattering potential in
the interfacial resistance, which is seen to slightly reduce the
probability of the Andreev reflection at E=�. The novel fea-
tures of the F/S junction are now presented in �d�. When we
allow for both a magnetic scattering potential and local spin-
flip processes in the form of a planar component of the mag-
netization, it seen that retroreflection is established. In other
words, a new transport channel is opened up for both spin
and charge—namely, reflected holelike excitations with the
same spin as the incoming electron. Note that the inclusion
of this process is absent in most of the literature treating F/S
junctions so far.15,18,19

To investigate how large the magnitude of the retroreflec-
tion coefficient may become, possibly even outgrowing the
probability for “normal” Andreev reflection, we plotted the
case of zero net polarization for several values of Mxy in Fig.
3. It is seen that as Mxy increases, the probability for retrore-

TABLE I. Phase dependence of reflection coefficients. Here, “1”
means that the quantity is real. An interplay between � and � occurs
when retroreflection is present.

Refl. coeff. rh
↑ rh

↓ re
↑ re

↓

Inc. spin ↑ e−i��+�� e−i� 1 e−i�

Inc. spin ↓ e−i� ei��−�� ei� 1
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flection grows and eventually becomes much larger than the
probability for ordinary Andreev reflection. Thus, for a tun-
neling junction with a barrier that discriminates significantly
between spin-↑ and spin-↓ electrons, the presence of spin-flip
processes may induce a substantial modification to the tradi-
tional picture of broken retroreflection.

Having established the presence of retroreflection, the
next step is the consideration of how retroreflection leaves its
signatures in experimentally measurable quantities. In this
paper, we investigate how the presence of retroreflection may
leave an experimental signature manifested in the conduc-
tance spectrum of a F/S junction. Although this shall be our
focus, we note in passing that the reflection coefficients de-

rived in the Appendix may also be used for the purpose of
obtaining the current-voltage characteristics, spin-current,
and spin conductance of the F/S junction. Normally, the
charge and spin current may be written as

jcharge = − e�
	

j	, jspin = �
	

	j	, �10�

where j	 is the particle current of electrons with spin 	 over
the interface. However, in the presence of spin-flip scatter-
ing, defining a proper spin current requires a more careful
analysis.21 One can always write down a well-defined spin
current in terms of physical spin transport across the junc-
tion, but it may be very hard to experimentally distinguish
whether the spin accumulation on either side of the interface
should be attributed to physical spin transport or local spin-
flip processes. The latter are present in, e.g., systems with
significant spin-orbit coupling or an in-plane magnetic field
with respect to the quantization axis, which results in scat-
tering between the two spin bands. Accordingly, in this paper
we will concern ourselves with the charge current and the
resulting conductance spectrum.

IV. RESULTS

In our theory, we have included the possibility of having a
spin-active barrier, Fermi-vector mismatch, arbitrary strength
of the exchange energy on the F side, and different effective
masses in the two systems. Thus, we believe our model
should be able to capture many essential and realistic fea-
tures of a F/S junction that pertain to both interfacial prop-
erties, as well as bulk effects on the F and S sides, respec-
tively. Since the case of easy-axis magnetization has been
thoroughly investigated, we shall be mainly concerned with
the presence of retroreflection, which requires both spin-flip
processes and a barrier acting as a spin filter.

The single-particle tunneling conductance may be calcu-
lated by using the Blonder-Tinkham-Klapwijk �BTK�
formalism22 and reads

G�E� = �
	

G	�E� ,

G	�E� = �
−�/2

�/2

d� cos �P	G	�E,�� ,

G	�E,�� = GN
−1�1 + Rh

↑�E,�� + Rh
↓�E,�� − Re

↑�E,�� − Re
↓�E,��� ,

GN = �
−�/2

�/2

d� cos �
4 cos2�

4 cos2� + Z2 , �11�

where Z=2mFV /kF and GN is the tunneling conductance for
a N/N junction. Note that the right-hand side �rhs� of the
equation for G	�E ,�� appears to be independent of 	. How-
ever, it is implicitly understood in this notation that the re-
flection coefficients appearing on the rhs have been solved
for an incoming electron with spin 	, and these differ in the
cases 	=↑ and 	=↓ since the wave function is different �see
Eq. �5��. The different probabilities for having spin injection

