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Divergence of the orbital nuclear magnetic relaxation rate in metals
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We analyze the nuclear magnetic relaxation rate (1/7),,;, due to the coupling of nuclear spin to the orbital
moment of itinerant electrons in metals. In the clean noninteracting case, contributions from large-distance
current fluctuations add up to cause a divergence of (1/7}),,,- When impurity scattering is present, the elastic
mean free time 7 cuts off the divergence, and the magnitude of the effect at low temperatures is controlled by
the parameter In(w7), where w is the chemical potential. The spin-dipole hyperfine coupling, while having the
same spatial variation 1/r° as the orbital hyperfine coupling, does not produce a divergence in the nuclear

magnetic relaxation rate.
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I. INTRODUCTION

The nuclear magnetic resonance (NMR) provides a pow-
erful experimental tool in materials science. One prominent
example in the condensed matter is that measurements and
analysis of the Knight shift and nuclear magnetic relaxation
rate (also called nuclear spin-lattice relaxation rate) proved to
be a decisive test! of the validity of the BCS theory of su-
perconductivity. In general, the NMR signal carries informa-
tion on the interactions which couple the nuclear magnetic
moments to their environment. In such a situation, the theo-
retical understanding of various possible contributions to the
total measured quantity is very important.

For metals, the most important hyperfine coupling is the
one with the itinerant electrons.>? The magnetic hyperfine
interaction of each nucleus with the electrons may be written
as ‘H,s=—7v,I-h, where v, is the nuclear gyromagnetic ratio
and I is the spin of the nucleus located at the position R. The
units i=kz=1 are used throughout except in Sec. VI. The
effective hyperfine magnetic field h has three contributions:
s-3p(s-p) 1
5 5 M

p

where s and 1 are the spin and the orbital moment of the
conduction electron located at r, and we use the notations
p=r-R, p=|p|, and p=p/p. In Eq. (1), the integration is
over the sample volume V and y,=e/(mc) is the electron
gyromagnetic ratio, c is the speed of light, —e is the electron
charge (with e>0), and m is the free-electron mass. The first
term in Eq. (1) originates from the Fermi-contact hyperfine
interaction, the second term is due to the spin-dipole hyper-
fine interaction, and the third term is due to the orbital hy-
perfine interaction.

In this paper, we would like to draw attention to an inter-
esting property of the nuclear magnetic relaxation rate
(1/T,),, arising as a result of orbital hyperfine interaction:
For a perfectly clean metallic system of infinite spatial di-
mensions, and in the absence of an external magnetic field,
(1/T)),y is infinitely large. This fact has already been re-
ported by Lee and Nagaosa.* Here, we provide a thorough
discussion of the situation using the Green’s-function
method. The nature of the effect is related to the properties of
long-range static fluctuations of orbital fields and currents.

h(R) =7y, f d%{— 8?7755(,;) +
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Mathematically, the divergence of (1/T)),,, appears upon in-
tegrating the relevant electronic two-particle correlation
function over the momentum transfer q: the integral diverges
at q=0. The divergence is thus related to the behavior of the
electrons that are far away from the nucleus. In this paper,
the influence of the finite sample size is included via a cutoff
of the wave-vector integrals, and possible surface effects are
not considered explicitly.

The divergence of (1/T)),,, means that, in principle, in a
sufficiently clean sample, the orbital mechanism for the
nuclear magnetization relaxation is very efficient and the to-
tal 7 can be very small. In real material, some impurities are
always present. We show that electron scattering off impuri-
ties removes the divergence. The magnitude of (1/T),,;, at
low temperatures is controlled by the parameter In(w7),
where u is the chemical potential and 7 is the mean free time
for itinerant electrons. This means a logarithmic dependence
on the impurity concentration. Our numerical estimates for
Li and Sr,RuQ, show that even for values of 7 characteristic
of the cleanest samples, the long-range part of (1/T)),,, is
not dominant, but it can be big enough, we believe, to be
experimentally determined.

The rest of the paper is organized as follows. In Sec. II,
we present the formula for the relaxation rate which is used
for the calculation. In Sec. III, we evaluate (1/T}),,, in a
simple model in which the normal metal is described by the
free-electron gas. We study both clean and impure cases,
with the details regarding the vertex corrections relegated to
the Appendix. In Sec. IV, we show that, unlike the orbital
hyperfine interaction, the long-range contribution to 1/7
due to the spin-dipole hyperfine interaction is finite. In Sec.
V, we demonstrate that the singularity of (1/7}),,, in a clean
metal is, in fact, quite general. First, we show that placing
the free-electron gas into a periodic potential (the simplest
model for a crystalline solid) does not remove the singularity.
Next, following the idea of Ref. 4, we show how metallic
systems with an arbitrary electronic dispersion can be ana-
lyzed using the connection between (1/7}),,, and the non-
uniform static electric conductivity o,s(q). Recognizing the
fact that the static electric conductivity of the perfectly clean
electronic system is infinite perhaps makes the divergence of
(1/T}),, in such a system less surprising and puzzling. Sec-
tion VI contains a discussion, where, in particular, we esti-
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mate the magnitude of the effect, and the concluding re-
marks.

II. THE RELAXATION RATE FORMULA

The expression for the nuclear magnetic relaxation rate
that is most suitable for our purposes has the following
form:>~’

L % X

7.2 oth<2T)ImK _(wp,R), (2)
where wq,=7,H, with H being the external magnetic field
oriented along the z axis. In the derivation of Eq. (2), the
hyperfine interaction is treated as a perturbation for the elec-
tronic Hamiltonian, which can be quite general. The main
object in Eq. (2) is the Fourier transform of the retarded
correlator of the effective magnetic fields h(R):

- le(t)<[h+(t’R)’h—(O’R):D’ (3)

where h,=h,xih,. We take the origin of the coordinate sys-
tem at the location of the nucleus (i.e., R=0).

