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Small systems �of interest in the areas of nanophysics, quantum information, etc.� are particularly vulnerable
to environmental effects. Thus, we determine various thermodynamic functions for an oscillator in an arbitrary
heat bath at arbitrary temperatures. Explicit results are presented for the most commonly discussed heat bath
models: Ohmic, single relaxation time, and blackbody radiation.
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I. INTRODUCTION

Heat bath models are of topical interest especially in areas
such as quantum information and nanophysics. Thus, it is
important to develop realistic calculations that can be used to
make contact with experiments. Here, we wish to examine
the effects of a heat bath on various thermodynamic func-
tions such as entropy, partition function, average energy, spe-
cific heat, and heat capacity. Our starting point is based on an
exact result which we have previously derived for the free
energy of an oscillator in an arbitrary heat bath, in terms of a
single integral involving the generalized susceptibility1 aris-
ing from the associated quantum Langevin equation.2 This
result was used in a series of papers to obtain free energy
shifts of atomic levels in a blackbody radiation field; the
effect of a heat bath on the magnetic moment of an electron
gas,3 based on a generalization of our previous work to in-
clude a magnetic field; a proof that the third �Nernst’s� law of
thermodynamics is valid in the presence of a heat bath;4 and
a demonstration that a supposed violation of the second law
is only apparent.5 Thus, because of its wide applicability, we
are motivated to systematically develop explicit results for
the most commonly discussed heat bath models. Hence, in
Sec. II, we review our starting-point Hamiltonian describing
an oscillator in an arbitrary heat bath at temperature T which
enabled us to obtain the equation of motion of the oscillator
in terms of a quantum Langevin equation which, in turn, led
us to an exact expression for the free energy of an oscillator
in an arbitrary heat bath. Next, we use this general result to
consider in detail the most commonly discussed heat bath
models, obtaining results for the free energy F�T� which in-
corporates the Ohmic, single relaxation time, and blackbody
radiation models in a form which is very similar for all cases,
involving the Stieltjes J function, whose properties we
present in the Appendix. This enables us to obtain a simple
expression in terms of the J function for the free energy F�T�
which incorporates the Ohmic, single relaxation time, and
blackbody radiation models. This expression for F�T� is then
used to obtain explicit results, both for low temperature and
high temperature, for various thermodynamic functions such
as the specific heat, the energy, and the heat capacity; these
results are presented in Sec. III �for the Ohmic model� and
Sec. IV �for the single relaxation and blackbody radiation

models�. Results for the T=0 case are given in Sec. V. We
conclude with a brief summary and discussion in Sec. VI.

II. FREE ENERGY

The most general coupling of a quantum particle coupled
to a linear passive heat bath is equivalent to an independent-
oscillator model,1,2 which is described by the Hamiltonian

H =
p2

2m
+ V�x� + �

j
� pj

2

2mj
+

1

2
mj� j

2�qj − x�2� . �2.1�

Here x and p are the particle coordinate and momentum op-
erators and V�x� is the potential energy of an external force.
The jth independent oscillator has coordinate qj and momen-
tum pj, and the generality of the model arises from the in-
finity of oscillators with an arbitrary choice of the mass mj
and frequency � j for each.

Use of the Heisenberg equations of motion leads to the
quantum Langevin equation

mẍ + �
−�

t

dt���t − t��ẋ�t�� + V��x� = F�t� , �2.2�

where ��t� is the so-called memory function. F�t� is the ran-
dom �fluctuation or noise� operator force with mean �F�t��
=0. The quantities ��t� and F�t� describe the properties of
the heat bath and are independent of the external force.

In the particular case of an oscillator potential,

V�x� =
1

2
Kx2 =

1

2
m�0

2x2. �2.3�

Substituting Eq. �2.3� into Eq. �2.2� enables us to obtain the
explicit solution

x�t� = �
−�

t

dt�G�t − t��F�t�� , �2.4�

where G is the Green function. The Green function vanishes
for negative times, and its Fourier transform
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���� = �
0

�

dtei�tG�t� �2.5�

is the familiar response function �generalized susceptibility�.
This is given by

��z� =
1

− mz2 − iz�̃�z� + K
, �2.6�

where �̃�z� is the Fourier transform of the memory function:

�̃�z� = �
0

�

dt��t�eizt. �2.7�

Note that �̃�z� and, hence, also ��z� are analytic in the upper
half plane.

