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A first principles density functional based linear response theory �the so-called density functional perturba-
tion theory �Baroni et al., Rev. Mod. Phys. 73, 515 �2001�� has been combined separately with two recently
developed formalisms for a systematic study of the lattice dynamics in disordered binary alloys. The two
formalisms are the augmented space recursion �ASR� �Alam et al., Phys. Rev. B 69, 024205 �2004�� and the
itinerant coherent potential approximation �ICPA� �Ghosh et al., Phys Rev. B 66, 214206 �2002��. The two
different theories �DFPT-ASR and DFPT-ICPA� systematically provides a hierarchy of improvements upon the
earlier single site based theories �like CPA, etc.� and includes nonlocal correlations in the disorder configura-
tions. The formalisms explicitly take into account fluctuations in masses, force constants and scattering lengths.
The combination of DFPT with these formulations helps in understanding the actual interplay of force con-
stants in alloys. We illustrate the methods by applying to a fcc Fe50Pd50 alloy.
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I. INTRODUCTION

The last 30 years have seen numerous attempts at setting
up a quantitatively accurate theory of phonons in disordered
alloys. One of the earliest successful approximations was the
coherent potential approximation4 �CPA�. This approxima-
tion was a considerable improvement on the existing theories
and, in examples of homogeneous disorder, was shown to
yield configuration averaged Green functions which main-
tained lattice translational symmetry and the herglotz analyti-
cal properties5 essential for physical interpretation.6 Despite
its success, particularly in the electronic problem, the CPA
was a single-site, mean-field approximation and could deal
with only diagonal �or mass, in the case of phonons� disor-
der. The phonon problem is specifically difficult because, in
it, diagonal and off-diagonal disorders are impossible to
separate. Moreover, the sum rule satisfied between the diag-
onal and off-diagonal parts of the force-constants leads to
environmental disorder. That is, a configuration fluctuation at
a site affects the diagonal part of the dynamical matrix at its
neighbors. Consequently, we do not expect the CPA to give
an adequate description of the phonon problem. This was
discussed in several papers,7–12 which indicated large dis-
crepancies between the CPA predictions and experimental
results. In the electron problem too, whenever there was off-
diagonal disorder, as in the case of alloys with large size
difference between its constituents leading to local lattice
distortions13 or environmental disorder as in the case of al-
loys with short-range order,14,15 the CPA was found to be
inadequate.

The hunt for adequate extensions of the CPA was quite
rigorous during the 1970s and 1980s.16–20 Most of these gen-
eralizations were valid for very special types of off-diagonal

disorder, which were mostly unphysical, or violated transla-
tional symmetry and herglotz properties. Eventually, three
approaches emerged as the most successful. Two of them
were based on the augmented-space theorem of Mookerjee:21

the itinerant coherent-potential approximation �ICPA� of
Ghosh et al.3 and the augmented-space recursion �ASR� of
Saha et al.22 and Alam et al.2 The former was an extension of
the ideas of Mills and Ratanavaraksa23 and Kaplan et al.24

and the latter combined the augmented-space technique with
the recursion method of Haydock et al.25 The third was a
very different and rather striking approach developed by
Rowlands et al.26 and Biava et al.27 �the nonlocal CPA or
NL-CPA� using the idea of coarse graining in reciprocal
space originally proposed by Jarell and Krishnamurthy.28

More importantly a first principles ab initio theory of
phonons in disordered alloys is still lacking. Such a theory is
needed in order to gain a microscopic understanding of the
interplay of force constants in the complex phenomenon of
phonon excitations. Our aim in this paper is twofold: First,
we shall discuss the similarities and differences between the
two methods �ICPA and ASR� based on the augmented-space
theorem. We shall apply both the techniques to identical
models of an alloy system, FePd, and discuss the comparison
between their results. Second, we shall estimate the dynami-
cal matrices from a first-principles approach to the parent
ordered alloys and compare the ICPA and ASR results with
experiment. We shall argue that first-principles estimates of
the dynamical matrices on ordered versions do not yield
quantitatively accurate results �in comparison with experi-
ment� for the disordered alloys. We shall propose that we
need to go beyond and estimate the dynamical matrices from
a model of embedded atoms in a fully disordered back-
ground.
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The outline of this paper is as follows. In Sec. II, we shall
discuss in brief what the augmented-space theorem is and its
application to the problem of phonon excitations in disor-
dered alloys. In Sec. III�, we shall briefly describe the salient
features of itinerant coherent potential approximation �ICPA�
and the augmented-space recursion �ASR�. Sec. IV shall be
devoted for the details of first-principles calculation of force
constants in alloys. The numerical results shall be discussed
in Sec. V. Finally conclusions are drawn in Sec. VI.

