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We report a systematic study of the electronic structure and phase stability of some of the hexagonal
close-packed random binary alloys such as Ru1−xRex, Ti1−xZrx, Rh1−xCrx, and Ti1−xAlx. First-principles calcu-
lations have been carried out using the augmented space recursion based on the tight-binding linear muffin-tin
orbital basis. In particular, we have generalized our earlier applied augmented space recursive technique �T.
Saha et al., J. Phys.: Condens. Matter 6, L245 �1995�� to the case of systems with more than one atom per unit
cell, as is needed for hexagonal close-packed alloys. This involved development of a code that can handle any
crystal structure with multiple sublattices. Ordering tendencies and phase stability are examined via effective
pair interactions and their lattice Fourier transforms for TiAl alloy system, the low-temperature phase of which
exhibits both face-centered cubic and hexagonal symmetry upon varying concentration. For each of the con-
sidered concentrations, the correct ordering tendency is obtained.
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I. INTRODUCTION

In the recent past, there has been an increasing interest in
the theoretical study of the electronic structure of hcp metals
�see, e.g., Ref. 1, and references therein�, and ordered
intermetallics2–4 using first-principles band-structure meth-
ods based on the local-density approximation �LDA�. Typical
methods used in these studies are the linear muffin-tin orbital
�LMTO� method,5 the pseudopotential treatment,6 and the
full-potential linear-augmented plane-wave approach.7 On
the other hand, the theoretical study of electronic structure of
solid solutions of transition metals with the hcp structure is
rather limited,8–10 although these alloys have many interest-
ing properties. The main reason behind this is the relatively
complex structure of these materials with two atoms per unit
cell as well as the deviation from the ideal c /a ratio impos-
ing certain structural anisotropies. Some of these alloys are
formed from constituents that themselves do not have the
hcp crystal structure under the normal condition. This offers
a possibility to study the electronic structure of these mate-
rials under varying structural conditions.

The purpose of the present paper is to present a first-
principles electronic structure calculations of the hcp random
transition metal alloys using the augmented space recursion
�ASR�,11 combined with the tight-binding LMTO method.
The ASR-LMTO technique has been developed over the
years and has the important advantage of taking into account
local environment effects such as off-diagonal disorder, lat-
tice distortion,12 and short-range order13 in the formalism as
compared to the coherent potential approximation �CPA�-
based methods. The technique so far has been applied to only
cubic alloy systems. In the present work, the technology has
been generalized to handle any crystal structure with mul-
tiple sublattices, as is needed for hcp alloys. As case studies,
we have chosen four hcp alloys, namely, Ru1−xRex, Ti1−xZrx,
Ti1−xAlx, and Rh1−xCrx. In the first two alloy systems, both
the pure components crystallizes in the hcp structure. In the
example of Ti1−xAlx, only one component �Ti� has the hcp
structure. In the last example of Rh1−xCrx, none of the pure

components crystallizes in the hcp structure. In the latter two
alloys, the hcp phase exists only over a limited concentration
range. Such a choice allows us to make a systematic study of
the electronic structure of disordered hcp alloys and also en-
ables us to make a proper test of our formalism.

The other problem we would like to focus on is a first-
principles study of the phase stability in this class of alloy
systems. Alloy phase stability study, which involves determi-
nation of stability of the homogeneous disordered alloys with
respect to concentration wave fluctuations using ab initio
electronic structure calculations, is an important area of re-
search. For this purpose, one needs a derivation of the con-
figurational energy for the alloy system. Several meth-
ods,14–16 with varying degrees of sophistication, have been
proposed; in them the configurational energies are expressed
in terms of effective multisite interactions, in particular, ef-
fective pair interactions.17 In this paper, we have used a self-
consistent ASR method coupled with the orbital peeling
technique to compute the effective pair interactions. The
ASR coupled with the orbital peeling technique18 to evaluate
small energy differences associated with band-structure en-
ergies have been successfully used in the past to describe the
phase formation in alloys.19 A scalar relativistic calculation
of the electronic structure and phase stability analysis20 has
been also carried out. Using this approach, we have studied
the phase stability of TiAl alloy system which crystallizes in
hcp structure for certain concentration range. TiAl alloys are
particularly interesting for their promising applications in the
aerospace industry.21 In addition to their excellent high-
temperature properties, these alloys are light—about half as
dense as Ni-based alloys which are traditionally used for
aerospace applications. The equilibrium phases of Ti1−xAlx
alloys, for large concentrations of Al, are all formed in fcc-
based structures. For the sake of completeness, we have
therefore also carried out calculations in the fcc phase. To
our knowledge, the present paper is perhaps one of the initial
papers to deal with the phase stability of disordered hexago-
nal alloys from first principles. The earlier reported first-
principle works in Refs. 8 and 9 on disordered hexagonal
alloys involved calculations of only density of states, while
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the work presented in Ref. 10 dealt with disordered hcp al-
loys and their thermodynamic properties such as formation
enthalpy using special quasirandom structures.

