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Prediction of band gaps in phononic quasicrystals based on single-rod resonances
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Band-gap formation in two-dimensional quasiperiodic polymer/water heterostructures (with 4- to 14-fold
Patterson symmetry in this study) is governed by strong acoustic resonances of the sound-soft single scatterers.
Already with an eightfold-symmetric structure the first band gap is very isotropic. For isotropy of the higher
gaps higher-symmetric structures are required. However, this can also be achieved by a smart tuning of the
properties of the scatterers. Their symmetry (and therewith the symmetries of the scattered fields) has to better
match the symmetry of a given structure. Polygon- and star-shaped prisms on quasiperiodic structures can yield
smoother and more isotropic gaps in transmission spectra.
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INTRODUCTION

The study of classical wave propagation in periodic het-
erostructures, i.e., photonic (PTC’s) and phononic crystals
(PNC’s), started almost 20 years ago.' Since then, the prom-
ising applications such as optical computers and devices
have spurred an almost exponential growth of the number of
publications on PTC’s.? Far less work has been devoted to
PNC’s. For these, potential applications are expected in noise
control and ultrasonic technology, for instance. The similar-
ity of PTC’s and PNC'’s allows, to some extent, a knowledge
transfer and increases the impact of discoveries in each field.
The fascinating type of composite materials can be described
as one-, two- (2D), or three-dimensional meta crystals built
of objects which scatter electromagnetic or elastic (acoustic)
waves if the wavelength is on the scale of the lattice period
(for a comprehensive review, see Ref. 3).

The existence of omnidirectional band gaps, which is im-
portant for most applications, is strongly favored by high
symmetries of the heterostructures. The rotational symmetry
of periodic structures is limited to sixfold. For 2D quasiperi-
odic structures there is no upper limit and consequently quite
a few publications already report the peculiarities of quasi-
periodic PTC’s (QPTC’s) and PNC’s (QPNC’s) (see Refs.
4-8, and references therein). However, bands and gaps in
QPNC’s are well defined in particular cases only (i.e., in
some systems only pseudogaps were found’ similar to the
electronic pseudogaps of real quasicrystals) and their forma-
tion and structure is not yet thoroughly understood. In the
following, we present a study of the scattering properties of
single rods and show how this information supports the un-
derstanding of the formation and the optimization of band
gaps in QPNC’s. The transmission spectra for a square lattice
PNC as well as QPNC’s with 8-, 10-, 12-, and 14-fold Patter-
son symmetry (see Fig. 1) were calculated by a finite differ-
ence approximation in the time domain (FDTD).!” For the
scattering cross-section calculations of cylindrical rods we
have used a multipole-expansion method!! and for all other
rods the FDTD method.

I. SYSTEMS OF CIRCULAR CYLINDRICAL RODS

The type of scattering in PNC’s has been known to be of
prime importance ever since the first PNC’s were created. It
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can be adjusted by the impedance contrast of the constituent
phases as well as by the volume fraction of the scattering
objects. Especially in systems with hard contrasts and sparse
scatterer distributions, the mechanism for band-gap forma-
tion is based on Bragg scattering. Strong Bragg peaks in the
Fourier spectrum of the underlying structures directly indi-
cate the possible frequency ranges of the band gaps.®® On
the other hand, in soft-contrast systems with sufficiently high
filling fraction, the resonance modes of the scattering objects
can play a very dominant role in determining the frequency
ranges of band gaps [the approach was used early for PNC’s
(Ref. 12) and recently also applied to QPTC’s (Ref. 13)]. The
resonance frequencies are independent of the structure, in-
stead they scale with the speed of sound in the material of
the scatterers and inversely with their size. The coupling of
such resonance states in a QPNC spreads these states to form
a band. The interaction of this band with the continuum band
of the effective medium produces a band gap due to hybrid-
ization (for a very clear description of this mechanism see
Ref. 14). The correlation of resonance frequencies and gap
positions is shown in a comparison of PNC’s and QPNC’s of
4-, 8-, 10-, 12-, and 14-fold Patterson symmetry (Fig. 2). The
heterostructures consist of polymeric rods (v;=1800 m/s,
v,=800 m/s, p=1.14 kg/m?) in water at filling fractions of
0.17. Samples of about the same thickness in direction of
transmission were set up with 357, 361, 365, and 355 rods
for the QPNC’s with 8-, 10-, 12-, and 14-fold Patterson sym-
metry, respectively. Similar to what has been found by Rock-
stuhl et al.'3 for photonic systems, the band gaps occur at
frequencies close to those of the resonance states in the scat-
tering cross sections of a single rod. Nevertheless, in these
(Q)PNC'’s the arrangement of the rods does play a crucial
role. For the periodic square lattice PNC the first band gap is
shifted by almost as much as its width if the direction of
transmission is changed. A very bad overlap results. This
overlap is clearly getting better with an increasing degree of
rotational symmetry of the arrangement of the scatterers.
While for the 8-fold structure mainly the first gap is absolute,
for the 12-fold structure all gaps are perfectly isotropic. The
increasing symmetry of the structures also leads to broad-
ened band gaps with less sharp edges (i.e., spikes associated
with localized modes appear). This effect can also be seen as
due to more inhomogeneous nearest-neighbor-distance distri-
butions of the highly symmetric structures. The shorter dis-
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FIG. 1. Quasiperiodic structures with 8-, 10-, 12-, and 14-fold
Patterson symmetry considered in this study. The arrows in each
pattern designate the independent high-symmetry directions.