The system of an oscillator coupled to a heat bath in ther-
mal equilibrium at temperature T has a well-defined free en-
ergy. The free energy ascribed to the oscillator, F�T�, is given
by the free energy of the system minus the free energy of the
heat bath in the absence of the oscillator. This calculation
was carried out by two different methods2,6 leading to the
“remarkable formula”

F�T� =
1

�
�

0

�

d�f��,T�Im	d ln ��� + i0+�
d�


 , �2.8�

where f�� ,T� is the free energy of a single oscillator of
frequency �, given by

f��,T� = kT ln�1 − exp�− ��/kT�� . �2.9�

Here the zero-point contribution ��� /2� has been omitted,
but in the brief section V we remark upon this contribution.
We have referred to Eq. �2.8� as a “remarkable formula,”2,6

in the sense that it displays a nontrivial dependence on the
temperature T, in contrast with the corresponding classical
formula. We have now all the basic tools at our disposal and
we proceed to consider three cases of interest:

�̃�z� = �, Ohmic,

�̃�z� =
�

1 − iz	
, single relaxation time,

�̃�z� =
2e2z
2

3c3�z + i
�
, quantum electrodynamics�QED� .

�2.10�

Here � is the Ohmic friction constant, while 	 is the relax-
ation time. It is generally assumed that the relaxation time is
small in the sense that 	�� /m. In the QED case, 
 is a
high-frequency cutoff characterizing the electron form factor
�
→� corresponds to a point electron�. The susceptibility
for all three cases may be combined in a single expression

��z� =
z + i


− m�z + i
���z2 + i�z − �0
2�

. �2.11�

For the single relaxation time model

	 =
1



=

1


� + �
,

�

m
= �


�2 + �
� + �0
2

�
� + ��2 ,
K

m
= �0

2 
�


� + �
.

�2.12�

The Ohmic model corresponds to the limit of 
�→�, in
which case 	→0, � /m→�, and K /m→�0

2. For the QED
model,

1



=

1


�
+

�

�0
2 ,

K

M
= �0

2 
�


� + �
,

M

m
=

��0
2 + �
���
� + ��

�0
2
�

, �2.13�

where m is the bare mass and

M = m +
2e2


3c3 �2.14�

is the renormalized �observed� mass. In this QED case, the
limit 
�→� corresponds to the largest value of the cutoff 

consistent with a positive bare mass; that is, in this limit m
=0, K=M�0

2, and 
=1/	e, where

	e =
2e2

3Mc3 = 6 
 10−24 s. �2.15�

With the general form �2.11� the free energy �2.8� can be
written

F�T� =
kT

�
�

0

�

d� ln�1 − e−��/kT��−



�2 + 
2 +

�

�2 + 
�2

+
�2 + �0

2

��2 − �0
2�2 + �2�2� . �2.16�

We use partial fractions in the third term by introducing

z1 =
�

2
+ i�1, z1

* =
�

2
− i�1, �1 =
�0

2 −
�2

4
,

�2.17�

and we note that, for the overdamped case ��� /2���0�, �1

is imaginary, in which case z1= �
2 − ��1� and z1

*= �
2 + ��1�.

Hence

F�T� =
kT

�
�

0

�

d� ln�1 − e−��/kT��−



�2 + 
2 +

�

�2 + 
�2

+
z1

�2 + z1
2 +

z1
*

�2 + z1
*2�

= kT	J� �


2�kT
� − J� �
�

2�kT
� − J� �z1

2�kT
� − J� �z1

*

2�kT
�
 ,

�2.18�

where J�z� is the Stieltjes J function:
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J�z� = −
1

�
�

0

�

dt ln�1 − e−2�t�
z

t2 + z2 , Im z � 0.

�2.19�

In the next two sections, we consider the three specific mod-
els separately and in detail. For this purpose, we make ex-
tensive use of the J function, whose properties are discussed
in detail in the Appendix.

III. OHMIC MODEL

Here

F�T� = − kT�J� �z1

2�kT
� + J� �z1

*

2�kT
�� , �3.1�

where in the expression �2.17� for z1 and z1
* we put �0

=
K /m and �=� /m.