The correlator Kf_(w) can be computed starting from the
explicit expression for the orbital hyperfine fields in the for-
malism of the second quantization. We follow the standard
procedure and find at first the corresponding Matsubara cor-
relator Kf’_ (iv,) and then apply the analytical continuation
from the imaginary axis to just above the real axis: Kf_(w)
=K (iv,— w+i0%). Alternatively, using Maxwell’s equa-
tions, one can express the real frequency correlator Kf_(w)
through the current-current correlator and thus through the
electrical conductivity, for which there exist well developed
methods of calculation including the kinetic equation ap-
proach and the linear-response theory.

Based on the magnitude of the nuclear magneton, the ap-
proximation relevant to experiments in typical laboratory
magnetic fields and not too low temperatures is wy—0.
Then, Eq. (2) gives

1

1
—=- yz lim — Im
T]T wy—0 Wy

KX (1,R) =

f_(w()’ R= O) . (4)

The approximation wy— 0 also implies that statistical aver-
ages have to be calculated for the system in zero external
magnetic field H.

The magnetic field to be inserted in Eq. (4) is the effective
magnetic field given by Eq. (1). We would like to comment
that there is one approximation which is implicit in present-
ing the fluctuating magnetic field at nucleus in this form. It
consists in neglecting the influence of the magnetic field on
the electrons themselves. This feedback effect may be phe-
nomenologically accounted for by replacing h on the left-
hand side of Eq. (5) with (1+4my)h, where y is the mag-
netic susceptibility of the material. For ordinary metals |y|
~ 1075, and we will not include this contribution in what
follows. The complete treatment of the feedback effect,
which would be necessary when || is large, in particular, in
superconductors, requires taking into consideration dynami-
cal fluctuations of the vector potential A of the electromag-
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netic field. This is beyond the scope of the present paper.

III. CALCULATION OF (1/T}),,, FOR A SIMPLE MODEL
OF NORMAL METAL

In this section, we consider in detail the nuclear magnetic
relaxation rate due to orbital hyperfine interaction (1/T}),,,
in the situation where electronic system is modeled by the
three-dimensional electron gas (moving in the positively
charged uniform background). The electrons do not interact
between themselves but could elastically scatter off ran-
domly distributed nonmagnetic impurities.

This model is sufficient to demonstrate that for the relax-
ation of nuclear magnetization in the absence of an external
magnetic field, (1/T)),,, diverges in the clean case. This di-
vergence is cut off when impurities are present. An extension
of the argument to more general situations is presented in
Sec. V.

In the second-quantization representation, the operator of
the orbital magnetic field at the origin R=0 has the form

ﬁ jd3r2 l/lI (I')M

o(r), (5)

which can be obtained from the third term in Eq. (1) by
combining the second-quantized representation of the mo-
mentum operator p with the definition of the angular mo-
mentum. The hats denoting the operators will be omitted
below in order to simplify notation. Note that expression for
the magnetic field is consistent with the Biot-Savart law. In-
deed, Eq. (5) can be obtained if in the expression for the
magnetic field® at R=0, given by the integral h=
—(1/¢) f&r[j(r) Xr]/#3, the standard second-quantized rep-
resentation for the orbital electric current is inserted and the
integration by parts is performed while neglecting the sur-
face term.

A. Free-electron gas in the plane-wave basis

The i operators can be expanded in the basis of plane
waves, which are solutions of the Schrodinger equation in
empty space:

1 .
th,(r) = \_T/E ey, (6)

k

where V is the volume of the system. When this expansion is
inserted in the definition of h in Eq. (5), a straightforward r
integration leads to the following expression for the effective
magnetic field due to the electron orbital motion:

4ri k X Kk’
h= 7e E ’ 22 Ckg—ck’ (7)
Ve K-k
The corresponding  Matsubara  correlator K (iv,)

=—[Bdre!™ (T h,(7)h_(0)) has the form
(477')’3) E (k; X kz)i"' (k; X kz)g
Kk, k; - k,|*

XS(iVn,kl,kz). (8)

K (iv,

The quantity S is related to the electron bubble:
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B(iv, k. k{,ky. k)

B
Ej dTelTVnE <TTCTk101(T)Ckio-l(T)Ciizo.z(O)Ckéo_z(O»,
0

a0

)

where B=1/T, with T being the temperature. The angular
brackets denote the thermodynamic average with the given
electronic Hamiltonian, and 7, is the imaginary time order-
ing operator. For the free-electron gas, we have

B(l.Vn,kl,k{,kz,ké) =— 25](1,k£51(2,kis(iyn’kl’k2)’ (10)
and the quantity S has the following form:
S(iv,,K k) = T, Go(ky,iw,, + iv,) Go(Kys i,

&)~ flE)

, 11

gkl - gkz - iVn ( )
where w,,=27T(m+1/2) and v,,=27Tm, m=0,=1,..., are
the fermionic and bosonic Matsubara frequencies, respec-
tively. Also, in Eq. (11), Gy(K,iw,,)=1/(iw,— &) is the free-
electron Green’s function, with &=g—u, and f(x)
=1/[exp(x/T)+1] is the Fermi distribution function. Note
that S depends on the momenta k only through the energies
e =k>/(2m).