tances tend to broaden the gap and the wider spacings to
close it. In the square structure all rods have the same coor-
dination and thus the overlap of their scattered field lobes
with those scattered from neighboring rods is equal (i.e.,
equal transfer parameters). Thus, for the formation of isotro-
pic and sharply bound band gaps a structure with high Patter-
son symmetry and only few different vertex coordinations
seems most promising (i.e., not a random arrangement).
Quasiperiodic structures optimally combine this.

In order to predict the isotropy of a band gap in
(Q)PNC’s, the scattered wave field W, can be analyzed for
the resonance, which induceds the gap

)

W (r,0) = >, ¢, ()], (kr)cos(m8), (1)

m=0

with J,, being Bessel functions of the first kind and c,, the
coefficients obtained from evaluation of the boundary condi-
tion at the cylinder surface.!' The index m of the strongest
coefficients in the spectrum of the expansion in cylindrical
harmonics c,, is indicated below the resonance peaks in Fig.
2. These eigenmodes feature 2m-fold rotational symmetry
and in the case of a single-valued spectrum, the scattered
field predominantly adopts the symmetry of this component.

For transmission in the two high-symmetry directions in-
dicated in Fig. 1, the scattered waves typically encounter
nearest-neighbor rods on vertices of regular n-sided polygons
(with one vertex in the forward direction) for even and
2n-sided polygons for odd n (direction of dark arrows in Fig.
1) or just between these neighbor vertices (bright arrows).
Strong interaction of scattered waves (i.e., a large overlap of
the scattered field lobes) occurs most likely when the field
lobes point in the direction of the nearest-neighbor rods. This
interaction strength spreads the bands of coupled resonance
states which, by hybridization with the continuum band, pro-
duce the band gaps and determine their widths. Omnidirec-
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FIG. 2. Transmission spectra for square PNC and QPNC’s with
different Patterson symmetry (a). The two curves in each section
correspond to the two directions of transmission indicated with ar-
rows of the same line style in Fig. 1. Resonance states in the scat-
tering cross section of a cylinder (b).

tional gaps can be expected from modes with lobes of the
scattered fields covering rods in the directions of both the
vertices of the n-sided polygons as well as those in between
them; this is when n is a multiple of m (e.g., the first gap in
the octagonal system). Modes of low symmetry form isotro-
pic gaps in highly symmetric structures because the broad
field lobes cannot resolve the angular fine structures of the
n-sided polygons hosting the rods. This almost guarantees
isotropy of the first gaps in QPNC’s with large n. However,
optimal performance requires a good match of structure and
scatterer.

II. SYSTEMS OF POLYGONAL OR STAR-SHAPED
PRISMS

Due to the dominant role the properties of single scatter-
ers play in the band-gap formation, a more detailed exami-
nation of these seems crucial. In this section we study the
influence of modified geometrical cross sections of the rods
on their scattering behavior. The shapes analyzed here are
regular n-sided polygons (with constant incircle) and a five-
pointed star. They are interesting from many points of view.
First, we have seen that the high-symmetry resonance modes
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FIG. 3. Scattering cross sections for plane waves at polygonal

prisms (shown on the right-hand side) in different orientations
(wave incident along the lines crossing the shapes).

do not easily form isotropic gaps. A reduction of the symme-
try of the scattering object can affect the symmetry of the
modes. Second, for scatterers with lower symmetry (different
extensions in different directions) the resonance frequencies
should change with the direction of the incident plane wave.
This variation could lead to widened gaps in QPNC’s. Third,
the faces of the polygons and stars form sets of broken
planes, which could give rise to a stronger interaction of
reflected wave intensity.

For the polygonal prisms, the scattering cross sections for
plane waves are shown in Fig. 3. In the frequency range of
interest they are very similar for cylindrical rods and for
polygons with large n. The scattering strengths as well as the
Q factors of the resonances are similar for all shapes of rods.
The scattering behavior of the octagonal prism deviates from
that of the cylindrical rod only in the orientation-dependent
frequency of the fourth resonance. For the pentagonal rod
more evenly spaced resonances appear, which are almost in-
dependent of the direction of incidence of the plane wave.
The square and the triangular prisms show clearly different
spectra. As anticipated, they possess more resonances at low
frequencies and these depend strongly on the direction of
incidence of the plane wave. Especially for the very first
resonances, there are certain directions from which these
modes cannot be excited at all. In oblique directions though,
most modes are accessible.