II. THE AUGMENTED-SPACE THEOREM

The augmented-space theorem has been discussed in great
detail elsewhere.29 In this section we shall introduce only
those salient features which will be required by us to under-
stand the mathematics and notations in our subsequent dis-
cussions.

For a homogeneously disordered binary alloy the Green
function may be written as

��G�k,�2��� =
1

N
�
R,R�

exp�ik · �R − R��	

����R
�m�2 − ��−1
R���� ,

m = �mAnR + mB�1 − nR�	�RR�,

� = �R−R�
AA nRnR� + �R−R�

BB �1 − nR��1 − nR��

+ �R−R�
AB �nR�1 − nR�� + �1 − nR�nR�	 . �1�

Here, R ,R� refer to lattice positions, �� �� refers to con-
figuration averaging over random variables in the problem.
We should note here that the Fourier transform in the first
equation may be taken only after the configuration averaging
is carried out. The mass and force-constant matrices are ma-
trices in the mode space and for systems with one atom per
unit cell they are 3�3. �nR	 are the random site-occupation
variables which take values 1 and 0 depending upon whether
the site labelled by R is occupied by A- or B-type of atom.
The atom sitting at R can either be of type A�nR=1� with
probability x or B�nR=0� with probability y. The augmented-
space formalism �ASF� now introduces the space of configu-
rations of the set of binary random variables �nR	: �.

In the absence of short-ranged order, each random vari-
able nR has associated with it an operator MR whose spectral
density is its probability density,

p�nR� = x��nR − 1� + y��nR�

= −
1

�
lim
�→0

Im�↑R
„�nR + i��I − MR…
−1
↑R� , �2�

where x ,y are concentrations of the components A and B,
MR is an operator whose eigenvalues 1, 0 correspond to the
observed values of nR and whose corresponding eigenvectors
�
1R� , 
0R�	 span a configuration space �R of rank 2. We may
change the basis to �
↑R� , 
↓R�	,


↑R� = ��x
1R� + �y
0R�	 ,


↓R� = ��y
1R� − �x
0R�	 ,

and in the new basis the operator MR corresponding to nR is

MR = xPR
↑ + yPR

↓ + �xyT R
↑↓,

where PR
↑ = 
↑R��↑R
, PR

↓ = 
↓R��↓R
 and T R
↑↓= 
↑R��↓R


+ 
↓R��↑R
 are the projection and transfer operators in the con-
figuration space �R spanned by the two basis vectors.

The full configuration space �=�R
��R is then spanned by

vectors of the form 
↑↑↓↑↓¯�. These configurations may be
labelled by the sequence of sites �C	 at which we have a ↓.
For example, for the state just quoted �C	= 
�3,5 , ...	�. This
sequence is called the cardinality sequence. If we define the
configuration 
↑↑¯↑¯� as the reference configuration, then
the cardinality sequence of the reference configuration is the
null sequence ��	.

In the full augmented-space the operator corresponding to
nR is

M̂R = I � ¯ � MR � ¯ � I � ¯ � � .

The augmented-space theorem21 then yields

��G�k,�2��� = �k � ��	
�m̂�2 − �̂�−1
k � ��	� , �3�

where the augmented k-space basis 
k � ��	� has the form

�1/�N��
R

exp�− ik · R�
R � ��	� .

The augmented-space operators m̂ and �̂ are constructed
from the original random operators by replacing each ran-

dom variable nR by the operators M̂R. It is an operator in the
augmented space �=H � �. The theorem maps a disordered
operator described in a Hilbert space H onto an ordered one
in an enlarged space �, where this space is constructed as
the outer product of the space H and configuration space �
of the random variables. The configuration space � is of
rank 2N if there are N sites in the system. Another way of
looking at the augmented-space operators is to note that they
are collection of all possible operators for all possible con-
figurations of the system.

