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Since spin-density-functional theory was first proposed, but also recently, examples were constructed to
show that a spin potential may share its ground state with other spin potentials. In fact, for collinear magnetic
fields and systems with fixed magnetization, the mapping between potentials and ground states is invertible,
provided the magnetization is not saturated and that spin potentials are determined within a spin constant. We
complete the proof that the mapping is invertible also for noncollinear magnetic fields and systems with more
than one electron. We then discuss the noncollinear exchange and correlation energy functional in the local-
spin-density approximation and suggest improvements.
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I. INTRODUCTION

The remarkable success of density-functional theory
(DFT),'* as a tool for electronic structure calculations in
solid-state physics and quantum chemistry, is owed not only
to its efficiency but also to the soundness of the underlying
principles. In fact, the quest to refine the foundations of the
theory often results naturally in better understanding and im-
proving the accuracy of the approximation. The aim of this
work is to present such an example.

So far, it appeared that the sound basis of ground-state
(g.s.) DFT is not shared by g.s. spin density-functional
theory (SDFT),>>~° commonly used when the electronic sys-
tem of interest lies in a weak external magnetic field, or even
when there is no external magnetic field but the electrons in
the system do not form closed shells. Although formally
SDFT is a straightforward extension of the original theory,
the analog of DFT’s Hohenberg-Kohn (HK) theorem,' estab-
lishing the 1-1 correspondence between the set of spin po-
tentials {V} and the set of g.s. spin-densities {0}, has not been
established yet for noncollinear magnetic fields. By the
spin potential we mean the potential and magnetic field
V=(V;B) or V=(V;,V;,V|;,V||). The spin density repre-
sents the charge and magnetization densities 0=(p;m), or
@=(py1:P115P11PLY-

Traditionally, invertibility of the mapping between {V}
and {p} is proven in two steps. First, showing that different
spin potentials have different ground states, i.e., the mapping
between the set of spin potentials {V} and the set of ground
states {W} is invertible. Second, showing that different
ground states, arising from different spin potentials, have dif-
ferent densities, i.e., that the mapping between {W} and {0}
is also 1-1.

It is straightforward to show that the second mapping is
invertible. In the publication where von Barth and Hedin’
proposed SDFT, they also constructed, for the single-electron
g.s. ¥ of any spin potential, a whole class of different (non-
collinear) spin potentials that admitted W as an eigenstate,
and under rather mild conditions as their g.s. (see, however,
Ref. 10), concluding that the first step in the proof of the HK
theorem could not hold in general. Recently, interest is re-
vived on the same issue.!'~!¢ In the case of collinear mag-
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netic fields, Capelle and Vignale!! gave several examples
where the spin potential was not determined uniquely by the
spin density. Eschrig and Pickett'? studied collinear and non-
collinear magnetic fields. They distinguished two cases, i.e.,
when the g.s. is a pure-spin state or an impure-spin state.
Pure-spin states are states which through a local rotation of
the spin coordinates may be transformed to have a definite
number of spin-up and -down electrons. Impure-spin states
are states which cannot be transformed to have a definite
number of spin-up and -down electrons under any local spin
rotation. It was found that when the g.s. of the Hamiltonian

H is an impure-spin state, there is no ambiguity (apart from

an overall constant) in determining the spin potential in H by
the ground state. However, they also discovered that pure-
spin states are eigenstates of an operator which, in the labo-
ratory unrotated spin space, corresponds to a generally non-
collinear magnetic field with constant magnitude and

concluded that the spin potential in H cannot be determined
uniquely by the ground state.

If these findings did hold, in general, the meaningfulness
of the Kohn-Sham (KS) scheme would be questioned, since
in the latter, the noninteracting KS spin potential is not
known and must be determined together with the KS state
that yields the g.s. spin density.

Recent work gives hope that the mapping is invertible.
Numerical investigations by Ullrich!® on lattices give evi-
dence that in the continuum limit and for noncollinear mag-
netic fields, nonuniqueness is very rare if not completely
absent. Further, the study of finite temperature SDFT by Ar-
gaman and Makov,"? in the limit of vanishing temperature
(provided the limit is not singular), shows that the mapping
between ) and @ is invertible.

In the main part of the paper, we resolve the issue proving
that the mapping is indeed invertible.