FIG. 2. �Color online� Plot of the probability coefficients asso-
ciated with the scattering processes at the interface. For an electron
with incoming spin 	, the green �dash-dotted� line corresponds to
normal reflection with spin 	, the magenta �dashed� line corre-
sponds to Andreev-reflection of a hole with spin −	, and the blue
�solid� line designates reflection without branch crossing with spin
−	, while the presence of retroreflection—i.e., Andreev reflection
of a hole with spin 	—is indicated by the red �dotted� line. Note
from �d� that in order to get retroreflection, both an in-plane mag-
netization and a spin-active barrier are required.

FIG. 3. �Color online� Plot of probability coefficients for Z=1
and RV=0.95 in the absence of any net polarization for several
values of Mxy. It is seen that for increasing Mxy—i.e., larger effect
of spin-flip scattering—the retroreflection process dominates the
“normal” Andreev reflection.
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	 in the presence of a net polarization is accounted for by the
factor P	= �1+	MZ /EF� /2. The quantities �Rh

	 ,Re
	 are the

probability coefficients for normal and Andreev reflection
and will be derived below. Note that these are not in general
equal to the square amplitude of the scattering coefficients
and, in particular, not so in this case. To see this, consider a
current density of probability Jinc that is incident on the bar-
rier,

Jinc =
1

2mFi
�*� − �*� , �12�

obeying the conservation law

�P

�t
+ � · Jinc = 0. �13�

Here, P= ��2. Consulting Eq. �5� and extracting the part of 
that corresponds to the incident wave function, one readily
obtains

Jinc =
cos �

mF
�s↑k

↑ + s↓k
↓�x̂ . �14�

Since probability must be conserved, we have

Jinc = − Jrefl + Jtrans, �15�

where the reflected probability current density reads

Jrefl =
1

2mFi
��e

*�e − H . c . � − �h
*�h − H . c . �� ,

e = re
↑� a

be−i� �e−ik↑Sx + re
↓�− bei�

a
�e−ik↓S̃x,

h = rh
↑� a

bei� �eik↑Sx + rh
↓�− be−i�

a
�eik↓S̃x. �16�

The opposite signs of the electron and hole parts of  enter-
ing Jrefl pertain to the fact that their energy eigenvalues have
opposite signs, as one may infer from the BdG equations that
are used to derive the explicit expression for Jrefl from Eq.
�15�. One finds that

Jrefl = −
1

mF
�k↑S�re

↑�2 + k↑S�rh
↑�2 + k↓S̃�re

↓�2 + k↓S̃�rh
↓�2�x̂ .

�17�

The same procedure may now be applied to Jtrans, such that
Eq. �15� can be written as

1 = �
	

�Re
	 + Rh

	 + Te
	 + Th

	� �18�

upon division with �Jinc�. From this, one infers that

Re
↑ = �re

↑�2
k↑S

s↑k
↑ cos � + s↓k

↓ cos �
,

Re
↓ = �re

↓�2
k↓S̃

s↑k
↑ cos � + s↓k

↓ cos �
,

Rh
↑ = �rh

↑�2
k↑S

s↑k
↑ cos � + s↓k

↓ cos �
,

Rh
↓ = �rh

↓�2
k↓S̃

s↑k
↑ cos � + s↓k

↓ cos �
. �19�

The coefficients �Re
	 ,Rh

	 ,Te
	 ,Th

	 have the status of probabil-
ity coefficients for their respective processes and obey the
conservation law, Eq. �18�. Note that in the absence of ex-
change splitting—i.e., F→ N and �A=�—one obtains Ri

	

= �ri
	�2.