The rest of the paper is organized as follows. In Sec. II,
we shall describe in brief our theoretical framework for the
electronic structure and phase stability calculations. Section
III is devoted to describing the details of computations. The
results of the density of states for Ru1−xRex, Ti1−xZrx,
Ti1−xAlx, and Rh1−xCrx and the stability of ordered structures
for the Ti1−xAlx alloys will be discussed in Sec. IV. Finally,
concluding remarks are drawn in Sec. V.

II. FORMALISM

The electronic structure of the hcp binary alloy A1−xBx can
be described by the most localized form of the second-order
tight-binding �TB�-LMTO Hamiltonian,5

H = H�1� − h o h ,

H�1� = �
R�L

CR�LPR�L

+ �
R�L

�
R���L�

�R�L
1/2 SR�L,R���L��R���L�

1/2 TR�L,R���L�,

where

h = H�1� − �
R�L

ER�L
��� PR�L

and

o = �
R�L

OR�LPR�L, �1�

R and R� label the unit cell, � is the index of an atom within
the hcp unit cell which can take value either 1 or 2 and L
��m� is the composite angular momentum index. The quan-
tities C, �, and o are the potential parameters and are mate-
rial dependent. S is the structure matrix which characterizes
the hcp lattice geometry. P and T are the projection and
transfer operators in the Hilbert space H spanned by the
tight-binding basis ��R�L�	. For a disordered binary alloy
AxB1−x, the potential parameters X �=C ,� ,o� can randomly
take two different values �XL

A or XL
B� depending on whether

the site R is occupied by an A atom or a B atom, so one can
express X in terms of a random occupation variable �nR� as

XRL = XL
AnR + XL

B�1 − nR� ,

where the random variable nR can take a value of 1 if site R
is occupied by an A atom with a probability x, otherwise 0
with probability �1−x�.

In an earlier work,11 we described in detail how to per-
form the configurational averaging of the resolvent G�z�
= �zI−H�−1 within the ASR. There we studied a cubic lattice,
but the same method with generalization can be applied to
hcp with two equivalent atoms per unit cell. Below, we
briefly mention the salient points of ASR.

The basic idea behind the augmented space formalism is
to borrow an idea from measurement theory and associate

with each random variable nR an operator MR such that the
probability density of the random variable is the spectral
density of MR. These operators act on the configuration
space � of the variables �nR	. For a set of binary variables,
this space is isomorphic to the configuration space of a spin-
�1/2� Ising model. If we now construct an augmented

Hamiltonian H̃ in the space �=H � � by replacing every
random variable by its associated operator, the augmented
space theorem22 states that the configuration average of any
functional of the random Hamiltonian is a specific matrix
element of the same functional of the augmented Hamil-
tonian in �.

For a binary alloy AxB1−x, the configuration space of
a single occupation variable is spanned by �↑R�=
x�A�
+
1−x�B� and �↓R�=
1−x�A�−
x�B�

nR → MR = xPR
↑ + �1 − x�PR

↓ + 
x�1 − x��TR
↑↓ + TR

↓↑� ,

where PR and TR are the projection and transfer operators in
the configuration space �.