Notation

To proceed, consider the following generic spin-

Hamiltonian H employed in SDFT:
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ﬂzf"+yf/“'°+l>. (1)
7 and V* in Eq. (1) are the kinetic-energy and electron re-
pulsion operators, y=1 (0) for an interacting (noninteracting)
system, and Vs the spin-potential operator.

The Hamiltonian X is not gauge invariant. To restore
gauge invariance, one should include the interaction of the
current with the vector potential, which is ignored here. As it
stands, H is appropriate for weak magnetic fields.

In the following, we shall focus on the operators for the
kinetic energy,

. R
T=-—2

dr J(r) V2 (r). )
2m )

and the spin potential,

9=f¢@%@%»Wm®(%m)’ 3)

) (r)

where (Zi(r) and &T(r) are second quantization creation and
annihilation fermion field operators and Vy,(r) is the 2 X2
matrix of the spin potential,

Vis(r) vy (o) /0

We may express the potential and magnetic field in terms of
the spin-potential matrix elements as follows:

Vspin(r) = ( (4)

V(r) = Kﬁ(r)%‘/ﬂ (5)
o () = T L), ©)
pob ()= LT, ™)
B () = LD =V®), ®)

2

Then, the matrix of the spin potential can be rewritten as

V(r) + poB.(r)  po(By(r) —iBy(r)) )
V.. =
mm(w@mﬂmm Vi) - o) )
or, in more compact form,!”
Vspin(r) = V(l’)l + MOB(r) cg. (10)

| is the 2 X2 unity matrix, and o is the vector of the 2 X2
Pauli spin matrices, o=(0,,0,,0,).

A consequence of Eq. (10) is that the operator for the spin
potential can be split as the sum of the operators for the
potential and the magnetic field as follows:

V=V+B, (11)

where the potential operator is given by
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V= J dr p(r)V(r), (12)
and the magnetic field operator is
é:-Jdrm(r)-B(r). (13)
p(r) is the charge density operator,
mn=§ﬂmwnx (14)

and m(r) is the magnetization density operator,

muo=—ua@hﬁ%u»a<?“”>. (15)

lﬁl(l')

To conclude the introduction on notation, the spin density @
is given by a 2 X2 matrix as follows:

Pm(l') Pu(r))
Pu(l‘) Pu(r) .

Here, too, we may write the charge and magnetization den-
sities in terms of the spin-density matrix elements as follows:

Q(l‘)=< (16)

p(0) = pyy (1) + py (1), (17)
() == uolpy (1) + py (r)], (18)
— im,() =~ ol () = p (0)], (19)
() =~ olpy; (1) = py (0)]. (20)

The matrix of the spin density can be written as!”

em=ﬂmm—imm«4. (1)
1%)

II. COLLINEAR MAGNETIC FIELDS

We start by reviewing the collinear case. It is customary
to define the direction of the z axis along the magnetic field.
We have B(r)=B.(r)z, and the operator for the magnetic

field is B=—[ dr 1. (r)B,(r), where rﬁz(r):—uo[ﬂ(r)%(r)
— (1) g, (0)].
There is no ambiguity regarding the invertibility of the

mapping between potentials and ground states in SDFT for
collinear fields. For the latter, the eigenstates of the Hamil-

tonian H are pure-spin states, since the spin-up and spin-
down particle-number operators N; and N,

Mﬁjm@me =1, (22)

independently commute with H.

Capelle and Vignale'' discovered two cases of freedom in
determining the spin potential. First, as in DFT where the
trivial density p(r)=0 cannot determine the potential V(r), in
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the same way here a trivial component of the spin density
cannot determine the corresponding component of the spin
potential, i.e., for a system of electrons that are all spin po-
larized in one direction, say, p;(r)>0, p (r)=0, the spin
component of the potential in the other direction, Vl(r), is
completely arbitrary (as long as the system remains fully
polarized). This kind of indeterminacy cannot have any prac-
tical consequence as there are no electrons to experience the
arbitrariness.