A. Effect of Fermi-vector mismatch

To account for the Fermi-vector mismatch, we introduce a
parameter RE=ES /EF. This allows the Fermi energies in the
F and S regions to be different, which effectively models
unequal carrier densities and bandwidths on each side of the
junction. For ferromagnet/high-Tc-superconductor junctions,
an appropriate choice appears to be18 RE�1. In our study,
however, we will consider values of RE both less than and
greater than unity. To begin with, we fix the strength of the
planar contribution to the exchange energy at Mxy =0.1EF
and set Mz=0, plotting the conductance spectrum for several
values of RE. We fix the ratio RV=Vs /V0=0.5, such that the
conditions for retroreflection are fulfilled. For each figure,
we consider zero �Z=0�, weak �Z=1�, and large �Z=10� in-
terfacial resistance; Z=0 corresponds to the point contact
�also called metallic contact in some of the literature� while
Z→� is equivalent to the tunneling limit. The conductance
spectrum for weak spin-flip scattering �Mxy =0.1EF� and Mz

=0 with RV=0.5 for several values of Z is depicted in Fig. 4.
From Fig. 4, we infer that the conductance behaves in a
monotonic way upon variation of RE and that the conduc-
tance is suppressed with decreasing RE.

Next, we increase the exchange energy to Mxy =0.5EF and
set RV=0.95 such that spin-flip processes become more
dominant and the barrier discriminates strongly between
spin-↑ and spin-↓ electrons. The resulting G�E� is illustrated
in Fig. 5, where it is seen that a nonmonotonic behavior
appears. Specifically, the peak at E=� vanishes for RE�1,
as is most clearly seen for the case of large interfacial resis-
tance.

One of the results of Refs. 17 and 18 was that the effect of
Fermi-vector mismatch yielded an increased subgap conduc-
tance when there was a net spin polarization. As an important
consequence, this finding suggested that the interfacial bar-
rier parameter Z was not sufficient to account for the con-
ductance features in the presence of both spin polarization
and Fermi-vector mismatch, since the increase of subgap
conductance could not be reproduced by varying Z alone. In
Figs. 4 and 5, no such increase in subgap conductance was
found, but these correspond to an unpolarized case since
Mz=0. In order to investigate how the spin-flip scattering
and spin-active barrier affects this particular feature of the
Fermi-vector mismatch, we plot the normal incidence �=0
conductance G�E ,�=0� for the same parameters as Fig. 1 in
Refs. 17 and 18 for the sake of direct comparison. Note that
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due to a different scaling of the conductance to make it di-
mensionless, the quantitative results for G�E ,�=0� are not
the same as the result in Refs. 17 and 18, although the quali-
tative aspect is identical. This is because we scale the con-
ductance on GN given by Eq. �11�. For Z=0, this merely
amounts to a factor of 2. In the upper panel of Fig. 6, we
reproduce Fig. 1�b� of Ref. 18 to illustrate our consistency
with their results. Note that the parameter L0

2 in Ref. 18 is
equivalent to our RE when Rm=1; i.e., the effective masses
are the same. The middle panel now includes spin-flip scat-
tering with Mxy =0.4EF, while Z=0. The lower panel shows
the combined effect of planar magnetization and a spin-
active barrier, resulting in triplet correlations, with Mxy
=0.4EF and �Z=1,RV=0.95. It is seen that the qualitative
change is most dramatic when the conditions for retroreflec-
tion are fulfilled.

B. Effect of exchange energy

We now proceed to consider how the strength of the ex-
change energy, both planar �Mxy� and easy axis �Mz�, affects
the conductance spectrum. We set the masses and Fermi en-
ergies to be equal in the F and S parts of the system and
study how the angularly averaged G�E� is affected by in-
creasing MZ for a given Mxy. Let us first set Mxy =0.1EF and
RV=0.5, as shown in Fig. 7. In accordance with our previous
observation that Andreev reflection is inhibited by a net po-
larization in the F part of the system, it is seen that the

conductance is suppressed with increasing Mz. However, in
the lower panel of Fig. 7 where the tunneling limit of the
junction is considered, the conductance increases with Mz for
E��.

Increasing the strength of the spin-flip scattering and also
the spin dependence of the barrier, the resulting conductance
spectra are shown in Fig. 8 with Mxy =0.5EF and RV=0.95.
The general effect of optimizing the conditions for the pres-
ence of retroreflection processes seems to be a “smoothing
out” of the conductance: the sharp features at E=� become
blunt, an observation which is most clearly revealed in the
tunneling limit. As an experimental consequence, the nature
of the features at E=� in the case of a high-resistance inter-
face could thus offer information concerning to what degree
retroreflection is present in the system.