The configuration average of the Green function, for ex-
ample, is then

��G�z���R�L,R���L� = Ḡ�z�R�L,R���L�

= ���	 � R�L��zĨ − H̃�−1���	 � R���L�� ,

�2�

where ��	= �↑↑¯ ↑ 	 is a state in configuration space �. We
may notice that in the present theoretical framework, the
configuration averaging of a quantity simply reduces to the
evaluation of a particular matrix element in the enlarged aug-
mented space �. This theoretical result is exact. The actual
numerical implementation is then carried out using the recur-
sion method of Haydock et al.23 which produces a continued
fraction expansion for the diagonal part of the configuration-
averaged Green function,

Ḡ�z�R�L,R�L =
1

z − a1 −
b1

2

z − a2 −
b2

2

z − a3 −
b3

2

¯

.

Proper termination of the asymptotic part of this continued
fraction constitutes the only approximation in the present
theory. This termination must retain the essential Herglotz
analytic properties of the Green function. Haydock23 carried
out extensive studies of the errors involved and precise esti-
mates are available in the literature. Several terminators are
available and we have chosen to use that of Beer and
Pettifor.24 If one calculates the coefficients up to the nth step
exactly, the first 2n moments of the density of states are
reproduced exactly. The terminator is chosen so that the
asymptotic moments are also accurately reproduced. This is
a generalization of the method of moments, with the addi-
tional restriction that the asymptotically large moments are
also accurately obtained.
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For the phase stability study, we start from a completely
disordered alloy with each site R having an occupation vari-
able nR associated with it. In this homogeneously disordered
background we introduce fluctuations in the occupation vari-
able at each site: �xR=nR−x. The total energy in this con-
figuration ��	 can then be expanded about the energy of the
perfectly disordered state as

E�x� = E�0� + �
R=1

N

ER
�1��xR + �

RR�=1

N

ERR�
�2� �xR�xR� + ¯ , �3�

where E�0� is the energy of the averaged disordered medium.
ER

�1�, though concentration- and temperature-dependent but
structure insensitive, should not be considered in the stability
analysis. The pair interactions E

RR�
�2� express the correlation

between two sites and are the most dominant quantities for
the analysis of phase stability.

If we embed atoms of type A or B at site R in the disor-
dered background and the total energies are ER

A and ER
B, then

by the above equation,

ER
�1� = ER

A − ER
B.

This is one-body interaction resulting from the interchange
of a B atom with an A atom at site R in the alloy. Similarly,
E

RR�
�2� is the pair interaction, which is the difference in the

one-body interactions at R when site R���R� is occupied
either by an A or a B atom

ERR�
�2� = ERR�

AA + ERR�
BB − ERR�

AB − ERR�
BA .

ERR�
�	 is the energy of random AB alloy with sites R and R�

occupied by � and 	 types of atoms. Brute force method for
the calculation of E

RR�
�2� involves error due to subtraction of

large numbers. To avoid such error, instead we follow the
alternative route described below.

The total energy of a solid consists of two parts: a one
electron band contribution EBS and the electrostatic contribu-
tion EES. The cluster interactions defined in Eq. �3�, in prin-
ciple, include both EBS and EES contributions. However,
since the cluster interactions involve the difference of cluster
energies, the electrostatic terms may be assumed to cancel
out, considering only the band-structure contribution to be
important. Such an assumption, though not rigorously true,
has been shown to hold good in a number of alloy systems.25

If we consider only the band-structure contribution, the ef-
fective pair interactions may be written as20

ERR�
�2� = − �

−


EF

dE
−
1

�
Im�log �

IJ

det�GIJ�E����IJ� , �4�

where GIJ represents the configurationally averaged Green
function corresponding to the disordered Hamiltonian, whose
R and R� sites are occupied by Ith and Jth types of atom, and

�IJ = �+ 1 if I = J

− 1 if I � J .
�

The behavior of this function is quite complicated and hence
the integration by standard routines is difficult, involving

many iterations before convergence is achieved. Further-
more, the integrand is multivalued, being simply the phase of
�IJ det�GIJ��IJ. The way out for this was suggested by
Burke18 and relies on the repeated application of the partition

theorem on the Hamiltonian H̃IJ. The final result is given in
terms of the zeros and poles of the Green function in the
region E
EF,

ERR�
�2� = 2�

IJ

�IJ�
k=0

lmax��
j=1

zk,IJ

Zj
k,IJ − �

j=1

pk,IJ

Pj
k,IJ + �pk,IJ − zk,IJ�EF� ,

�5�

where Zj
k,IJ and Pj

k,IJ are the zeros and poles of the configu-
ration averaged, peeled Green function Gk

IJ of the disordered
Hamiltonian with occupancy at sites R and R� by I and J
types of atoms, of which the �k−1� rows and columns have
been deleted. pk,IJ and zk,IJ are the number of poles and zeros
in the energy region below EF.