Second, together with the freedom of a constant shift in

the potential (because NT+N | commutes with ﬂ) there is an
additional freedom of a constant shift in the magnetic field,

B, appearing because the magnetization operator Z\A/T—]CJ !

commutes with . According to Capelle and Vignale, this is
an example of a systematic nonuniqueness arising from a
conserved quantity (as opposed to an accidental nonunique-
ness such as the example of the perfectly spin-polarized sys-
tem.) The formulation of SDFT can be corrected to respect
this freedom by constraining, at the functional differentia-
tions, both the charge and the magnetization densities to in-
tegrate separately to a fixed number of particles.'* Different
KS calculations must be performed for systems with fixed
magnetizations N'—N'! (fixed spin moment calculations), and
the g.s. is given by the system with the lowest KS total
energy.'4

Still, the challenging question in collinear SDFT, in order
to establish the 1-1 mapping, is whether this is all the free-
dom available or whether there could be other kinds of nonu-
niqueness present. It was shown that for continuous spin po-
tentials, this does not happen.'>!* For completeness of
presentation, the main points of the author’s proof!* are in-
cluded below.

Proof that different spin potentials
have different eigenstates

For collinear magnetic fields, we consider two spin poten-
tials as different if they differ by more than a spin constant.

Consider now a continuous diagonal spin potential (cor-
responding to a collinear magnetic field in the z direction)

Vie) 0 )

d —
VSPin(r) - ( 0 Vi(r)

(23)

We shall denote the diagonal spin potential by (V;,V)). The
spin-potential operator [Eq. (3)] becomes

W=V, +V, (24)

with

V,= f dr V(r)§i(x) g (r), 7=1,1. (25)
W is an eigenstate of the spin-diagonal Hamiltonian
HI=T+ W+ V,+ V. (26)

v=1(0) for an interacting (noninteracting) system.

H? commutes with N' and N, and in the (assumed) ab-
sence of degeneracy, W describes a state with a definite num-
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ber of spin-up N' and spin-down N' electrons (NT+N'=N).
It also holds that N', N'#0, i.e., the system is not com-
pletely spin polarized.

THEOREM 1. There is no other continuous potential
(V% s Vl) which has the same state W as eigenstate and whose
components differ from (V;,V|) by more than a spin-
dependent constant.

Proof. Assume the contrary that a continuous diagonal
spin potential (V1,V]) exists having W as an eigenstate and
differing from (V;,V|) by more than a spin constant.

The two Schroédinger equations are

{h yie S VT]|\P>=E|\P>, @7)
=T1,l

[h yer S \7;]|‘P>=E’|\If). (28)
=1,

Shift the potentials (V;, V) and (V%,Vi) by constants —E/N
and —E'/N and subtract the two equations to obtain

> sV ]w) =0, (29)
=T,

where &V,= \7;—\77. We assumed that 6V (r) is not a con-
stant.

Take the inner product of the left-hand side of Eq. (29)
with <0|¢1(rN)'"lpi(rNTH)lﬁT(rNT)'"¢T(r1)~ Doing the com-
mutators, we find

N N
> Vi) + > 5Vi(rj) W(ry, ... ,ENEN L - -5 EN)
i=1 J=NT+1
=0, (30)
where
Y(ry, ... NN s e ,ry)
(Ol ey - ey )y () - () 9)

\”NT'NL'
(31

In the following, we denote by W(r,,...,ry) the wave func-
tion in Eq. (31). The normalized wave function W(r, ...,ry)
is antisymmetric in r;, I<isNy, and r;, Ni+1<j<N, but
not with respect to an interchange of a “spin-up” and a “spin-
down” coordinate r; and r;. W(ry,...,ry) has the same
spin-up and spin-down densities as W and satisfies the fol-
lowing Schrodinger equation:

NI

N N
— o2 V2V X Vi)
m =1 i=1

j=NT+1
7w 1

+- D — |W(ry,...,ry) =E¥(ry, ...,ry). (32)
2 =1 T

Hence, W(r,,...,ry) can be interpreted to describe a two-
component system of spin-1/2 fermions.
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Consider a region Ry in R3N, where R is the real axis,
with the property that W(r,,...,ry) is nonzero for all
{r|,...,en1:TN1415 ..., Ty} belonging in Ry. Divide Eq. (30)

through by W(r,,...,ry) to get
E SVi(r,) + E 8V (r)=0 (33)
J=Ni+1
for all r;, r; which form points {r;,....ry ; rNTH, ...,ry} of

Ry- Since the two terms on the left-hand side in Eq. (33)
correspond to different coordinates, we must have that each
term separately equals a constant: XY oVy(r)=C and
EIV_NTH&Vl(r): —C. By the same argument, 6V,(r;)=C/N,;
and 6V|(r;)=—C/N, for any admissible r;, r;.