The augmented-space operators may be written as:2

m̂ = ��m��Î + �mA − mB��
R

PR � ��y − x�PR
↓ + �xyT R

↑↓� ,

�̂off = �
R

�
R�R�

TRR� � ����RR���I

+ �RR�
�1� ��y − x��PR

↓ + PR�
↓ � + �xy�T R

↑↓ + T R�
↑↓��

+�RR�
�2� ��xy�y − x��PR

↓
� T R�

↑↓ + PR�
↓

� T R
↑↓�

+ �y − x�2PR
↓

� PR�
↓ + xyT R

↑↓
� T R�

↑↓�	 ,
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�̂dia = �
R

PR � 
− ���RR��I − �
R��R

�RR�
�1� ��y − x�PR

↓

+ �xyT R
↑↓� − �

R��R

�RR�
�1� ��y − x�PR�

↓ + �xyT R�
↑↓�

− �
R��R

�RR�
�2� ��xy�y − x��PR

↓
� T R�

↑↓ + PR�
↓

� T R
↑↓�

+ �y − x�2PR
↓

� PR�
↓ + xyT R

↑↓
� T R�

↑↓�� ,

�̂ = �̂dia + �̂off, �4�

where

�RR�
�1� = x�RR�

AA − y�RR�
BB + �y − x��RR�

AB ,

�RR�
�2� = �RR�

AA + �RR�
BB − 2�RR�

AB .

The sum rule which connects the diagonal and off-diagonal
parts of the force-constant matrices has been incorporated
into the formulation.

III. THE ITINERANT COHERENT POTENTIAL
APPROXIMATION AND AUGMENTED-SPACE

RECURSION

The augmented-space theorem described in the preceding
section is an exact statement. It is a clever book-keeping
technique to include the effects of disorder fluctuations in the
model of phonons in our random alloy. However, it is not an
algorithm for the approximate calculations of spectral and
other physical properties of phonons in disordered alloys.
For that we must turn to either mean-field approximations
like the CPA and ICPA or alternatively to the ASR. The co-
herent potential like mean-field approximations begin with a
partition of the augmented space into a part which is
spanned by the reference or null cardinality state 
��	�
which we shall call the average configuration state and the
remaining part �− 
��	����	
 spanned by fluctuation states:
�
�C	�	. With this partition, any operator can be written in a
block representation,

A = 
 A1 A�

A�† A2
� .

The partition or downfolding theorem then allows us to
invert this operator in the subspace spanned by the average
configurations alone. By the augmented-space theorem this
is the configuration average. If we define the operator K
as �m�2−��, then using the above partition: K1

= ���m���2������. The downfolding theorem and augmented-
space theorem together give us

��G��2��� = �K1 − K�†FK��−P1 = „GVCA
−1 ��2� − ���2�…−P1,

F = K2
−P2 is the itinerator, �5�

� = K�†FK� is the self-energy. �6�

Here A−P1 and A−P2 refer to the inverses of the operator A in
the subspaces labelled by 1 and 2. This is exactly the parti-
tioning idea introduced by Srivastava et al.30 Ghosh et al.3

next confined themselves to single fluctuation states of the
type 
�R	� and went ahead to self-consistently evaluate the
self-energy in this approximation. Adopting their notation
��R	 
A 
 �R�	�=A�R��R��, they used translational symmetry in
augmented space31 and approximated the self-energy and
itinerator F within the single fluctuation states,

� = �
RR�

K�†�R�F�R��R��K��R��, �7�

F�R��R�� = G�R�
�RR� + �
R�

V�R��R��F�R���R��� . �8�

In going from Eq. �5�–�7� all contributions to the self-
energy of configuration states with more than one fluctuation
in more than one site have been neglected. Similarly in going
from Eq. �6�–�8�, matrix elements of the itinerator F between
configuration states with more than one fluctuation present at
a time, which corresponds to coherent scattering from more
than one site have been neglected and such states do not
contribute to F and hence to the self-energy � within this
approximation. The second equation is a Dyson equation
within the subspace spanned by only single fluctuation states.
Self-consistency is achieved through

G�R� = �GVCA
−1 − ��R��−1,

��R� = �
R�R��R

K��R��F�R���R��K��R��.

The above argument shows that unlike the usual CPA
where only a single fluctuation at a site is considered, mul-
tiple fluctuations coming from multiple scattering is present
in the itinerator F and therefore contribute to the self-energy
�. However, the approximation described above means that
correlated fluctuations between more than one site are
present in neither the itinerator nor the self-energy. This is
the main approximation involved in the ICPA.

We note that the ICPA is a self-consistent mean-field ap-
proximation for the self-energy which relates the configura-
tion averaged Green function to the virtual crystal one. It is
an approximation which maintains both the translational
symmetry of the configuration average and its herglotz ana-
lytic properties. The ASR is an alternative technique for do-
ing the same thing, namely obtaining an approximation to
the self-energy maintaining the necessary properties of the
exact case.