The augmented space recursion method using first-order
TB-LMTO Hamiltonian to calculate the configuration aver-
aged, peeled Green function has been described in an earlier
paper.20 A similar procedure can be applied for the case of a
second-order TB-LMTO Hamiltonian �Eq. �1��, as used in
the present calculations, giving rise to more accurate results.
We refer the reader to this earlier paper and the references
therein for the details.

The symmetry properties of the pair interactions, E
RR�
�2�

�VRR� can be used to explain a wide range of phenomena
related to order-disorder transitions.26 Analysis can be made
in terms of V�h� which is the Fourier transformation of VRR�
evaluated at a specific point h in the k space. If a symmetry
element of the space group is located at a point h, the vector
representing the gradient �hV�h� of an arbitrary potential-
energy function V�h� at that point must lie along or within
the symmetry element. If two or more symmetry elements
intersect at point h, one must necessarily have

��hV�h�� = 0, �6�

since a finite magnitude vector cannot lie simultaneously on
intersecting straight lines having only a point in common. At
these so-called special points, the potential-energy function
V�h� represents a minimum. Thus, special points play an
important role in the search for lowest-energy-ordered struc-
tures. These special points are always located at the surface
of the Brillouin zone �BZ�. The star of a special point vector
k is obtained by applying all the rotations and rotation inver-
sions of the space group on the vector k. All these vectors of
a star are considered equivalent. The special points of the fcc
structure are located at the points �, X, W, and L of the
Brillouin zone, as listed in Table I. There are four special
points in this case predicting various kinds of ordered struc-
tures �as shown in the last column� that could be obtained by
the superposition of concentration waves for equivalent
points corresponding to a single star.

In the case of the hcp structure, we have two atoms per
unit cell; furthermore, the space group of the structure
P63/mmc �or D6h

4 � is not symmorphic and hence the analysis
is more subtle. With 1 and 2 denoting the two simple hex-
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agonal sublattices, one needs two kinds of concentration
waves pk

1 and pk
2

pk
1�2� =

1

Nc
�

n�1�2�
eik.npn, �7�

where Nc�= 1
2Na� is the number of unit cells. The sum over the

vectors n are always vectors of the hexagonal Bravais lattice.
One can now define the Fourier transforms of the pair inter-
actions V�	�k�, where � ,	=1,2 corresponding to two sub-
lattices in the hexagonal lattice

V11�k� = V22�k� = �
n

V�n�eik.n,

V12�k� = V21
* �k� = �

n
V�n + ��eik.n, �8�

� is the vector � 2
3

1
3

1
2
� joining the two atoms of the elementary

cell and V�n� is the nth neighboring pair interaction energies.
In order to minimize the energy, we must diagonalize
V�	�k�. This yields the two eigenvalues V�k�
=V11�k�± �V12�k��. There are six special points for a simple
hexagonal structure; however, some of them are irrelevant
for the analysis of ordered of structure. The relevant special
points for a hcp structure are given in Table I.

Since there are two extrema at the special points, such as
� and M, we must combine the concentration waves in the
two sublattices in two different ways. These combinations
are obtained from the eigenvectors of the matrix V�	�k�. The
result is that at � and M, we have the simple modes pk

1± pk
2,

which may be called acoustic and optical modes. The acous-
tic mode �000�I corresponds to a segregation process,

whereas the optical mode �000�II corresponds to an alternate
stacking of pure A and B triangular planes. There can be
three possible structures corresponding to the star M. These
are CuPt-like structure, B19 �MgCd-like�, and DO19 struc-
ture. There is no real structure associated with the star H
� 1

3
1
3

1
2
�, while some superstructure is formed that is related

rather to a nonspecial point. For further details, we refer the
reader to the article in Ref. 27.