To arrive at Eq. (8), the factors with the vector products of
four k vectors in the integrand of the expression for the
correlator Ky_ were simplified using the delta functions of
Eq. (10):

(k; X k), (ky X kj)_

(k; X Kko); + (k; X ky);
o _
(k; - k) (k,—kj)?

k; - k,|*

(12)

For the quadratic dispersion of the free electrons, the density
of electronic states per one spin projection N(e)
=m\2me/(27°) does not depend on angular variables. Con-
verting the k summations into integrations and separating the
angular variables, we can write

+00

Kl—:—d—(”}n) = 2(47TYe)2f d81d82N(81)

0

XN(gy)Ko(e1,£:)S(iv,,81,€)), (13)

where we have introduced the quantity K defined as an
angular integral, which, in the present case, contains just one
nontrivial integration over the angle between k; and k, that
can be performed exactly:

dly Ay, (k; X k)
47 4w |k -k

2
KQ(81’82) = 5% (14)
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1 a+1
=—{aln —2]. (15)
6 a—1

Here, kio=k | and a=(ki+k3)/ 2k k,)=(g,

+&,)/(2Ve &8,), which, in turn, implies that az=1
= (ki £k 2k ky) = (Ve 2\ (2o 125,

Now, we perform the analytic continuation of S(iv,) given
by Eq. (I1) on the imaginary axis to the frequencies just
above the real axis and expand in w<<u, keeping in mind
that we actually need only the imaginary part for small .
Introducing the notation S(w)=S(iv,— w+i0"), we write

Im S(w) = (& - & - w)[of (&) + O(e)],  (16)

where [ (&) = df(&)/ €. The delta function in Eq. (16) allows
us to eliminate one energy integral in Eq. (13), while the
derivative of the Fermi distribution places the energy close to
the Fermi surface. This allows us to use, for the degenerate
electron gas, the standard approximation of the constant
DOS at the Fermi level and switch in Eq. (13) from the &
integrations to the & integrations from —% to +%. Addition-
ally, the angular factor K, reduces to

o
& =&l

where p=(4/e)u=~=1.47u. It is worth emphasizing that the
angular integral K brings in a nonanalytic energy depen-
dence. Thus, at small w, we arrive at the following integral:

1
Ksz(§1,§2)=§ In (17)

~Im Kf_(w) 2
lim ——————=—
w—0 w 3

[47TYeN(M)]2j dfldng,(§2)5(§l -&

o
& -&l

The final expression for the relaxation time has the form:

- w)ln (18)

1 2 I

— = —[4my,y.N 21n<—), 19
T 3 4777 N In| = (19)
where the right-hand side does not depend on temperature.
Note that this expression diverges logarithmically at w—0,
which can be traced back to the logarithmic behavior of the
angular integral Kq in Egs. (14) and (15) at &, —e¢, or k,
sz.

B. Free-electron gas in the spherical harmonics expansion

It is instructive to trace the origin of the divergence using
the basis of spherical harmonics around R=0, where nuclear
spin is located. For this purpose, we substitute in Eq. (6) the
following expansion of the plane waves:

E

exp(ik - 1) =47, >, ilj(kn)Y,, (K)Y,,(F),  (20)
1=0 m=-1

in terms of the spherical harmonics Y, and the spherical
Bessel functions jj(kr).” An advantage of this approach is
that we can use in Eq. (5) the well-known matrix elements of
the angular momentum operator 1. The radial part can be
integrated to give
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4 2
B E( )

4kik, }
(ky+ k2)2

o]
E Cklrrck202 Zl|:
=1

14 kikyo
+l

X 2 NUxm) I F m+ 1Y), (k)Y (),

m=—1
-
v T'(l) |z
ZI(Z)_TF(Z+3/2)< )F[l I1+1;2(1+1);2],

where k=k/|k| and Fla,b;c;z] is the hypergeometric
function.’ Calculation of the Matsubara correlator proceeds
as in the previous section and produces S(iv,) of Eq. (11) and
S(w) of Eq. (16) after the analytic continuation, leading to
ey, —ex,) and k;=k, at w=0. At this stage, the angular
parts of k integrations are performed and then all the sum-
mations except one can be evaluated. The final result reads

1 16/71'

- _ == 2 -
e [4me(u)] % l (21)

where finite terms have been omitted. Since we have set up
explicitly w=0, this expression is divergent. In accordance
with what has been found previously in Eq. (19), the diver-
gence is logarithmic and, in this case, occurs in the sum over
orbital quantum number as [ — o°.

C. The impurity dependence of (1/T}),,,;

In this section, we consider the electron gas interacting
with pointlike elastic scatterers. The disorder is treated per-
turbatively using the standard impurity averaging
technique.'® In the Appendix, we show that in the isotropic
situation considered here, the vertex corrections to the impu-
rity averaged electronic bubble, given by Eq. (9), vanish ex-
actly. Therefore, the impurity averaged correlator of the or-
bital magnetic fields K (iv,) is given by the same
expression as in the clean case, Eq. (8), with unchanged an-
gular part K, Eq. (15), but with

S(iv, k. k) =T, Gk, iw, +iv,)G(Kyiw,), (22)

m
expressed through the impurity averaged Green’s functions:

G(k,iw,) =[iw, — & +isgn(w,)/27)]". (23)

Here, 1/(27)= 77N(,u)n,mp imp 18 the elastic scattering time,
where n;,, is the impurity density and V;,, is the Fourier
transform of the impurity potential. The Matsubara summa-
tion in Eq. (22) can be conveniently performed using the
spectral representation for the Green’s functions. The result
is
' +00
im AL [ o om0,

®'—0 w
(24)

where A(¢, w)=A(&,w)=-Im G(K,iw,,— w+i0%)/7 is the
electronic spectral function in the dirty normal metal, which
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is sharply peaked around &= w. The presence of f'(w) in Eq.
(24) then allows us to switch to the & integration with the
infinite limits in the expression for the correlator Kf_(w) as
in the clean case [see Egs. (13) and (18)]. Now, these ¢
integrations  give  [TId&d&A(w,6)A(w,E)Ko(&, &)
=% In(7), which leads to the following final result:

1
—= —[4777n YN In(7ia). (25)
T,T
We see that 1/ 7 replaces the frequency w, which was present
in the expression for the relaxation rate for the clean case
[see Eq. (19)], and thus removes the divergence at w—0.