The recursion method addresses inversions of infinite
matrices.32 The average Green function in the augmented-
space formalism can be written as2

��G�� = �1
���2Î − K̃�−1
1	 .

Here
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�� = �1/2� ,

K̂ = �m−1/2ˆ �1/2��̂�m−1/2ˆ �1/2� ,


1	 = ��1
−1/2�1/2�
��	� + ��2

−1/2�1/2�
�R	� ,

where �1/2= 	m−1
−1/2, �1
−1/2= 	m−1/2
 and �2

−1/2

=�xy�mA
−1/2−mB

−1/2�.
Once a sparse representation of an operator in a Hilbert

space, K̂, is known in a countable basis, the recursion
method obtains an alternative basis in which the operator
becomes tridiagonal. This basis and the representations of
the operator in it are found recursively through a three-term
recurrence relation


un+1	 = K̂
un	 − �n�k�
un	 − �n
2�k�
un−1	 �9�

with the initial choice 
u1	= 
k � �1	� or �1
2=1. The recursion

coefficients �n and �n are real and are obtained by imposing
the orthonormalizability condition of the new basis set as

�n�k� =
�un
K̂
un	

�un
un	
, �n+1

2 �k� =
�un
K̂
un+1	

�un
un	

and also �um
un	 = 0 for m � n,n ± 1.

Now, we use the augmented-space theorem and repeated ap-
plications of the downfolding theorem on the tridiagonal rep-
resentation gives

��G�k,��2��� =
1

��2 − �1�k� −
�2

2�k�

��2 − �2�k� −
�3

2�k�
�

��2 − �N�k� − ��k,��2�

=
1

��2 − �1�k� − 
��k,��2�
. �10�

From the definition of the self-energy given earlier, it has
been argued by us in an earlier paper that the disorder scat-
tering induced lifetimes come entirely from the imaginary
part of 
��k ,��2�. Here ��k ,��2� is the asymptotic part of
the continued fraction. The approximation involved has to do
with the termination of this continued fraction. The coeffi-
cients are calculated exactly up to a finite number of steps
��n ,�n	 for n�N and the asymptotic part of the continued
fraction is obtained from the initial set of coefficients using
the idea of Beer and Pettifor terminator.33 With this termina-
tor, the approximate Green function maintains the herglotz
properties of the exact result. Haydock and co-workers25

have carried out extensive studies of the errors involved and
precise estimates are available in the literature. Haydock25

has shown that if we carry out recursion exactly up to N
steps, the resulting continued fraction maintains the first 2N
moments of the exact result.

Both the ICPA and the ASR involve approximations of the
self-energy. We have already discussed that in the ICPA con-
tributions of configurations involving correlated fluctuations
in more than one site to the self-energy are ignored in the
present case but it is capable of incorporating them. If we use
the form of Eq. �4� in the recursion equations �9�, it is im-
mediately obvious that in the ASR, contributions of such
correlated fluctuation states to the self-energy are present.
We had earlier shown that such contributions occur first at �4

2

for diagonal disorder and in �2 in case of off-diagonal dis-
order. Ignoring such contributions will make all moments
greater than or equal to eight to be nonexact for diagonal and
three for off-diagonal disorder. The ICPA achieves accuracy
through self-consistency in the subspace of single fluctua-

tions in it’s present version, while the ASR achieves accu-
racy by increasing the number of recursions in the full aug-
mented space and estimating the terminator to mimic the
asymptotic part of the continued fraction as closely as pos-
sible. The two are very different algorithms. Both can take
care of off-diagonal disorder and short-ranged order, but in
those situations where clustering, either chemical or statisti-
cal, is important, the ASR, which takes into account corre-
lated scattering from clusters, should be preferable over the
single-fluctuation only version of the ICPA.

IV. FIRST-PRINCIPLES CALCULATIONS OF FORCE
CONSTANTS IN ALLOYS

As is clear from the above discussions that the crucial
component in both the ASR and the ICPA is the alloy force
constants. Due to the random chemical environment around
each atom in a substitutionally disordered alloy, the force
constants corresponding to A-A, B-B, and A-B, pairs in a
AxB1−x alloy are different and in no way resembles the force
constants in a completely ordered environment. In order to
have significant accuracy in calculated phonon properties
one should, therefore, have accurate information on force
constants corresponding to various pairs of chemical species.
The only trustworthy source of force constant data is the
first-principles calculation. To this end, we have employed
first-principles density functional perturbation theory �DFPT�
to obtain force constants. The details about the DFPT and our
approach to use it to extract random alloy force constants is
discussed below.