III. COMPUTATIONAL DETAILS

In the TB-LMTO-ASR method, the difficulties are asso-
ciated with the large rank of the enlarged augmented space.
The rank of this Hilbert space is N�2N for a system of N
lattice sites with binary distribution. In an earlier com-
munication,28 we have discussed how one may use the local
symmetries of the augmented space to reduce the rank of the
Hamiltonian and carry out the recursion on a reducible sub-
space of much lower rank. In the case of pair interaction
calculation, if we fix the occupation of two sites �Ith and Jth
sites�, the local symmetry of the augmented space is further
lowered. We may then carry out the recursion in a suitably
reduced space.

For our calculations, the real-space clusters were gener-
ated out of 1200–1500 atoms, which gave rise to about
200 000 sites in the enlarged full augmented space, consist-
ing of both real space and configuration space. After symme-
try reduction, the number of sites in the reduced space be-
comes �10 000 leading to a significant reduction in com-
putational cost. Twelve steps of recursion were carried out
attached with a terminator by Beer and Pettifor24 to construct
the configuration-averaged Green function.

TABLE I. Relevant special points and corresponding stars of the fcc and hcp lattices. The rightmost
column shows the respective BZs.
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We have calculated the effective pair potentials at the
Fermi level so there is a need for very careful determination
and convergence of the Fermi level. To determine the Fermi
energy, we have carried out the calculations using energy-
dependent formulation of augmented space recursion in
which the disordered Hamiltonian with diagonal as well as
off-diagonal disorder is recast into an energy-dependent
Hamiltonian having only diagonal disorder. This allows one
to sample more shells in the augmented space, in which the
full real-space map is collapsed using lattice translation sym-
metry in augmented space. This formulation reduces the
computational cost considerably; as an example, a real-
space-based augmented space map with size of 250 000 be-
comes 5000 in the k-space-based-augmented space map.
However, in this formulation the recursion becomes energy
dependent and it is not suitable to carry out recursion for
each energy point. This is tackled by choosing a few seed
points across the energy spectrum uniformly and then carry-
ing out recursion on those points and spline fitting the coef-
ficients of recursion throughout the whole spectrum.29 This
enabled us to carry out large number of recursion steps since
the configuration space grows significantly less faster for di-
agonal as compared to off-diagonal disorder. Using this for-
mulation, we have checked the convergence of Fermi energy.

The calculation of Madelung potential is a challenging job
for disordered alloys due to the absence of lattice periodicity.
For the proper treatment of the Madelung potential, we have
used the recently developed fully self-consistent TB-LMTO-
ASR calculation30 which correctly takes into account the
charge neutrality and total-energy convergence.

IV. RESULTS AND DISCUSSION

For the application of our formalism, we have considered
three characteristic set of examples. The first set of example

consists of Ru1−xRex and Ti1−xZrx where the pure constitu-
ents in both the cases crystallizes in hcp structure. The sec-
ond set of example is Ti1−xAlx where only one constituent
crystallizes in hcp structure and the other constituent crystal-
lizes in fcc structure. The third example is Rh1−xCrx where
none of the pure constituents crystallizes in the hcp structure.
For all of these examples, we have calculated the density of
states and compare our results with the earlier available data,
and hence examined the effectiveness of TB-LMTO-ASR
method to describe the electronic structure of disordered hcp
alloys. We have then concentrated on the phase stability of a
particular alloy, namely, Ti1−xAlx, for which extensive
amount of experimental and theoretical results are available
in the literature.31 All calculations were performed with sca-
lar relativistic LDA Hamiltonian.

In all systems investigated here, the c /a ratio remains
essentially unchanged with varying concentration; it is about
1.599 in Ru1−xRex,

8 1.585 in Ti1−xZrx, 1.598 in Rh1−xCrx,
9

and about 0.802 77 in Ti1−xAlx �Ref. 32� alloys over the con-
centration range where the hcp phase exists. The equilibrium
lattice parameters are given by a=2.73 Å and c=4.365 Å for
Ru1−xRex, a=3.09 Å and c=4.898 Å for Ti1−xZrx, a
=2.6785 Å and c=4.2816 Å for Rh1−xCrx, and a=5.78 Å
and c=4.64 Å for hcp Ti75Al25. For fcc-based TiAl alloys, it
is a=3.991 Å. The equilibrium lattice parameters are ob-
tained by minimizing the total energies of the disordered
alloys with respect to the lattice parameters.