IV. COMPARISON OF THE ORBITAL CONTRIBUTION
TO 1/T, WITH OTHER CONTRIBUTIONS

We extend our analysis to include all the hyperfine mag-
netic fields of Eq. (1), using the same model for electrons as
in the previous section. In the plane-wave basis [see Eq. (6)],
one has the following for three-dimensional system:

47T Ve
h F-c =~ E (raﬁckack q.53° (26)

Y. q(q- 0,5
hs_d=277—62[—2£ —é]ckackqﬁ, (27)
Vk,q q 3

Xk .

Yey 49X
horb =4mi E q2 Ckack q.a* (28)

Vi

In these equations, the summations over all repeated spin
component indices are assumed. We observe that the opera-
tor of the Fermi-contact effective magnetic field, hy_., and
the operator of the spin-dipole effective magnetic field, h;_g,
can be combined into a single object, for which the q depen-
dence inside the sums appears only through the transverse
projector &;;—qq,/ g*. This simplifies the next step of the
relaxation rate calculation, which is to evaluate the Matsub-
ara correlator K . We obtain

21ry,)? _
KM (iv,) = 22T 7‘7/”) > {2——%‘21

+4(‘1Xk);#}5(,'yn,k,k—®- (29)

In the clean case, the quantity S is given by Eq. (11). In Eq.
(29), the first two terms in the square brackets represent the
combined contribution of the Fermi-contact and the spin-
dipole hyperfine interactions. The third term is the contribu-
tion due to the orbital hyperfine interaction, which was con-
sidered before. It is the same as in Eq. (8) but written with
the change of the summation variables (k;,k,)—(k,q),
where k=(k; +k,)/2 and q=k;—k,. In this form, the behav-
ior of different contributions as functions of g=|q| is clearly
displayed. In fact, both Fermi-contact and spin-dipole contri-
butions depend on ¢ through S function only, while the or-
bital contribution contains the additional factor 1/¢>.
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The divergence in (1/T}),,;, in the clean system appears
now as the divergence of the q sum as ¢— 0. On the other
hand, the spin-dipole hyperfine interaction produces a finite
relaxation rate. This result contradicts expectations* that
spin-dipole and orbital hyperfine interactions should bring
about similar contributions to 1/7;, because in the real
space, they both vary with the distance from the nucleus as
1/73 [see Eq. (1)].

V. GENERAL CHARACTER OF THE DIVERGENCE OF
(1/T,),,» IN CLEAN METALS

In this section, we demonstrate that the divergence of
1/T, in a clean metal is quite general and is not an artifact of
the free-electron model we used in previous sections. We
now concentrate on the orbital hyperfine interaction that is
responsible for the effect. First, we consider the electron gas
in an arbitrary periodic potential and show that the diver-
gence does not disappear. Then, we relate the correlator of
orbital magnetic fields to the current-current correlator and
therefore to the electrical conductivity. This formulation al-
lows one to treat an arbitrary electronic dispersion quite gen-
erally. The divergence is shown to be a consequence of the
behavior of the static nonuniform conductivity in the long-
wavelength limit.

A. The electron gas in a periodic potential

Now, add to the Hamiltonian of the clean Fermi gas a
periodic potential, and consider the effect it has on the cor-
relator of orbital magnetic fields in the definition of 1/7 in
Eq. (2). The solutions to the corresponding Schrodinger
equation are the Bloch functions, which can be used as the
basis for the second-quantized description:

1 )
wo'(r) = /__2 2 elkrunk(r)cnko" (30)
VW ok

where n enumerates the electron bands and the wave vector
k is now limited to the first Brillouin zone. Functions u,,(r)
are periodic in r and can be expanded in the Fourier series:

U (1) = 2, U,(K)e'®, (31)
G

where G is a reciprocal-lattice vector. The operator of the
effective magnetic field at the origin, R=0, due to the elec-
tron orbital motion has the form

@2 D k+G) X (k'+G")

\% (k+G k' - GI)Z E UnG(k) U, f(;l(k )

h=y,
kk’ GG’

X 2 Cj;ko'cn/k/(r' (32)

o

This expression is to be compared with Eq. (7). The Green’s
functions of the electrons in a periodic potential are diagonal
in k, as well as in the spin and band indices. Using these
properties, we calculate the correlator of the orbital magnetic
fields at the location of the nucleus. The expression for the
relaxation time in the limit @ — 0 can be written as follows:
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1 41y,
=27 ( ﬂ-y ye) 2 2 5(8n k
Tl r kiky nyny o
- Snz,kz)f,(snz,kz)z UKLK, (33)
{G}

where {G}={G,,G,,G;,G4} and

1/14 = UZ 1 ,G1+G2(kl) Un] ,G4(k1) U:Z,G3+G4(k2) UnZ,Gz(k2) s

(34)

_ (ki -k +G)) X (ks + G)
K= (k, -k, + G)? ’ (35)
K2=—(k2_k1+G3)X(kl+G4) (36)