C. Effect of different effective masses

To investigate the effect of different effective masses in
the F and S parts of the system, we consider three ratios:
Rm=mS /mF� �0.01,0.1,1. In Fig. 9, we have plotted the
case of weak spin-flip scattering and a moderate spin depen-
dence of the barrier, while in Fig. 10 we investigate signifi-
cant spin-flip scattering and a strongly spin-dependent inter-
facial resistance. In the first case, decreasing Rm clearly
inhibits the tunneling conductance with no exotic features
present except the usual peak at E=�. In the tunneling limit,

FIG. 4. �Color online� Conductance spectrum for weak spin-flip
scattering �Mxy =0.1EF� and Mz=0 with RV=0.5 for several values
of Z.

FIG. 5. �Color online� Conductance spectrum for strong spin-
flip scattering �Mxy =0.5EF� and Mz=0 with a strongly spin-
dependent barrier �RV=0.95� for several values of Z.
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it is interesting to observe that only in the case Rm=1 is the
maximum of the conductance located at E=�. Upon decreas-
ing Rm, one sees that the characteristic peak of the spectrum
is translated to lower energies and that it becomes less sharp.
There is still a sudden increase of current at E=�, mani-
fested as a jump in the conductance spectrum, but it is less
protruding for lower ratios of Rm than unity.

When the conditions for retroreflection become more pro-
nounced, as is the case in Fig. 10, one may again observe the
general modification of the conductance to a more feature-
less curve in the case of no barrier and a weak barrier �Z
=1�, as was the case in the previous subsection. In the tun-
neling limit, the presence of retroreflection also modifies the
spectra such that the sharp peak is lost at the gap energy,
although the sudden jump due to the initiated flow of current
at E=� is still there.

D. Effect of magnetic and nonmagnetic scattering potentials

In this section, we show that the conductance spectrum
may reveal clear-cut signatures of the presence of retroreflec-
tion as a result of the interplay between V0 and Vs when
Mxy �0. We keep the latter fixed at Mxy =0.5EF and plot

G�E� for Z� �0.1,1 ,5 while varying the strength of the
magnetic scattering potential. From Fig. 11, we see that at
Z=0.1, the presence of retroreflection is very weak and the
conductance spectrum remains virtually unaltered as Vs is
varied. At Z=1, the effect of increasing the strength of the
magnetic potential of the barrier, acting as a spin filter, cor-

FIG. 6. �Color online� Conductance spectrum for zero spin-flip
scattering and purely nonmagnetic scattering potential �upper
panel�, spin-flip scattering and purely nonmagnetic scattering poten-
tial �middle panel�, and spin-flip scattering and mixed magnetic and
nonmagnetic scattering potential �lower panel�. For all panels,
Mz /EF=0.866 for comparison with Ref. 18. The lines are given at
E=1.4 for the upper panel as follows �from top to bottom�: RE

= �1,1 /�2,1 /2 ,1 /4 ,1 /9 ,1 /16.

FIG. 7. �Color online� Conductance spectra for various nonmag-
netic scattering potentials upon varying the polarization of the fer-
romagnet with Mxy =0.1EF and RV=0.5.

FIG. 8. �Color online� Conductance spectra for various nonmag-
netic scattering potentials upon varying the polarization of the fer-
romagnet with Mxy =0.5EF and RV=0.95.
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responds to a reduction of the conductance peak at E=�.
This is in agreement with our previous observations that the
presence of retroreflection appears to have a smoothing ef-
fect on the conductance spectrum, causing it to soften its
characteristic features. At Z=5, the crossover from a sharp
peak at E=� at small RV to a “waterfall” shape for large RV
is clearly illustrated. We suggest that this signature could be
used as a feature that unveils the presence of retroreflected
holes in the system and thus indicates triplet correlations due

tothe interplay between spin-flip processes and a barrier act-
ing as a spin filter.

To investigate how a net polarization will affect the con-
ductance spectra in this case, consider Fig. 12 which illus-
trates the conductance for the same parameters as in Fig. 11
except that now Mz=0.5EF. In agreement with previous re-
marks, the conductance suffers a general reduction due to the

FIG. 9. �Color online� Conductance spectra for different effec-
tive masses with parameters Mxy =0.1EF and RV=0.5.