Now, let us have a look at how the band gaps of a QP-
NC’s of polygonal rods look like. Uniformly oriented pen-
tagonal rods on the Penrose quasilattice produce the spectra
shown in Fig. 4. Compared to the Penrose QPNC with cy-
lindrical rods (Fig. 2) this QPNC clearly features more iso-
tropic band gaps. Again, the gaps appear exactly at the reso-
nance frequencies. Due to the unsplit second peak, there are
fewer gaps but instead they agree better in their position and
width for the different directions of transmission. The spectra
are also smoother than those of the cylindrical rod system
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FIG. 4. Band gaps in transmission spectra of the Penrose QPNC
(a) and the resonance modes of the pentagonal prisms inducing the
gaps (b). The scattered fields || for the pentagonal (c) and the
star-shaped prisms (d) at their common resonance frequency [see
arrow in Fig. 5(b)].

around the second and third resonances of the cylinder,
which are very close. The amplitude distribution of the scat-
tered field |W| at the first resonance of the pentagonal prism
is shown in Fig. 4(c). It features well-defined fourfold
symmetry.

In Fig. 5(b) the scattering cross section of a five-pointed-
star-shaped prism (incircle 0.3 mm) is shown and compared
to that of the pentagonal prism. The first resonance appears
at very low frequency. It reflects the larger maximal exten-
sion of the star and its intensity is weak. In the arrangement
of the star-shaped rods on the Penrose structure, this mode
induces only a weak attenuation peak. The second resonance
frequency is almost equal to the first one of the pentagonal
rod. The scattered fields at this common resonance frequency
are similar as shown in Figs. 4(c) and 4(d) and can be further
characterized by the radiation patterns shown in Fig. 5.
These patterns show the angular distribution of scattered in-
tensity for the far field [Fig. 5(c)] and at a distance I, away
from the scatter [Fig. 5(d)] (with [, being the edge length of
the Penrose tiling). According to these patterns, the noncy-
lindrical scatterers produce slightly less sharp field lobes at
both distances. Thus, slightly better isotropies of the gaps
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FIG. 5. (a) Band gaps in transmission spectra of the Penrose
QPNC consisting of star-shaped prisms and (b) the resonance
modes of single prisms inducing the gaps. Radiation patterns for
resonances indicated with an arrow in (b), for the pentagonal and
the star-shaped prisms as well as the first cylindrical resonance
measured in the far field (c), and at a distance [, away from the
prisms (d) (with /. being the edge length of the Penrose tiling).
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FIG. 6. All resonances of the square rods contribute to the for-
mation of band gaps in the octagonal QPNC (a) although some of
them can be excited only in certain orientations (b). The orienta-
tions of the square rods on the tiling are shown in a quarter section
of the QPNC in (c).

can be expected for the Penrose QPNC with pentagonal or
star-shaped prisms as compared to those of the cylindrical
system. The first two star resonances produce highly isotro-
pic transmission gaps in the QPNC. These gaps are again
smoother than those induced by resonances of cylindrical
rods and their width is rather small. The different widths of
the coinciding gaps of the pentagonal and star systems are
indicated by the different Q factors of the corresponding
resonances.

To give an example for QPNC’s consisting of the more
anisotropic square rods, we have analyzed an octagonal
QPNC. The orientations of the rods [see Fig. 6(c)] are chosen
in such a way that the eightfold symmetry of the structure is
preserved. Corresponding transmission spectra are compared
with the different scattering cross sections of the square rod
in Fig. 6. The resonances that are accessible only in certain
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directions all contribute to the isotropic, almost overlapping
(and therewith broadened), first gap. Thus, anisotropic reso-
nances can form isotropic band gaps at lower frequencies. At
higher frequencies only the isotropic modes produce absolute
band gaps. The spectra are not smoother than those of the
system with cylindrical rods but despite the reduction of
symmetry of the scatterers the band gaps are highly isotro-

pic.

CONCLUSIONS

We conclude that quasiperiodic geometries are very well
suited for phononic crystals consisting of soft-contrast cylin-
drical rods in a liquid host. The strong resonances of such
rods govern the formation of band gaps and allow the high
rotational symmetries of quasiperiodic structures to be fully
exploited to make the band gaps isotropic (in contrast to
systems without resonances®). In addition to the usual focus
on the arrangement we have shown that simpler and more
isotropic transmission spectra can be obtained alternatively
by using polygonal or star-shaped rods, the scattered fields of
which better match the symmetry of the structures. The high
degree of isotropy seems very promising for all types of
applications of such heterostructures, and may also encour-
age further analysis of new, interesting building blocks for
phononic as well as photonic crystals other than cylindrical
rods.
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