(k, -k, +G3)*

Equation (33) is an exact expression. We show that it
contains an infinite term. To separate the divergent contribu-
tion, we restrict the sums in Eq. (33) by the conditions G,
=G3=0 and n;=n, and change the summation variables k;
=k+q/2 and k,=k—q/2. Then, we perform the small-q ex-
pansion of the arguments of the delta function and f’ in Eq.
(33), as well as of the U* of Eq. (34). Accounting only for the
leading term in these expansions, Eq. (33) is reduced to

1 4y’
nr=IT e 22 A0 k) 4[q
XV, (KL= a X v, K], (37)

where we have used the following expression'!' for velocity
of the band electrons:

Je,(K)

ok (38)

1
v, (k) = ;2 (k+G)|U, k)=
G

To estimate the q sum in Eq. (37), we change it, for each
band n, to the integral over the sphere of an appropriate
volume. The integration over ¢g=|q| extends from g,,;,=0 to
Gmax=2qF »» Where qg, is of the order of the average sepa-
ration between two points on the Fermi surface in the n band.
The final result has the form

L (e, \4m [v, (k)2 +[2- v, (k)]
T1T_< ¢ ) V%D"f( (k) v, (K)| ’

(39)

where D,=In(2¢r,/q,,,) is the divergent factor. As long as
the electrons do not interact with each other, g,,;,=0 at any
temperature. The reason is that the delta function, which ap-
pears in Egs. (33) and (37) and ultimately brings in the di-
vergence is, in fact, the electronic spectral function of the
noninteracting system. Thus, the same logarithmic diver-
gence as found in Sec. III for free electrons appears here. For
finite samples of the linear size L, we have g,,;,,=1/L. When
impurities are present, from the result of Sec. III C, it is
expected that g,,;,=1/(vp7) which is, in general, different
for different bands. In the next section, we confirm this form
of g,,;, for one band with an arbitrary electronic dispersion.
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To conclude this section, we note that for band electrons
we found the logarithmically divergent contribution to
(1/T}),,, and the factor in front of it [see Eq. (39)], which
depends only on the averages of the Fermi velocities and
does not involve the position of the nuclear spin in the unit
cell.

B. Expressing Kf_(w,q) in terms of the current-current
correlator

We now use another method to demonstrate the singular
behavior of the nuclear magnetic relaxation rate due to or-
bital hyperfine interaction. It also allows us to obtain a useful
expression for (1/T}),,, for an anisotropic metal. The idea,
first used by Lee and Nagaosa,* is to express the correlator of
effective orbital magnetic fields Kf_(w,R:O):Equ_(w,q),
which appears in Eq. (4), through the current-current cor-
relator and, consequently, through the nonuniform electrical
dc conductivity.

The fluctuating magnetic fields are calculated using Max-
well’s equation, assuming that the electric currents are given:
VXh(w,r)=[47j(w,r)—iwE(w,r)]/c. In metals, it is a
good approximation to neglect the second term containing
the electric field E. Then, applying the Fourier transform to
find the magnetic field, we get h(w,q)=4mi/c)q
X j(w,q)]/g? and the required retarded correlator of the or-
bital magnetic fields is given by the following expression:

47\*q,q
R k
K+—(w7 (I) = (7) nq14 xmiéxkj + 6ymi6ykj

- iezlpelmiepkj]nij(w, q) 5 (40)

where I1;;(w,q) is the retarded current-current correlator, €
is the totally antisymmetric tensor, and summation over the
repeated indices, which run through x, y, and z, is assumed.
In the end, we are interested in the situation when the con-
stant external magnetic field is absent. Therefore, we take the
I1;; tensor to be symmetric, namely, I1;;=1I1;,. In this case, the
third term in the square brackets in Eq. (40) vanishes.

In general, I1;; contains both paramagnetic and diamag-
netic terms. However, for the calculation of 1/7}, we need
only Im IT;; [see Eq. (2)], and the diamagnetic part, which is
real, drops out. The retarded current-current correlator can be
related to the electrical conductivity tensor.!® Using
Im I1;/(w,q) =—Re[wo;(w,q) ], we obtain from Eq. (40) the
following expression:

. ImKf (0,q)
hm - =

w—0 w

4\? 1 ,
_ (T) ; Re[(q; +q,) 0,

+ Cﬁ(axx + O'yy) -29.9.0.. — ZquzUyZ] >
(41)

where arguments of the conductivity tensor o;(w=0,q) are
not shown explicitly. The expression (41) has to be inserted
in Eq. (4).

In the simple case of an isotropic system, the
conductivity tensor is diagonal in the coordinate frame
with the z axis parallel to q=(g,6,®), namely, Re d;/(q)
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=diag[o,(q),0,(q),0y(q)]. This tensor should be trans-
formed to the coordinate frame defined by the initial orien-
tation of the nuclear magnetic moment (i.e., ZI/H) using an
appropriate rotation of coordinate frame and then inserted
into Eqs. (4) and (41). The final expression for nuclear mag-
netic relaxation rate contains only the perpendicular conduc-

tivity o, (¢):
1 8 'yn)zfoc
—==2] | a : 42

T 3<C . q0.(q) (42)

It is known from the theory of the anomalous skin effect!!
that in a clean metal, the nonuniform conductivity o, (q)
behaves as 1/¢ at small wave vectors ¢g. This leads to the
logarithmic divergence for the nuclear magnetic relaxation
rate (1/T)),p-

In order to clarify this statement and obtain a useful for-
mula for (1/T}),,;, for electrons with an arbitrary dispersion
in the presence of impurities, the g-dependent electric con-
ductivity tensor is now evaluated using the kinetic equation
approach. The electric current is given by

i(0,q) =2 vin(w,k,g), (43)
k

where v=v,=d§&./Jk is the electron group velocity, and the
factor of 2 is due to the spin. The distribution function
n(w,k,q)=f(&)+n(w,k,q) is a sum of the equilibrium
Fermi distribution f and a correction dn proportional to the
small perturbing electric field E(q)=E. Within the relaxation
time approximation for the impurity collision integral, we
have