A. Low-temperature expansion „kT™��0…

In the low-temperature case we use the asymptotic expan-
sion �A5� for J. With this we obtain for the free energy

F�T� = − ���kT�2�

6��0
2 +

�3�kT�4��3�0
2 − �2�

45�3�0
6

+
8�5�kT�6��5�0

4 − 5�2�0
2 + �4�

315�5�0
10 + ¯ � . �3.2�

The entropy is

S�T� = −
�F�T�

�T

= k��kT�

3��0
2 +

4�3�kT�3��3�0
2 − �2�

45�3�0
6

+
16�5�kT�5��5�0

4 − 5�2�0
2 + �4�

105�5�0
10 + ¯ �

+
16�5�kT�6��5�0

4 − 5�2�0
2 + �4�

105�5�0
10

−
8�5�kT�6��5�0

4 − 5�2�0
2 + �4�

315�5�0
10 . �3.3�

The energy is

U�T� = F + TS

=
��kT�2�

6��0
2 +

�3�kT�4��3�0
2 − �2�

15�3�0
6

+
8�5�kT�6��5�0

4 − 5�2�0
2 + �4�

63�5�0
10 + ¯ . �3.4�

The specific heat is

C�T� = T
�S

�T

= k��kT�

3��0
2 +

4�3�kT�3��3�0
2 − �2�

15�3�0
6

+
16�5�kT�5��5�0

4 − 5�2�0
2 + �4�

21�5�0
10 + ¯ � .

�3.5�

As a check, we note that the leading term in Eq. �3.2� agrees
with the result obtained by us in Ref. 4 while the leading
term in Eq. �3.3� agrees with our earlier results4 as well as a
recent result of Hanggi and Ingold.7 In addition, the first two
terms in Eq. �3.5� agree with the results obtained in Ref. 7.

B. High-temperature expansion „kTš��0…

In the high-temperature case we use the small argument
expansion �A4� for J, with the result

F�T� = − kT ln
kT

��0
−

��

2�
ln

2�kT

��0
−

��1

�
arccos

�

2�0

−
��

2�
�1 − �E� − 2kT�

n=2

�

�− �n��n�
n

� ��0

2�kT
�n


cos�n arccos
�

2�0
� . �3.6�

As a check we consider the uncoupled oscillator. Forming
the limit �→0, we find

F�T� → − kT ln
kT

��0
−

��0

2
+ kT�

n=1

�
��2n�

n
� ��0

2�kT
�2n

= kT ln�1 − e−��0/kT� , �3.7�

which is the familiar result �2.9� for the uncoupled oscillator.
Here we have used the formula8

ln�1 − e−z� = ln z −
1

2
+ �

n=1

�

�− �n+1��2n�
n

� z

2�
�n

. �3.8�

Returning to the expansion �3.6�, we obtain explicit ex-
pressions for the first few terms,

F�T� = − kT ln
kT

��0
−

��

2�
log

2�kT

��0
−

��1

�
arccos

�

2�0

−
��

2�
�1 − �E� +

�2�2�0
2 − �2� .

48kT
−

��3��3��3�0
2 − �2�

24�3�kT�2

+ ¯ . �3.9�

With this, the entropy, energy, and specific heat are given,
respectively, by
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S�T� = −
�F�T�

�T

= k�ln
kT

��0
+ 1� +

��

2�T

− 2k�
n=2

�

�− �n �n − 1���n�
n

� ��0

2�kT
�n


cos�n arccos
�

2�0
� .

= k�ln
kT

��0
+ 1� +

��

2�T
+ k

�2�2�0
2 − �2�

48�kT�2

− k
��3�
12�3

�3��3�0
2 − �2�

�kT�3 , �3.10�

U�T� = F + TS

= kT −
��

2�
�ln

2�kT

��0
− �E� −

��1

�
arccos

�

2�0

− 2kT�
n=2

�

�− �n��n�� ��0

2�kT
�n

cos�n arccos
�

2�0
�

= kT −
��

2�
�ln

2�kT

��0
− �E� −

��1

�
arccos

�

2�0

+
�2�2�0

2 − �2�
24kT

−
��3�
8�3

�3��3�0
2 − �2�

�kT�2 , �3.11�

and

C�T� = T
�S

�T

= k −
��

2�T
+ 2k�

n=2

�

�− �n�n − 1���n�


� ��0

2�kT
�n

cos�n arccos
�

2�0
�

= k −
��

2�T
− k

�2�2�0
2 − �2�

24�kT�2 + k
��3�
4�3

�3��3�0
2 − �2�

�kT�3 .