FIG. 10. �Color online� Conductance spectra for different effec-
tive masses with parameters Mxy =0.5EF and RV=0.95.

FIG. 11. �Color online� Conductance spectra in the presence of
retroreflection but in the absence of any net polarization. Here,
Mxy =0.5EF while MZ=0.

FIG. 12. �Color online� Conductance spectra in the presence of
retroreflection and a net polarization. Here, Mxy =0.5EF while MZ

=0.5EF.
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net polarization in the upper and lower panels. Apart from
this, the same features as in Fig. 11 are present, with retrore-
flection leaving its fingerprint most obviously in the behavior
of the conductance at E=� in the tunneling limit.

V. DISCUSSION

We have shown that the presence of a spin-active barrier
combined with a planar component of the magnetization in
the F induces new features in the proximity effect in a F/S
junction. Physically, this may be understood by realizing that
only an Sz=0 triplet component is induced for a spin-active
barrier in the absence of spin-flip processes near the junction,
while the equal-spin �Sz= ±1� triplet components are gener-
ated only if a spin-flip potential is also present. On the other
hand, spin-flip processes alone in the absence of a spin-active
barrier would inhibit singlet pairing without generating any
triplet components. An interesting opportunity that arises due
to the restoration of retroreflection is the fact that one may
generate currents with a varying degree of spin polarization
in the F part. In the conventional case, an incident electron
with spin 	 is reflected as either an electron with spin 	 or
hole with spin −	 in these systems. In the present case, how-
ever, the reflected electrons and holes may carry either ↑ and
↓ spin, depending on parameters such as the magnitude of
the exchange energy and the intrinsic and spin-dependent
barrier strength. In principle, it could be possible to generate
pure spin currents without charge currents and vice versa, as
a result of the additional allowed spin state of the reflected
holes and electrons. It is also intriguing to observe that due
to the coupling between � and �, it may be possible to obtain
a Josephson current in a S/F/S hybrid structure that is sensi-
tive to a rotation of the magnetization in the ferromagnetic
part, which has been recently discussed in Refs. 24 and 25.

It was shown in Ref. 26 that if a local inhomogeneity of
the magnetization in the vicinity of a F/S interface was
present, a spin-triplet component of the S order parameter
will be generated and penetrate into the F much deeper than
the spin-singlet component. In a S/half-metal/S junction, it
has been found that S triplet correlations would be induced
on both sides of the junctions in the presence of spin mixing
and spin-flip scattering at the interfaces27 �see also Ref. 28�.
We have found that spin-triplet pairing correlations may be
induced in the presence of a spin-active barrier—i.e., intrin-
sic spin-mixing at the interface—and a planar magnetization
relative to the quantization axis. It seems reasonable to sug-
gest that these findings are closely related to the conditions
put forward by Ref. 27, since planar magnetization compo-
nents may effectively act as a spin-flip scattering potential.
Our results are thus consistent with the findings of recent
studies, although we have adressed several new aspects of
the scattering problem in the present paper. In particular, we
have found an interplay between the in-plane magnetization
direction and superconducting phase. Moreover, we compute
detailed conductance spectra of the F/S junction under many
different conditions.

One of the important findings of Refs. 17 and 18 was that
a zero-bias conductance peak �ZBCP� would develop under
the right conditions in the F/S junction, and the effect was

attributed to the influence of Fermi-vector mismatch. Usu-
ally, the appearance of a ZBCP is associated with unconven-
tional superconductivity where it may appear due to the dif-
ferent phases felt by the transmitted electronlike and holelike
quasiparticles in the superconductor.23 However, Zutic and
Valls17,18 showed that no unconventional superconductivity
was required to obtain a ZBCP and that the effect of Fermi-
vector mismatch in a F/S junction thus offered a different
mechanism for the formation of a ZBCP than the usual one,
attributed to a k-dependent gap. However, it should be noted
that the ZBCP obtained in Refs. 17 and 18 is not as sharp
�
-function like� as the ZBCP depicted in, e.g., Ref. 23,
where unconventional superconductors �high-Tc d wave, to
be specific� were considered.