The region where W is nonzero is bounded by a nodal
surface, so R is separated in disconnected regions R and
the corresponding constants C may be different in the differ-
ent regions.

The vectors r; and r; which, compose the 3N-dimensional
vectors of Ry, will form the regions R' and R' in R*:
r,eR! and r;e R!. Vectors r; and r; composing
3N-dimensional Vectors in a different region R will form
different, in general, regions R!" and R'’ of R3. If either R'
and R!" or R! and R'’ have common points, then the con-
stants C and C’ will be the same. There must be two R and
R!" with no common points, or else oVy(r), 6V,(r) would
equal two constants, which is absurd. Then, there must be
two such regions which are neighboring, because all R? must
be covered. Hence, for points r, r’ belonging in different R
and R!" and which are arbitrarily close, oV,(r)=C/N; and
oV,(r")=C'/N;, which implies that the constants C and C’
must be equal, which is absurd. The constants must be equal
because, otherwise, the potential V; would be discontinuous,
as it would be equal to V;(r)+C/N; and to V,(r')+C’"/N;
for points r, r’, which lie arbitrarily close. So, the proof is
complete.

The similarity between the formulations of SDFT and of
two-component DFT (Ref. 18) is noteworthy.

III. NONCOLLINEAR MAGNETIC FIELDS

A. The example by von Barth and Hedin

The general case of noncollinear SDFT is not very differ-
ent. We focus first on the example of von Barth and Hedin.
For any single-electron state W, they constructed a single-
particle spin potential 1, which acting on W gives zero,

V' =0. (34)

Hence, if W is the ground state of a spin Hamiltonian 7:(, then
¥ will be an eigenstate of H+\V'. A whole class of V' was
found, and it was argued that small enough A must exist for
which W is the g.s. of H+\V'. von Barth and Hedin did not
explain how they constructed V', but it is easy to do so: any
single-particle state ¥ with spinor wave function
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#(r) )
(zm(r) (35)

defines its own (local) orientation in spin space, call it spin
up,

'PT(I'))‘ (36)

W (r)

The spin-down orientation is also defined as follows:

1) = [|l,//¢(r)|2 + |'//¢(l')|2]‘”2(

1= (@) + [y (o)1 "2< Ui ) (37)

¢y (r)
One can construct single-particle, spin-up, , and spin-
down, i ir ei
state,
[T ) =), [IXLIW)=0. (38)

So, W is an eigenstate of the single-particle spin-down num-
ber operator ||)(|| with eigenvalue zero, and for any V'(r),
the spin potential V'=V’(r)| | }{|| maps ¥ to zero. It is evi-
dent that this example is a generalization to the noncollinear
case of the accidental nonuniqueness for collinear systems
fully saturated in one spin direction, leaving the potential in
the other spin direction undetermined.'® In order to extend
the example of von Barth and Hedin to many-electron sys-
tems, one would need to construct fully spin-polarized pure-
spin states and therefore to obtain a local rotation in spin

space that reduces H to spin-diagonal form.

B. Can the Hamiltonian 7{ be spin diagonalized?

We point out that the discovery by Eschrig and Pickett
relies exactly on the assumption that this is possible. In fact,
criticism on the reasoning by Eschrig and Pickett (footnote
18 in Ref. 13), misses the point, as it is restricted to Hamil-
tonians that cannot be transformed to spin-diagonal form.

So, given the proof'? that impure-spin states do not lead to
any kind of nonuniqueness, the question about the invertibil-
ity of the mapping between spin potentials and ground states
for noncollinear spin Hamiltonians boils down to the exis-
tence or not of a local transformation that spin diagonalizes

H. We consequently prove the following:

THEOREM 2. The Hamiltonian 7 in Eq. (1) cannot be
transformed to spin-diagonal form, unless the magnetic field
is collinear.