A. Electronic structure of hcp alloys

Figure 1 shows the density of states for the three alloy
systems, namely, Ru1−xRex, Ti1−xZrx, and Rh1−xCrx. While
the hcp Ru1−xRex and Ti1−xZrx exist in the whole concentra-
tion range, the hcp region of Rh1−xCrx alloy is limited
�0.25�x�0.60�. All the calculations have been carried out
for concentrations x=0.0, 0.25, 0.5, 0.75, and 1.0, with the

FIG. 1. Density of states for the three alloy systems Ru1−xRex �left panel�, Ti1−xZrx �middle panel�, and Rh1−xCrx �right panel�. The last
alloy system remains in the hcp structure in the concentration range 0.25�x�0.60. The dashed and dotted lines indicate the d-projected
density of states on the A atom and B atom, respectively, for the A1−xBx alloy. The black solid line indicates the total density of states. The
alloy Fermi levels EF are indicated by the vertical lines in each panel.
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exception of Rh1−xCrx, for which only concentrations x
=0.25, 0.5, and 0.6 have been considered. The figure shows
only the d-projected density of states, the solid line of which
indicates the total density of states �DOS� of A1−xBx alloy, the
dashed line indicates the DOS on the first atom �A�, and the
dotted line indicates the same quantity but on the second
atom �B�. We have chosen to show only the d-projected den-
sity of states to compare with previously published results.8,9

In all the panels, the alloy Fermi level EF is indicated by the
vertical line.

Starting from the leftmost column for Ru1−xRex alloys, we
notice that the Fermi energy lies more or less in the middle
of total d-bandwidth since both Ru and Re are located in the
middle of the transition-metal series. The unoccupied states
above EF in the random alloys are influenced by disorder
more significantly than occupied states below EF. We also
notice an increase in the alloy bandwidth with increasing Re
content, which happens due to larger bandwidth of Re, which
is a 5d element compared to Ru which is a 4d element. The
Fermi level shifts slightly with concentration, as the number
of valence electrons changes by only one in moving from Ru
to Re. Overall agreement with the TB-LMTO-CPA result by
Kudrnovsky et al.8 is observed.

Focusing on the Ti1−xZrx results, it is evident that the total
DOS of occupied states below E�0 Ryd changes extremely
weakly with the alloy concentration. In the regime of unoc-
cupied states, one can see a gradual transformation of a nar-
row d-band peak E�0.2 Ryd �for Ti� to a broader d peak
situated at E�0.33 Ryd �For Zr d states�. In this case, how-
ever, the Fermi level EF essentially remains unchanged on
alloying because the Ti and Zr atoms have the same number
of valence electrons.

The rightmost panel shows the results for the Rh1−xCrx
alloys. Though none of the pure components of this alloy has
the hcp structure, the alloy maintains the hcp structure over a
limited concentration range 0.25
x
0.6. Unlike the previ-
ous two cases, the density of states in this case has very
different characteristic features. The lower-energy states are
predominantly Rh-like, while those around and above E

=0 Ryd are mostly Cr-like. This indicates a strong influence
of diagonal disorder. Similar kind of behavior has also been
observed in the TB-LMTO-CPA results.9