[1/7—i(w—q-V)]on=—e(dfld¢)v - E, (44)
leading to
afldé)v - E
n(eo ke q) = - DLV E (45)
l-iflw—q-V)
The final result for the conductivity reads
” J dQ
O-Ij(wﬁq) = zezj d§<_ l) § _kN(gsﬂk)
“u o€ 4
1 +itw)v'v’
—_— . 46
1+ 7 (w—q-v)? (46)

This form of o0;(w,q) is valid for an arbitrary electronic
band &, which enters through the angle dependent density of
electronic states N(&,()y). Using the form of the conductivity
tensor form Eq. (46) in Eq. (41), we arrive at the following
expression for 1/7; due to the orbital hyperfine interaction:

1 8(ey,\> (" dq (~ af
[ —1 df _ =L
T\T 7\ c 0 27, IE
u§+v2é§—2@zvz>(q-v>>
U7+ 4@ v) 0.0

)

X <N(§7Qk)

(47)

where the z direction is set by the initial orientation of the
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TABLE 1. Numerical values of various contribution to 1/(7,7) [in the units (K s)~'] for some metals
obtained as described in the text. For Sr,RuQ,, the data are related to 170 in the position O2, which is out of

the conducting basal plane.

1 R R (11T1), (T 1)y,
Materlal TIT F-c TIT orb TIT orb (I/TI)F-C (I/T] gﬁ)
Li 0.019 4.05x107* 1.14x 1073 22% 1072 0.37
Na 0.213 1.20% 1074 0 56X 107
Sr,RuO, 1.1x10™ 1.3%x107° 8.5x 1074 0.12 0.015

nuclear polarization. The angular brackets denote averaging
over both k- and g-angular variables. The magnitude of the
group velocity v=vy is fixed at the Fermi velocity by the
derivative of the Fermi distribution. For an anisotropic sys-
tem, the Fermi velocity is angle dependent. For electrons
with quadratic dispersion, the calculation of 1/7; based on
Eq. (47) gives the result identical to that given by Eq. (42).
The ¢ integral should be cut off by 2¢ at the upper limit,
which is necessary in the present approach due to the fact
that the kinetic equation does not capture the large-g behav-
ior of the nonuniform conductivity correctly. On the other
hand, the ¢ integral is convergent at the lower limit. The
clean limit corresponds to 1/7—0. In this case, the right-
hand side of Eq. (47) contains the following & function:

/7
1/7+(q-v)?
After the integration over () is performed, we can see ex-

plicitly that the remaining ¢ integral diverges as 1/q at the
lower limit.

— wdlq(@-v)]= gém v (48)

VI. DISCUSSION

It was found experimentally'? that the nuclear magnetic
relaxation in many metals is dominated by the Fermi-contact
hyperfine interaction, for which (1/7,7)p..=(4mkg/9)
X[47y, Y h2N() 1 |ux (0)|*)75 (in this section, we restore kg
and %). The situations where this is not so and the contribu-
tions of hyperfine orbital and/or spin-dipole interactions are
significant are worthy of detailed analysis. Loosely speaking,
the physical reason for the large magnitude of the Fermi-
contact interaction is that the conduction band usually con-
tains a large portion of the atomic s orbitals which give a
large contribution to the electronic spin density at the nuclear
site, specified by the overlap factor (|uy(0)|*)7. The relative
importance of the other hyperfine interactions increases
when the density of states at the Fermi level is dominated by
the d and f bands as in transition metals and their
compounds,'3-1¢ or when the conduction band happens to be
almost free of s orbitals.!”1?

We would like to emphasize that both orbital and spin-
dipole hyperfine contributions to 1/7; commonly discussed
in the literature are, in fact, the “local” contributions which
we did not touch upon in this paper. It is usually argued that
since the orbital and spin-dipole hyperfine interactions decay

fast enough with distance [they both vary as 1/73, see Eq.
(1)], the nuclear spin of a given atom is only affected by the
magnetic fields generated by the electron orbitals centered at
this very atom. In contrast, the contribution we analyzed in
the previous sections comes from large distances. It has to be
added to the local orbital contribution.

Below, we attempt to estimate the magnitude of the relax-
ation rate due to the long-range part of the orbital hyperfine
interaction [denoted as (1/T1)f;r’h] in some metals, and com-
pare it with the contributions due to local part of the orbital
hyperfine interaction [denoted as (1/ Tl)f)",ij] and Fermi-
contact interaction. We first consider alkaline metals. In this
case, the estimates based on the quadratic dispersion produce
the correct order of magnitude for (1/T)).., as compared to
experimental values. This makes our further estimates of
(1/T,), trustworthy. Next, we discuss Sr,RuOQ,, the com-
pound which is likely to be suitable for studing the orbital
nuclear magnetic relaxation due to the peculiarities of its
electronic structure. Additionally, in this case, very clean
samples with a long mean free path are available. The results
of our estimates are summarized in Table I.

A. Alkaline metals

We consider Na and Li metals. For both of them, the
Fermi surface lies within the first Brillouin zone and the
electronic dispersion can be taken as e(k)=#%k>/(2m") for
all energies up to the Fermi level.?? This means that the
results of Sec. III C are directly applicable. Numerical values
are m /m=1.45, gp=1.3Xx10% cm™' for Li and m"/m=0.98,
qr=9.2X 10" cm™! for Na, as quoted in Ref. 21. The nuclear
magnetic moments are 3.26u, for 'Li and 2.22u, for 5Na,
where wy is the nuclear magneton.