Proof. We introduce the general unitary transformation
that rotates locally, at every point in real space, the spin
degrees of freedom,

P - ¢'’™ gin w(r)

e gin w(r) e cos w(r)

cos w(r)

U(r)= ( ) (39)

O(r), ¢(r), and w(r) are real functions. We have

Ur)UT(r) =U(r)U(r) =1. (40)

Rotated in spin space, the second quantized fermion field
operators can be defined as follows:
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(T W) = (GO FE)Ur), (41)

W(r) I (r)
(ﬁ ) Ur )( ! (42)
v (r) 'm(r)
To familiarize ourselves with the notation, it is straightfor-

ward to confirm that the charge density operator p(r) is ro-
tation (gauge) invariant:

PO = (GO P(r ))("’T( ))

%(r)

= (PO F OO )("’T( )>
,(6)

‘f'T(l' ) )

W (r)

Is there a U that diagonalizes H in spin space?

A rotation in spin space may transform locally the mag-

= («Iﬁ(r)«lﬁ(r))(

netic field operator Z;U to diagonal form. V and V* are inde-
pendent of spin and do not change form. However, the

kinetic-energy operator 7" in Eq. (2) is not invariant under the
gauge transformation [Eq. (39)] and the transformed operator
represents the motion of a particle in a gauge vector potential

A(r) in spin space:
r )>’ )

‘Ifl(r)

T——fdr(\lf (r)\If (r)[-iV +A]2(

where A(r)=—iU(r) VU(r).
We further consider the rotated spin-up and down number
operators,

Ny, = J dr W)W (r), 7=1.1, (44)
and the magnetization operator in rotated spin space,
by=Ny;—Ny,. (45)

Rotating back to the original spin space, we see that I;U is the
operator of a magnetic field by(r)/uo [Eq. (13)]:

Buz—fdrrﬁ(r)-bu—(r). (46)
Mo
by(r) is, in general, noncollinear,
by,(r) == sin 2w(r)cos((r) — ¢(r)),
byy(r) = = sin 2w(r)sin(A(r) - ¢(r)),
by.(r) = +cos 2w(r), (47)

and has unit magnitude bﬁ(r): 1.
We obtain tautologically the argument of Eschrig and
Pickett. A pure-spin state (in rotated spin space) is by defi-

nition an eigenstate of the rotated magnetization l;U, which in
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the unrotated spin space represents a noncollinear magnetic
field with constant magnitude. Of course, the question is
whether pure- spin states exist, or equlvalently whether an

operator by exists that commutes with 7.1 In that case, H
could be brought to spin-diagonal form. Indeed, in Ref. 12, it

is explicitly assumed that such BU exists [l;U is denoted 00,
defined by Eq. (15) in (Ref. 12)].

To answer the question, we need the commutator [7:[I;U]
We have [Vee,éu]=[‘7,l;u]=0 and

[T.by]=-ih 2 fdrja(r) Vby,(r), (48)

a=x,y.,z

[B.5y] = - 4i f dr ey - 2P0 )
Mo

where

n ih
D)= 5 [V GH ) (*”T())

'ﬂl(l‘)
—(@(r)ﬂ(r))oa[V(‘f’T(r))] . a=xyz
W (r)

(50)

The two commutators correspond to operators for differ-
ent physical quantities; i[f,l;U] describes the interaction of

currents with vector potentials and i[é,l;u] the energy of a
magnetic moment in a magnetic field, and hence they cannot

cancel each other. In order that [7:[,13U]:0, each commutator
must vanish separately. From Eq. (48), we have Vb, (r)
=0, i.e., by is independent of r. From (49), we have B(r)
X by=0 and B(r) must be collinear, as it has to be parallel to
by, which does not depend on r.

Hence, in the noncollinear case, the Hamiltonian cannot
be spin diagonalized by a rotation in spin space, and for
many-electron systems, the mapping between spin potentials
and ground states is invertible.!?

IV. NONCOLLINEAR EXCHANGE AND CORRELATION
ENERGY FUNCTIONAL

An obvious challenge, since the spin-density matrix [Eq.
(16)] for the uniform electron-gas model has vanishing off-
diagonal matrix elements, is how to obtain the equivalent
of the local-spin-density approximation (LSDA) and
generalized-gradient approximation (GGA) for the exchange
and correlation energy functional E,. in the noncollinear
case. The problem was tackled elegantly by employing col-
linear functionals to simulate the noncollinear E,..5%?!