B. Electronic structure and phase stability of Ti1−xAlx

Having established the feasibility and accuracy of aug-
mented space recursion for disordered hcp alloys in general,
we now focus on the alloy system of our interest, namely,
Ti1−xAlx. We carry out the density of states as well as the
phase stability study of this alloy system. As mentioned al-
ready, the low-temperature phases of Ti1−xAlx show both fcc
and hcp symmetries. The low Al content regime of Ti75Al25
forms in hcp symmetry. In Fig. 2 we show the density of
states of Ti1−xAlx alloy for x=0.25, 0.5, and 0.75. The under-
lying symmetry has been assumed to be fcc. The right panel
of Fig. 2 compares the result for x=0.25 with computed DOS
of correct hcp symmetry. Compared to the previous plots in
Fig. 1, the plotted density of states here includes all of spd
contributions. Comparing the fcc and hcp DOSs of Ti75Al25
alloy, we notice that the overall qualitative feature is not very
different in the two structures. The Fermi energy also lies
almost at the same level in the two cases. This is not unlikely
since with only first nearest-neighbor interactions and the
tetrahedron approximation in fcc lattice, the hcp-disordered
phase � is equivalent to the fcc-disordered phase �.33 For
ordered compounds, the fcc-based structures and the corre-
sponding hcp-based structures are also found to have similar
enthalpies of formation.34

We now discuss in the following the phase stability study
of Ti1−xAlx alloys. In order to correctly predict the types of
ordering in various disordered alloys, we have computed the
pair potential function V�k� in the reciprocal space represen-
tation, which can be calculated from the Fourier transform of
the real-space pair interaction energies VRR�, where R and R�
belong to either first, second, or third, or fourth neighbor
shell.

In Fig. 3 we have shown the effective pair interaction for
three TiAl alloys with the fcc structure. The studies have

FIG. 2. Density of states for
Ti1−xAlx alloy. The left panel indi-
cates the result for this alloy in the
fcc structure. The panel in the
right compares the density of
states for Ti75Al25 alloy in the fcc
and hcp structures. The different
curves in each panel have the
same meaning as that of Fig. 1.
The alloy Fermi levels EF are in-
dicated by the vertical lines.
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been made for x=0.25, 0.5, and 0.75. Although for x=0.25,
the underlying crystal structure in reality is hcp, it is inter-
esting to study the case of fcc to know what would have been
the ordered structure if the alloy happened to continue in fcc
phase. This is of interest since the hcp phase diagram is
predicted to be similar to fcc phase diagram and may be
obtained by replacing the fcc-based L12 and L10 by the hcp-
based phases DO19, and B19, respectively.33 The solid,
dashed, dot-dashed, and dotted lines show the pair interac-
tion energies between the first �V1�, second �V2�, third �V3�,
and fourth �V4� nearest-neighboring atoms. A careful inspec-
tion of these data indicates that the magnitude of the pair
interaction energy between the first neighboring atom �V1� is
always greater than the other pair energies �V2, V3, and V4�.
Also, V1 is always +ve which predicts an ordering behavior
in all the three alloys. One, however, also needs to know the
type of ordering. In the case of fcc lattice, one can have four
types of possible ordered structures depending on the com-
position of the alloy. These are L12, DO22, L10, and A2B2.
Figure 4 shows the effective pair potential function in kz=0
plane for the TiAl alloys in the fcc structure. Each of these
plots has a minima at the special point �100� which correctly
predicts the stability of L12 structure for Ti75Al25 and
Ti25Al75 alloys and the stability of L10 structure for Ti50Al50
alloy. The quantitative estimates of Vmin for each case have
been listed in Table II. Another way of predicting the stabil-
ity of these ordered structures is to calculate and check the
sign of the antiphase boundary �APB� energy. The APB en-
ergy is the difference in the ordering energy between two
competing superstructures such as L12 and DO22 or L10 and
A2B2 defined as �=−V2+4V3−4V4. This is the energy asso-
ciated with 1

2 �110� displacement between two �001� planes in

a fcc lattice. In Table III we have quoted the antiphase
boundary energies for the three fcc Ti1−xAlx alloys. The +ve
sign of antiphase boundary energy at all three concentrations

FIG. 3. The real-space effective pair interactions plotted as a
function of energy for three TiAl alloys: Ti75Al25, Ti50Al50, and
Ti25Al75. The solid, dashed, dot-dashed, and dotted lines in all the
three panels indicate the pair interaction energies between the first
�V1�, second �V2�, third �V3�, and fourth �V4� neighboring atoms.
The vertical line indicates the alloy Fermi level.

FIG. 4. The effective potential function V�k� in the reciprocal
space in the kz=0 plane for the Ti75Al25 �top panel�, Ti50Al50

�middle panel�, and Ti25Al75 �bottom panel� alloys.