�3.12�

Note that all these results apply to the overdamped case with
the prescription

�1 arccos
�

2�0
→ ��1�ln� �

2�0
−

��1�
�0

� .

Also, we again have a check in that the first three terms in
the specific heat agree with the results obtained in Ref. 7 for
the Ohmic model.

IV. SINGLE RELAXATION TIME AND NONRELATIVISTIC
QED MODELS

The free energy is now of the general form �2.18�, which
can be written

F�T� = FOhmic�T� + kT�J� �


2�kT
� − J� �
�

2�kT
�� . �4.1�

We argue that 
 and 
� will always be large compared with
kT, so it is appropriate to use the low-temperature expansion
and then only the first term. The result is

F�T� = FOhmic�T� +
��kT�2

6�
� 1



−

1


�
� . �4.2�

For the single relaxation time case, it is clear from Eqs.
�2.12� that the second term in Eq. �4.2� is very small so that
the results in this case are essentially the same as for the
Ohmic case. However, for the QED case,

1



=

1


�
+

�

�0
2 , �4.3�

so

F�T� = FOhmic�T� +
��kT�2�

6��0
2 . �4.4�

A. Low-temperature expansion „kT™��0…

The second term in Eq. �4.4� is exactly the negative of the
leading term in the low-temperature expansion �kT���0�
for the Ohmic case, given in Eq. �3.2�. In other words, the T2

term vanishes and the leading term is the T4 term. The result
is that

FQED�T� = − ��3�kT�4��3�0
2 − �2�

45�3�0
6

+
8�5�kT�6��5�0

4 − 5�2�0
2 + �4�

315�5�0
10 + ¯ � ,

�4.5�

SQED�T� = k�4�3�kT�3��3�0
2 − �2�

45�3�0
6

+
16�5�kT�5��5�0

4 − 5�2�0
2 + �4�

105�5�0
10 ¯ � ,

�4.6�

UQED�T� =
�3�kT�4��3�0

2 − �2�
15�3�0

6

+
8�5�kT�6��5�0

4 − 5�2�0
2 + �4�

63�5�0
10 + ¯ ,

�4.7�

and
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CQED�T� = k�4�3�kT�3��3�0
2 − �2�

15�3�0
6

+
16�5�kT�5��5�0

4 − 5�2�0
2 + �4�

21�5�0
10 + ¯ � .

�4.8�

We note that, in the large cutoff limit,9 �=�0
2	e, where 	e is

given in Eq. �2.15�. In this limit and with ���0, we have a
check in that the leading terms in the free energy and the
entropy agree with the results obtained earlier by us.4

B. High-temperature expansion „kTš��0…

With the high-temperature expansion �3.9� for FOhmic we
find from the general expression �4.4�

FQED�T� = − kT ln
kT

��0
+

��kT�2�

6��0
2 + ¯ , �4.9�

SQED�T� = k	�ln
kT

��0
+ 1� −

��kT��
3��0

2 + ¯ 
 , �4.10�

UQED�T� = kT −
��

3��0
2 �kT�2 + ¯ , �4.11�

and

CQED�T� = k	4�3�kT�3��3�0
2 − �2�

15�3�0
6 + ¯ 
 . �4.12�

We note that these results agree with the corresponding re-
sults in Ref. 1.

V. ZERO-POINT ENERGY

Since F=U+TS, the zero-point free energy is always
identical with the zero-point energy. The zero-point free en-
ergy is obtained by replacing f�� ,T�→�� /2 in the formula
�2.8�. The resulting expression diverges for the QED model,
whatever the cutoff. For the single relaxation time model it is
finite for finite relaxation time,

�F�zero-point =
�

2�
�

0

�

d�	−

�

�2 + 
2 +

��

�2 + 
�2 +
z1�

�2 + z1
2

+
z1

*�

�2 + z1
*2


=
�

2�
�
 ln 
 − 
� ln 
� − z1 ln z1 − z1

* ln z1
*�

=
�

2�
	
� ln


� + �


�
+ � ln


� + �

�0

+ 2�1 arccos
�

2�0

 . �5.1�

In the Ohmic limit this is logarithmically divergent,

�F�zero-point �
�

2�
	��1 − ln �0	� + 2�1 arccos

�

2�0

 .