In the present paper, we consider a more general situation
than Zutic and Valls, allowing for a completely arbitrary
magnetization direction and a spin-active barrier. As we have
shown, this changes the physical picture dramatically and
opens up a new transport channel for both charge and spin—
namely, retroreflected holes. For consistency, we show that
we are able to completely reproduce Fig. 3 of Ref. 18, where
the conductance for normal incidence �=0 is presented �our
Fig. 13�.

In contrast to Zutic and Valls,18 due to the unwieldy ex-
pressions for the reflection coefficients �see the Appendix A�,
we are not able to give analytically the condition that yields
the largest value of the conductance at zero bias �cf. their Eq.
�3.4��. It is thus not straightforward to identify the proper
parameter regime that would yield the maximum value of
G�0�. We therefore leave the question concerning how spin-
flip scattering and a spin-active barrier affect the formation
of a ZBCP in a F/S junction as open.

Scattering on the barrier leads to a suppression of the S
order parameter close �of the order of the coherence length,

FIG. 13. �Color online� In the limit Mxy→0, the formation of a
ZBCP is observed with decreasing RE. This illustrates how the ef-
fect of Fermi-vector mismatch may “mimick” the usual signature of
unconventional superconductivity—namely, the appearance of a
ZBCP for certain crystal orientations. This was first discussed in
Ref. 18, see their Fig. 3. From top to bottom, the curves correspond
to the following pairs of �RE ,Mz /EF�: �1,0�, � 1

�2
, 1

�2
�, � 1

2 ,0.866�,
� 1

4 ,0.968�, � 1
9 ,0.994�, and � 1

16 ,0.998�.
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O���� to the junction. For a weakly polarized ferromagnet,
we expect that inclusion of a spatial variation of the order
parameter does not change our results qualitatively, since it is
well known that the approximation of a constant order pa-
rameter up to the junction is excellent in a N/s-wave super-
conductor junction �see, e.g., Ref. 29�. For a strongly polar-
ized ferromagnet, the superconducting singlet order
parameter may, however, be suppressed significantly in the
vicinity of the gap.27 For unconventional pairing symmetries
�d-wave�, it was shown in Ref. 30 that the effect of taking
into account the suppression of the order parameter in the
presence of Andreev bound surface states remains almost
unchanged around zero bias voltage, although a broadening
of the ZBCP is observed. Since no zero-energy surface states
are present for a pure s-wave singlet component of the su-
perconducting order parameter, we believe that our approxi-
mation of a step function � should be justified.

It is worth noting that a F/S junction as considered here
with a spin-active barrier is in some respects similar to pre-
viously studied F/F/S junctions31 if the magnetization direc-
tions of the two F layers are noncollinear. While Ref. 31
considers the conductance spectrum in the case of collinear
magnetization directions of the F layers, a previous study32

has developed a quite general framework for dealing with
F/S junctions by introducing a phenomenological spin-
mixing angle which describes a spin-active interface. In Ref.
32, the conductance is explicitly calculated for a half-
metallic ferromagnet/s-wave superconductor junction. In the
present paper, we have developed a similar framework for
treating F/S junctions with a spin-active interface, but using
a different formalism. Our theory allows for describing a
very wide range of physical phenomena, such as arbitrary
magnetization strength and direction of the ferromagnet, a
spin-active barrier, Fermi-vector mismatch, and different ef-
fective masses in the two systems. We have explicitly com-
puted the conductance spectra for the metallic case with non-
collinear magnetizations between the F part and the spin-
active barrier in a F/S system. Hence, our work expands on
the results of Refs. 31 and 32, and we reproduce their results
in the appropriate limits.

The similarity of our model with F/F/S junction with non-
collinear magnetizations may be understood by realizing that
using a spin basis that diagonalizes the scattering matrix of
one ferromagnet will cause the magnetization in the other
ferromagnet to effectively look like a spin-flip term and vice
versa. Although this analogy could be of some use for com-
paring the present system under consideration with F/F/S
junctions, it should not be taken too far since in our case we
are dealing with an insulating, very thin barrier with both
magnetic and nonmagnetic scattering potentials as opposed
to a conducting ferromagnetic layer.