In the case of the Fermi-contact interaction, the necessary
overlap factors were obtained using the results of the first-
principles calculations of Kohn?? and Kjeldaas and Konh:??
162 for Li and 144% for Na. Thus, our theoretical estimate
for Liis (1/T,T)f..~0.019 (K s)~!, which is to be compared
to the experimental values 0.023 (Ks)™! of Ref. 24 or
0.06 (K s)~! of more recent work in Ref. 25. In the case of
Na, our theoretical estimate is (1/7,T)r.~0.213 (Ks)™!,
while the experimental value from Ref. 24 is 0.196 (K s)7'.

The expression for the nuclear magnetic relaxation due to
the long-range part of orbital hyperfine interaction for qua-
dratic dispersion can be obtained from Egs. (25) and (39)
as  follows: (1/T,T)5" =(2m/3)[4my,yhi>N(w) P(m/m")?
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In(2g;l). For our estimates, we use /=107 cm and obtain
that (1/T,7)"7=4.05x10~* (Ks)™' in Li and 120
X 10™* (K s)~! in Na. We present here a useful formula that
defines the ratio of the two discussed relaxation rates:

(T ), é(ﬂ)z In(2g1)

J P 49

UT) . 2\m"

For Li this ratio is 2.2%, while for Na it is 0.056%. Such
large difference is explained by the fact?? that the wave func-
tion of Li at the Fermi level contains about 73% of the [=1
spherical harmonic and only 20% of the spherically symmet-
ric /=0 harmonic.

The magnitude of the local part of the orbital magnetic
nuclear relaxation in both metals was obtained experimen-
tally by Hecht and Redfield*® from the measurements of the
Overhauser effect. They found that [(1/7))"1/[(1/T})s.c]
~(.06+0.03 in Li, while there is no local contribution in Na.
Thus, the local and long-range contributions to 1/(7T),,, ap-
pear comparable in Li, and both are quite noticeable.

It appears that metallic Li could be the system of choice
to look for the long-range orbital contribution to the nuclear
magnetic relaxation. One can use the characteristic logarith-
mic dependence of (1/7,T)"", on the impurity concentration.

It is worth noting that the NMR experiments are often
done with collections of relatively small metallic particles.?*
This is dictated by the experimental requirement that a large
volume of the sample should be subjected to a radio-
frequency magnetic field which only penetrates within the
skin depth. Such experimental setup would limit the magni-
tude of the long-range orbital effect even for the very clean
metals.

B. SrlelO4

The electronic properties of this material are well
studied,?” both theoretically and experimentally, in connec-
tion with unconventional superconductivity, which appears at
temperature of about 1 K. For the purpose of a rough esti-
mate for the long-range orbital magnetic relaxation rate, we
use the model of three two-dimensional bands, with cylindri-
cal Fermi surfaces and ¢j;=3.04X 107 em™!, qr,=6.22
X 107 cm™!, and qr3=1.53X% 107 ecm™!, as quoted in Ref. 27.
The lattice parameter along the tetragonal symmetry axis is
a;=1.27x 107" cm. To obtain a convenient formula from Eq.
(39), we assume that vf/ (vf+v§)<l and the cutoff wave
vector ¢,,;, is the same for all bands. Using the density of the
electronic states for each band in the form N,p(u)
=m"/(27h%a;) and taking Z along the tetragonal symmetry
axis, we obtain

1

T,T

r-l _%

2 3
; (1) > I g, ). (50)

¢ n=1 43

orb

The best samples of Sr,RuO, used in the de Haas—van Al-
phen experiments?’ are very clean, with the elastic mean free
path reaching 3 X 10~ c¢m. For the relaxation of the mag-
netic moment of 7O nucleus, with y,=-3.63X10° (s G)~',
we obtain (1/7,7)",=1.3x 1075 (K s)"!. This value can be

orb
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compared with the local part of the orbital nuclear relaxation
rate. For example, from the band-structure calculations,
Pavarini and Mazin'® found that (1/7,7)"=8.5
X107 (K 's)~! for the so-called O2 oxygen, located out
of the Dbasal conducting planes. The ratio is
[(1/Ty)57, )/ [(1/T))51=0.015.

The O2 position of the oxygen is very favorable for stud-
ies of the long-range orbital mechanism of the nuclear mag-
netic relaxation, because the local orbital contribution is
much smaller than for the other oxygen site, O1. The Fermi-
contact contribution is also numerically quite small for the
02 position, (1/T,T)p.=1.1X107* (K s)™" as calculated in
Ref. 19. It is still larger than the long-range orbital contribu-
tion, but not substantially: [(1/7,)5%1/[(1/T})f..]=0.12.

Comparison of our predictions with experiments is com-
plicated by the fact that the experimental values of 1/7,T for
02 oxygen?® are 2 orders of magnitude greater than values
given by the band-structure calculations. The experimental
results necessarily include the effect of electronic correla-
tions, which are strong in Sr,RuOy. Such effects were com-
pletely ignored in our discussion of (1/7;)"; in this paper.

C. Concluding remarks

We would like to point out that besides the elastic impu-
rity scattering, other scattering mechanisms for electrons
should also affect to (1/T}),,,- One expects that inelastic
scattering, for example, by phonons, should lead to
1/(T,T)~InT, because of the temperature dependence of
the inelastic-scattering rate.