TABLE II. Minima of the effective pair potential V�k� for fcc-
and hcp-based Ti1−xAlx alloys.

Alloy system Experimental ordering V�min	

fcc Ti75Al25 �100�L12 −14.81

fcc Ti50Al50 �100�L10 −17.97

fcc Ti25Al75 �100�L12 −14.40

hcp Ti75Al25 � 1
200�DO19 −43.64
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predicts the stability of L12 structure both at x=0.25 and x
=0.75 and the stability of L10 structure at x=0.5 concentra-
tion for Ti1−xAlx alloy.

We have then investigated the most stable ordered struc-
ture in the case of hcp Ti75Al25 alloy. Unlike the fcc case,
here one has two distinct types of real-space pair interaction
energies, namely, V11 �=V22� and V12 �=V21�. V�� is pair in-
teraction between two atoms, both of which belongs to
equivalent sublattices ���, and V�	 is the pair interaction
between two atoms, one of which belongs to the sublattice �
and the other to a different sublattice 	. To be precise, one
has to fix the origins in each sublattice and then proceed to
do the calculations. This leads to 2�2 matrix form of the
Fourier transform of the pair interaction V�	�k�, with �, 	

=1,2. The top panel of Fig. 5 shows the matrix elements V11
�n�

and V12
�n� till second nearest neighbor, i.e., n=1,2. To mini-

mize the pair interaction energy, one needs to diagonalize the
matrix V�	�k�, which yields two eigenvalues V±�k�
=V11�k�±V12�k�. One of these pair potential surfaces �V+�k��
corresponds to an acoustic mode and the other �V−�k�� to an
optical mode. There can be various superordered structures
associated with the acoustic mode; however, there exists no
structure corresponding to the optical mode. We have plotted
the pair potential surface V+�k� in the bottom panel of Fig. 5.
This plot shows a minima at the special point � 1

200�. Such a
minima in the case of hcp alloys A1−xBx with concentration
x=0.25 can be related to the stability of DO19 structure.

Once the effective pair potential surface is calculated and
the minima are located, the instability temperature T0 can be
calculated from the relation

	0x�1 − x�V�min	 = 1, �9�

where 	0=1/kT0. Employing the V�min	 listed in Table II and
plugging in Eq. �9� give the instability temperature as
�1300 K, which is in reasonable agreement with the experi-
mental measured order-disorder transition temperature of
1453 K.

V. CONCLUSION

Employing augmented space recursion in TB-LMTO ba-
sis, we studied the electronic structure of hcp-based disor-
dered alloys. We have applied the developed technique to

RuRe, TiZr, RhCr, and TiAl alloy systems. Good agreement
with previously published results is obtained for RuRe, TiZr,
and RhCr alloy systems. We further extended our theory to
studying the problem of phase stability in hcp-based alloys
by combining ASR with orbital peeling technique. The ap-
plicability of the theory is proved by considering TiAl alloy
system which is of significant technological importance. Our
predicted ordered structure is in conformity with experiment
and the computed instability temperature is also in good
agreement with experimentally measured order-disorder
transition temperature. For the sake of completeness, we
have also investigated fcc-based TiAl alloy system which
occurs in Al-rich part of the phase diagram.

We note that for Ti75Al25, the fcc-based calculation gives
L12 as the ordered structure, while hcp-based calculation
shows DO19 to be the ordered structure—a conclusion
reached by two independent computations. With the corre-
spondence between L12 and DO19 of fcc and hcp cases, this
gives further confirmation of validity of our calculation.
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TABLE III. APB energy �mRyd/atom� for three fcc Ti1−xAlx
alloys. The second column indicates the type of ordering taking
place in respective cases.

Alloy system Type of ordering APB energy

fcc Ti75Al25 alloy L12 2.94

fcc Ti50Al50 alloy L10 4.45

fcc Ti25Al75 alloy L12 5.21

FIG. 5. Effective potentials in real space �top panel� and the
Fourier transform evaluated in kz=0 plane �bottom panel� for hcp
Ti75Al25 alloy. Vertical line in the top panel marks the Fermi energy.
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