�5.2�

VI. CONCLUSIONS

Motivated by the fact that environmental effects play an
important role in many topical areas of physics, where dissi-
pation and fluctuation effects often play a significant role, we
have presented an exact calculation of quantum thermody-
namic functions for an oscillator in an arbitrary heat bath at
arbitrary temperatures. Explicit results were obtained for
both high and low temperatures. Since we are dealing with
nonadditivity of entropies,4 we use a method based on Eq.
�2.8�, which is an exact result for the free energy of an os-
cillator which takes into account interaction effects. In the
Introduction, we have already given examples of its
application.3–5 However, there are many other possible topics
where such results are likely to be applicable. For example,
Jordan and Buttiker10 have demonstrated the relation be-
tween entanglement �due to the heat bath� and energy fluc-
tuations and concluded that large entanglement implies large
energy fluctuations. Since their work was confined to zero
temperature, it would be of interest to extend it to nonzero
temperatures. In a similar vein, the decrease of the coherence
length of an Aharonov-Bohm-like interferometer due to in-
teraction with the environment was examined but again it
was confined to zero temperature.11

Finally, we turn to a very different area where thermody-
namic considerations play a vital role—i.e., the study of
black holes. Following the remarkable results of
Bekenstein,12 there has been continuing interest in develop-
ing a microscopic theory for the entropy of a black hole and,
in particular, the fact that it depends on the area of the event
horizon. As an example, we mention the work of Bombelli
et al.13 and Srednicki,14 where the use of partial traces and
reduced density matrices played a crucial role. Since, in gen-
eral, such techniques lead to results different from those ob-
tained by the method discussed above, we feel that it would
be worthwhile to apply our approach to the study of the
thermodynamic properties of black holes.

APPENDIX: THE STIELTJES J FUNCTION

The Stieltjes J function is introduced by the integral15

J�z� = −
1

�
�

0

�

dt ln�1 − e−2�t�
z

z2 + t2 , Re�z� � 0.

�A1�

The imaginary axis is a “natural boundary” of J�z�. That is,
the analytic continuation of J�z� into the left half plane is not
given by the analytic continuation of the integrand.

This analytic continuation is based on the identity15

J�z� = ln���z + 1�� − ln 
2� − �z +
1

2
�ln�z� + z . �A2�

Since ��z� is analytic in the entire plane except for poles at
z=0,−1,−2, . . ., we can use this form throughout the z plane
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cut along the negative real axis. It is then a simple matter to
show that the continued J function is given by

J�ze±i�� = − J�z� − ln�1 − e�2�iz�, Re�z� � 0. �A3�

For �z��1, we have the expansion14

J�z� = − ln 
2� − �z + 1/2�ln z + z − �Ez + �
n=2

�
�− �n��n�

n
zn,

�A4�

where �E=0.577 215 7 is Euler’s constant and ��n� is the
Riemann zeta function. For large z we have the asymptotic
expansion16

J�z� = �
n=0

�
B2n+2

�2n + 1��2n + 2�
1

z2n+1 , �A5�

where the Bernoulli numbers are

B2 =
1

6
, B4 = −

1

30
, B6 =

1

42
, B8 = −

1

30
,

B10 =
5

66
, B12 = −

691

2730
, B14 =

7

6
, B16 = −

3617

510
,

B18 =
43867

798
, B20 = −

174611

330
, B22 =

854513

138
, . . . .

�A6�

Very useful for numerical computation is the Lanczos
formula17,18

J�z� = �z +
1

2
�ln

z + � +
1

2

z
− � −

1

2

+ ln	d0 + �
n=1

N
dn

z + n
, Re z � 0, �A7�

where, for N=6, �=5, and

d0 = 1.000000000190015, d1 = 76.18009172947146,

d2 = − 86.50532032941677, d3 = 24.01409824083091,

d4 = − 1.231739572450155, d5 = 0.001208650973866179,

d6 = − 0.000005395239384953. �A8�

The numerical error is small �less than 1 part per 109� ever-
where in the right half plane.
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