Another issue that deserves mentioning is that the mag-
netic field due to the magnetization of the F will penetrate
into the thin-film structure of the S along the plane. An in-
plane magnetic field may actually coexist uniformly33 with
s-wave S in a thin film �in contrast to the bulk case34,35�, and
effects such as orbital pair breaking or formation of vortices
will be prohibited as long as the thickness t of the film is less
than both � and �0. It is also reasonable to neglect any ex-
change interactions in the S since the induced field due to the

magnetization is much smaller �of order O�10−3�� than the
exchange field in the F and can thus be safely neglected.1

Moreover, we stress that the clean limit has been considered
in the present paper, which hopefully provides an initial idea
of the physics that can be expected when the effect of disor-
der is included in the system, although this requires a sepa-
rate analysis.

VI. SUMMARY

In this paper, we have presented a detailed investigation
of the conductance spectra of a F/S junction, expanding pre-
vious work substantially by allowing for a completely arbi-
trary direction of magnetization, which effectively accounts
for spin-flip scattering due to a planar component of the
magnetization and a spin-active barrier. Our procedures
amount to an extension of the BTK formalism along the lines
of several other workers �e.g., Refs. 19 and 23� and have
given us the advantage of obtaining analytical solutions, pri-
marily due to the step-function approximation for the super-
conducting and magnetic order parameters.

From our results, one may infer that several new qualita-
tive features arise due to the presence of spin-flip scattering
and a spin-active barrier. We demonstrate the reentrance of
retroreflection for the Andreev-reflected hole, which is ab-
sent for an easy-axis ferromagnet with a purely nonmagnetic
interfacial scattering potential. This opens up a new transport
channel for both spin and charge, and is interpreted as a
signature of spin-triplet correlations in the system. In this
context, a most interesting interplay between the supercon-
ducting phase � and the planar magnetization orientation
characterized by the azimuthal angle � arises in the phase
coherence of retroreflected holes. This particular feature may
be exploited in terms of a Josephson current in a S/F/S junc-
tion that responds to a rotation of �.

As our main result, we have investigated the influence on
the conductance spectra due to different effective masses,
Fermi-vector mismatch, strength of the exchange energy, and
the influence of varying the relative strength of magnetic and
nonmagnetic scattering in the F/S junction. Our findings are
consistent with those of Ref. 18 with respect to the observa-
tion of an increased subgap conductance for increasing
Fermi-vector mismatch for a large spin polarization. In the
presence of a spin-active barrier, however, this effect van-
ishes. The general influence of retroreflection on the conduc-
tance spectra seems to be a softening of the sharp features
such as peaks and dips at E=�. Also, as a signature which
should be clearly discernable experimentally, a crossover
from peak to “waterfall” shape takes place in the tunneling
limit at the gap energy.

We believe that our angle of approach for treating the F/S
junction in the extended BTK formalism should suffice to
shed light on the rich physics and concomitant important
phenomena that are present in such systems, which is of
particular relevance in the context of spin-polarized tunnel-
ing spectroscopy.
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APPENDIX: DERIVATION OF SCATTERING
COEFFICIENTS

From the boundary conditions, the condition of continuity
of the wave function yields the expressions

s↑a − s↓be−i� + re
↑ − re

↓bei� = te
↑u + th

↓vei�,

s↑be−i� + s↓a + re
↑be−i� + re

↓a = te
↓u − th

↑vei�,

rh
↑a − rh

↓be−i� = − te
↓ve−i� + th

↑u ,

rh
↑bei� + rh

↓a = te
↑ve−i� + th

↓u , �A1�

while the matching of derivatives at x=0 yields

�V0 − Vs��te
↑u + th

↓vei��

=
iq cos �s

2mS
�ute

↑ − vei�th
↓�

−
i

2mF
�cos ��k↑s↑a − k↓s↓bei�� − k↑Sare

↑ + k↓S̃bei�re
↓� ,

�V0 + Vs��te
↓u − th

↑vei��

=
iq cos �s

2mS
�ute

↓ + vei�th
↑� −

i

2mF

��cos ��k↑s↑be−i� + k↓s↓a� − k↑Sbe−i�re
↑ − k↓S̃are

↓� ,

�V0 − Vs��− te
↓ve−i� + th

↑u�

= −
iq cos �s

2mS
�ve−i�te

↓ + uth
↑� −

i

2mF
�k↑Sarh

↑ − k↓S̃be−i�rh
↓� ,

�V0 + Vs��te
↑ve−i� + th

↓u� =
iq cos �s

2mS
�te

↑ve−i� − th
↓u�

−
i

2mF
�k↑Sbei�rh

↑ + k↓S̃arh
↓� .