The magnetization density [Eq. (21)] is rotated to locally
spin-diagonal form,!”

m(r) - o — U(r)m(r) - oU'(r) = M_(r)o.. (51)

Then, the locally diagonal spin magnetization M (r) is
viewed momentarily as if it were the magnetization density
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of a collinear system. The corresponding (exchange and cor-
relation) collinear magnetic field B, (r) is found by taking the
functional derivative of the collinear exchange and correla-
tion functional E :

SEL[p.M_]
B — e 52
(1) oM._(r) (52)
Then, B.(r) (seen as the magnetic field that would have re-
sulted by properly taking the functional derivative
OE, [p.M_]/ 8M_(r) of the noncollinear functional) is rotated
back,!”

B.(r)o. — U'(r)B.(r)a.U(r) = B(r) - o, (53)

to obtain the noncollinear magnetic field B(r) [Eq. (10)].
Finally, Pauli-like KS equations are solved using B(r). Per-
turbative corrections (spin stiffness) for the noncollinear ex-
change energy have also been proposed.?! The method has
given access, successfully, to a wide range of systems exhib-
iting noncollinear magnetism,®° notably the spiral spin-
density-wave g.s. of y-Fe.?>?3

However, formally, the noncollinear E,[p,M_] rather
than the collinear exchange and correlation energy should
have been used for the functional derivative [Eq. (52)]. The
difference is the absence of the vector potential in E% [p, M._].
We shall investigate the effect of this omission for weak A
and we shall derive a correction in first order [Eq. (69)] for
E°[p,M.]. The correction should describe the effect of A
fairly accurately, since the quality of the results, so far, indi-
cates that probably A is a weak perturbation.

Following Korenman et al.,”° the transformed Kkinetic-
energy operator [Eq. (43)] can be expressed as a sum of three
terms as follows:

fw: ’i‘o'l-’f/_\'l-‘/}A, (54)

where T, has the familiar form [Eq. (2)] in terms of the
rotated field operators [Eq. (41) and (42)],

. h?
To=—-— 2>

dr Wi(r)V>¥ (r). (55)
2m =11

f"A is linear in A and describes the interaction of A with spin
currents,

fA = fm + fA)‘ + ’fAZ’ (56)
with
TAa=thr ja(r) 'Aa(r)a a=x,y,2, (57)

where the spin-current density operators are given by
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. ih e W
Jal)=2 - [VOPRr)\PI(r))]aa(@TEr; )
m lr
_(xﬁ;(r)@j(r»%{v(“ﬁ(”)] P
\I’L(r)

(58)
and the vector potential by

A, =sin(0+ ¢)Vw —cos(§+ ¢)sin w cos oV(6- @),
A, =sin(6+ ¢)Vw + cos(0+ ¢)sin w cos wV(6- ¢),

A.=-cos’ wV@-sin’ 0V .

‘7A contains the square of A and has the form of a potential
energy operator:

Va= f dr p(r)Va(r), (59)
where
hZ
Va(r) = 2—[A,%<r) +AS(r) + AX(r)]. (60)

In order to analyze the noncollinear exchange and corre-
lation functional

1 ’
Exc[p7m] = F[p’m] - Ts[p’m] - 5 f %’ (61)

we study separately the noninteracting kinetic-energy func-
tional 7[p,m] and the universal energy functional F[p,m].
The noninteracting kinetic-energy functional

T[pm]= min (DITIOY = (D, | TP, ), (62)

—p,m

where @, ., is the impure-spin KS state, is written in rotated
spin space as

TLp,m] = (D, | To+ Ta+ VAP, ). (63)

We note that M_(r) represents in rotated spin-space the
same magnetization density as m(r) in the laboratory (i.e.,
unrotated) spin space.

We further define

7M. = min (@|To|0)= (@) [ToPyp). (64

—p.M,

T°[p,M,] would be the collinear noninteracting kinetic-
energy functional if M, were a collinear magnetization den-
sity in the laboratory spin-space. The minimizing (KS) state
@, u_ is pure spin. For weak A, we can approximate T{p,m]

by T%[p,M.] plus a correction:
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Tx[p’m] = T?[pst] + <q)p,MZ|TAZ|q)p,MZ>

+ f dr p(r)Va(r) + AT [p.M ].  (65)

The first-order terms ((DP,MJfA“JCI)p,M) vanish because
(I)P’Mz is pure spin and the operators fo,\' flip a spin [Egs.
(57) and (58)]. The last term AT,[p,M_] contains second
order and higher corrections in A.