The NMR relaxation mechanism through the orbital hy-
perfine interaction that we have discussed in this paper is
quite general. It is not limited to metals and should exist in
any system with mobile charge carriers. On the basis of Eq.
(49), one expects that a small effective mass of the charge
carriers should significantly enhance the effect. Small masses
are typically found in semiconductors.?® In such systems, the
NMR techniques have also been very successful, though the
analysis should be modified compared to the case of
metals.*”

Finally, we would like to comment on calculations of
(1/T}),,, from the first principles using band-structure meth-
ods. These calculations typically use the expansions in a set
of basis functions that involve the spherical harmonics cen-
tered at the nuclear site, and an appropriate radial part ob-
tained from the solution of the Schrodinger equation inside
the Wigner-Seitz sphere or the muffin-tin sphere.'>!%!8 The
series in the orbital quantum number / is truncated at some
stage of the computation based on an empirical estimate of
convergence. However, we have demonstrated in this paper,
that this expansion is expected to diverge as In/, which is
usually difficult to capture numerically. The presence of this
divergence calls for a careful examination of the conditions
used to justify the truncation of the / expansion.

In conclusion, in this paper, we have discussed the nuclear
magnetization relaxation rate due to the orbital hyperfine in-
teraction of nuclear spins with itinerant electrons. For an
infinite clean metal, (1/7}),,, would become divergent at
zero temperature. The reason for the divergence is that the
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total fluctuating magnetic field created by all the electrons at
the site of a given nucleus contains a contribution from dis-
tant electrons. The divergence is removed when there are
scattering mechanisms in the system. At low temperatures,
the scattering is predominantly elastic. In this case, (1/7}),,
depends logarithmically on impurity concentration. Based on
our estimates, it seems to be feasible to observe this effect,
e.g., in metallic Li.
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APPENDIX: IMPURITY AVERAGED CORRELATOR OF
ORBITAL MAGNETICFIELDS

The operator of the magnetic field created by the orbital
motion of the electrons at R=0 is given in Eq. (7). Here, we
want to compute the impurity averaged correlator of such
orbital magnetic fields at a given Matsubara frequency iv,.
This quantity can be written as follows:

47776) D (k; X ki), (ky X kjy)_
w (k -k)? (ky—-k))?
X<B(iVmklakl’kZaké»imp’

<Ki/l_(ivn)>imp

(A1)

where {k} =k, k| k,,k;} and (- - -);,,, means the average over
impurity  configurations. = The  electronic ~ bubble
B(iv,,k;.k{.k;,k;) is defined in Eq. (9). For the following
discussion, it is more convenient to use a different set of
wave-vector variables, namely, Q,=(k,+k/)/2 and q,=k,
-k, with a=1,2.

The impurity averaging restores the translational invari-
ance of the system, and the result for the electronic bubble,
after the spin summation is performed, can be written as

<B(iVn’Ql’ql’Q2’q2)>imp == 26q1,—quQl,Q2(iVn’ql) .

The function S has the following general structure:3!

SQ Q2(l X))

=72, G(Ql+’iwm+)G(Ql—7iwm)|:5Q1,Q2

m

1
+ ‘_/FQI,QZ((L iwm’iVn)G(Q2+7 iwm+)G(Q2—’ iwm):| 5

(A2)

where Q,.=Q,xq/2 for a=1,2, w,,=w,+v, and
G(k,iw,,) is the impurity averaged Green’s function defined
in Eq. (23). The first term in the square brackets in Eq. (A2)
corresponds to the bare bubble contribution to S. Here, the
interaction with impurities is included through the electronic
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Green’s functions only. The second term in the square brack-
ets in Eq. (A2) represents the vertex corrections, which are
defined in terms of the four-point vertex function
Iq,. Qz(q,zwm,w ). This function satisfies the following inte-
gral equation:’!

1 : :
FQI,Qz =Uq,q,+ ‘_/% UQI,QG(Q+’lwm+)G(Q—,lwm)FQ,Q2,

(A3)

where the dependence of I' and U on q,iw,, and iv, is not
shown explicitly.

The function Ugq, o,(q,i®,,iv,), which appears in Eq.
(A3), contains all the information about the effective inter-
action between electrons arising due to impurity scattering
and can be very complicated in general. For good metals, it
is usually a good approximation to consider impurities as
pointlike scatterers and take them into account in the Born
approximation. In this case, the function UQ QQ(q,zwm,zvn)
is essentially a constant, equal to u= n,mlemp Then Eq. (A3)
has the following simple solution:

l(q’lwm’”} ) =" - _2 G(Q+slwm+)G(Q—’lwm

u

This result contains the sum of the ladder diagrams and cor-
rectly reproduces the diffusive dynamics of the electrons at
low wave vectors and frequencies.

We now return to the correlator of the orbital magnetic
fields K¥ (iv,) in Eq. (A1), and split it into the two pieces,
KM (iv,) = Ky i) + Kyo(iv,), corresponding to the two
terms in the square brackets of Eq. (A2). The bare bubble
contribution has the form

A

Kpareiv,) =275 2 (4 X Q)(a X Q)- 4S(Q Q.iv,),
.Q

where the function S was defined in the main text in Eq. (22),

but using the variables k;=Q+q/2 and k,=Q-q/2. This

bare bubble contribution has been analyzed in Sec. III C. The

vertex correction part can be written as

(4m

Kyerliv,) = 22— TE (@ X L(q)).(q

1
X L(q))_;F(q,iwm,iVn),

1
L(‘l) = L(q’ iwm’iyn) = ‘_/E QG(Q+’iwm+)G(Q—’ lwm)
Q

We see that for an isotropic system, L(q)llq and the vertex
corrections to the correlator of the orbital magnetic fields
vanish exactly due to its particular vector structure.
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