�A2�

Solving for the transmission coefficients, one is left with the
reduced set of equations

te
↑A1 + te

↓B1ei� + th
↑C1ei��+�� + th

↓D1ei� = X1,

te
↑A2e−i� + te

↓B2 + th
↑C2ei� + th

↓D2ei��−�� = X2,

te
↑A3e−i��+�� + te

↓B3e−i� + th
↑C3 + th

↓D3e−i� = 0,

te
↑A4e−i� + te

↓B4ei��−�� + th
↑C4ei� + th

↓D4 = 0. �A3�

From Eqs. �A3�, one finds that

th
↓ = X1F1e−i� + X2F2ei��−��,

th
↑ = X2R1e−i� + Reth

↓e−i�,

te
↓ = P1th

↑ei� + P2th
↓ei��−��,

te
↑ = − �B4te

↓ei� + C4th
↑ei��+�� + D4th

↓ei��/A4, �A4�

such that the reflection coefficients �rh
	 ,re

	 may be obtained
by back-substitution of Eqs. �A4� into Eqs. �A1�. We have
defined the following auxiliary quantities:

X1 =
1

2mF
�k↑cos �s↑a − k↓cos �s↓bei� + k↑Sas↑ − k↓S̃s↓e

i�� ,

�A5�

X2 =
1

2mF
�k↑cos �be−i� + k↓cos �s↓a + k↑Ss↑e

−i� + k↓S̃s↓a� ,

�A6�

F1 = �D1 + C1R2 + P1B1R2 + B1P2 −
A1

A4
�B4P2 + B4P1R2

+ R2C4 + D4��−1

, �A7�

F2 = F1�A1

A4
�B4P1R1 + R1C4� − B1P1R1 − C1R1� , �A8�

R1 = �C2 + B2P1 −
A2

A4
�B4P1 + C4��−1

, �A9�

P1 = �C4A3

A4
− C3���B3 −

A3B4

A4
� , �A10�

R2 = R1�B2P2 + D2 −
A2

A4
�B4P2 + D4�� , �A11�

P2 = �D4A3

A4
− D3���B3 −

A3B4

A4
� , �A12�

in addition to

A1 = i�V0 − Vs�u +
1

2mS
q cos �su +

u

2mF
�k↑Sa2 + k↓S̃b2� ,

A2 =
1

2mF
�k↑S − k↓S̃�abu , �A13�

A3 =
1

2mF
�k↓S̃ − k↑S�abv ,

A4 = i�V0 + Vs�v +
1

2mS
q cos �sv −

v
2mF

�k↑Sb2 + k↓S̃a2� ,

�A14�

B1 =
1

2mF
�k↑S − k↓S̃�abu ,
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B2 = i�V0 + Vs�u +
1

2mS
q cos �su +

u

2mF
�k↑Sa2 + k↓S̃b2� ,

�A15�

B3 = − i�V0 − Vs�v −
1

2mS
q cos �sv +

v
2mF

�k↑Sa2 + k↓S̃b2� ,

B4 = −
1

2mF
�k↓S̃ − k↑S�abv , �A16�

C1 =
1

2mF
�k↓S̃ − k↑S�abv ,

C2 = − i�V0 + Vs�v +
1

2mS
q cos �sv −

v
2mF

�k↑Sb2 + k↓S̃a2� ,

�A17�

C3 = i�V0 − Vs�u −
1

2mS
q cos �su −

u

2mF
�k↑Sa2 + k↓S̃b2� ,

C4 = −
1

2mF
�k↑S − k↓S̃�abu , �A18�

D1 = i�V0 − Vs�v −
1

2mS
q cos �sv +

v
2mF

�k↑Sa2 + k↓S̃b2� ,

D2 =
1

2mF
�k↑S − k↓S̃�abu , �A19�

D3 =
1

2mF
�k↓S̃ − k↑S�abu ,

D4 = i�V0 + Vs�u −
1

2mS
q cos �su −

u

2mF
�k↑Sb2 + k↓S̃a2� .

�A20�
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