A similar analysis can be carried out for the internal en-
ergy functional,

Flpm] = min (W[T+ Ve®) = (¥, [T+ V¥, ). (66)

—p,m

W, m is the minimizing state (impure spin). We then define
FO[P’Mz] = xymirzlvz <\P|7A"0 + ‘A/ee|qf> = <‘PP,MJYAWO + ‘A/ee|‘Pp,Mz>'
—p.M,

(67)

Flp.M -] would also be the collinear universal internal en-
ergy functional if M, were a collinear magnetization density
in the laboratory spin space. The minimizing state \prqu is
pure spin. For weak A, we have

Flpm]=F[p,M.]+ (W0 [Ta ¥, 01 )

¥ f dr p(r)Va(r) + AF[p,M.],  (68)

where AF[p,M_] contains second- and higher-order correc-
tions in A.

The noncollinear exchange and correlation functional can
be expanded as follows:

E. [p.m]=E’[p,M_]+EV[p,M]+AE, [p,M.]. (69)

E°[p,M.] is the collinear exchange and correlation energy
functional, where M, represents a collinear magnetization
density in the laboratory spin space,

p(r)p(r’)

r—r’
Eil)[p,MZ] is a first-order correlation energy correction,
EE'I)[p’Mz] = <\Pp,MZ|TAZ|\I,p,MZ> - <q>p,MZ|TAZ|CDp,M:>’ (71)

and AE,[p,M_] contains second- and higher-order correc-
tions,

E&-[P,Mz] = FO[p’Mz] - T?[p9Mz] - % J > (70)

AExc[p’Mz] = AF[p9Mz] - ATs[p’le (72)

In the noncollinear LSDA/GGA method used so far,®® in-
stead of the noncollinear E,[p,m], one employs E°[p,M.].

From Eqgs. (69) and (71), the main first-order correction Eil)
is given in terms of the pure-spin states ®,,, , ¥, . Con-
sequently, it is possible to obtain an LSDA approximation
EEIL)SD ALp.M_], using the spin-polarized uniform electron-gas
model, in order to obtain a noncollinear LSDA exchange and
correlation energy functional that takes into account the ef-
fect of A to lowest order.
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Recently, the formalism was developed to treat exchange
exactly for noncollinear magnets.”* Preliminary applications
show that noncollinearity of the spin density in exact ex-
change is enhanced compared with the result of noncollinear
LSDA.? This difference may be the result of the absence of
correlation in the exact-exchange calculations, but it is
equally possible that it is attributed to the missing term in the
noncollinear LSDA exchange and correlation functional. It is
intriguing to derive and observe the effect of the correction
we have suggested and to compare results with the exact-
exchange scheme.

V. SUMMARY

Our study has addressed a mathematical issue in SDFT
which accompanied the theory since it was first introduced.
The question has been whether more than one spin potential
may share the same ground state. If this were possible, the
meaningfulness of the KS system would be in doubt. The
latter is the noninteracting system, which is bound by an
effective spin potential that forces its g.s. single-particle spin
density to be the same as the interacting system’s. If the
noninteracting spin potential could not be determined
uniquely, the KS system itself would not be unique.

For the collinear case, it has been shown already'>'* that
apart from an arbitrariness of a spin constant in the spin
potential and for systems which are not fully spin polarized,
the ground state determines the diagonal spin potential
uniquely.

The same question for noncollinear magnetic fields
seemed harder but it is not. For systems with more than one
electron, it actually reduces to whether a spin Hamiltonian
can be locally rotated in spin space to spin-diagonal form.
The main result of this paper is to show that this is only
possible for collinear magnetic fields. Consequently, with the
exception perhaps of pathological cases,'” the invertibility of
the mapping between spin potentials and g.s. spin densities is
ensured both for collinear and for noncollinear magnetic
fields.

As is often the case, our search to improve the mathemati-
cal foundations of the theory leads to better understanding
and refining of the approximations used. Our study helps us
identify a formal correction in the noncollinear exchange and
correlation energy functional in LSDA/GGA to account for
the vector potential A, which arises as the result of the rota-
tion in spin space to diagonalize the spin density. The suc-
cess of the noncollinear LSDA/GGA approximation as used
so far indicates that the correction, for many systems, is
probably small; however, this prediction must be tested.
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