ALAM, GHOSH, AND MOOKERJEE PHYSICAL REVIEW B 75, 134202 �2007�

134202-4



A. Density functional perturbation theory

Density functional perturbation theory �DFPT�1 is a den-
sity functional theory �DFT� based linear response method to
obtain the electronic and lattice dynamical properties in con-
densed matter systems. The dynamical matrix which pro-
vides information on lattice dynamics of the system can be
obtained from the ground-state electron charge density and
it’s linear response to a distortion of the nuclear geometry.34

In DFPT, this linear response is obtained within the frame-
work of DFT. One of the greatest advantages of DFPT—as
compared to other nonperturbative methods for calculating
lattice dynamical properties of crystalline solids �such as the
frozen-phonon or molecular dynamics spectral analysis
methods�—is that within DFPT the responses to perturba-
tions of different wave lengths are decoupled. This feature

TABLE I. Real-space nearest-neighbor force constants for
Fe50Pd50 obtained by DFPT calculations on the artificial ordered
structure. The units are dyn cm−1.

Pair Force constant Direction

Fe-Fe −9458 1xx

Fe-Pd −9458 1xx

Pd-Pd −28 974 1xx

Fe-Fe −6005 1xy

Fe-Pd −10 755 1xy

Pd-Pd −30 372 1xy

Fe-Fe 1800 1zz

Fe-Pd −114 1zz

Pd-Pd 3555 1zz

FIG. 1. Dispersion curves �fre-
quency � vs reduced wave vector
�� for Fe50Pd50 alloy. The upper
panel corresponds to the ASR re-
sults however the lower panel to
the ICPA results. The filled circles
are the experimental data �Ref.
41�. The force constants used are
given in Table I.
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allows one to calculate phonon frequencies at arbitrary wave
vectors avoiding the use of supercells and with a workload
that is independent of the phonon wavelength.

B. Random alloy force constants from density functional
perturbation theory

Since there is no first-principles theory for lattice dynam-
ics in random alloys available we took recourse to calculate
force constants for ordered structures which can suitably
mimic the random alloy using DFPT. However, for a proper
representation for the random alloy, one needs to work with
a large supercell which prohibits the use of DFPT from a
practical point of view. The other approach would have been
to construct a set of ordered structures having the same com-
position of the alloy under investigation, run first-principles
calculation on each of them and average the data appropri-
ately. As a first approximation to this approach, here we have
done DFPT calculations on a single ordered structure and
used the resultant force constants as approximate random
alloy force constants as inputs to the ICPA and the ASR. The
alloy chosen is FePd. The reason for choosing the FePd sys-
tem is twofold: first, the ICPA and the ASR were applied
only for the NiPt and NiPd alloys where the constituents of
the alloys have face-centered-cubic structure in their elemen-
tal phases. In case of FePd, although the alloy in the disor-
dered phase is face-centered cubic but Fe is body-centered
cubic in it’s elemental phase. It was therefore interesting to
test the suitability of both the approximations in case of such
a system where one of the constituents forming the alloy has
a different structure than the alloy itself in it’s elemental

phase. Second, inelastic neutron scattering data were avail-
able for Fe50Pd50.

41 It would therefore have been possible to
compare the ICPA and the ASR results with the experimental
data directly enabling the understanding of the nature of in-
teractions between various pairs of species in the random
phase. Since the Fe50Pd50 forms a face-centered-cubic �fcc�
solid solution, we have chosen the prototype tetragonal L10
structure with c /a ratio equal to unity to be used for first-
principles calculations.

C. Details of first-principles calculations

We use DFPT within the local-density approximation
�LDA� to compute the force constants for the FePd equi-
atomic composition single ordered structure mentioned
above. The experimental lattice constant a=7.24 a.u. is used
in the calculations. We employ a plane-wave pseudopotential
implementation of the DFPT with Perdew-Zunger parametri-
zation of the LDA35 as done in the quantum-espresso
package.36 Ultrasoft pseudopotentials37 with nonlinear core
correction38 are used for Fe and Pd. The kinetic energy cutoff
is taken to be 35 Ry. The Brillouin-zone integrations are car-
ried out with Methfessel-Paxton smearing39 using a 10�7
�7�k-point mesh, which corresponds to 120 k-points in
the irreducible wedge. The value of the smearing parameter
is 0.1 Ry. These parameters are found to yield phonon fre-
quencies converged to within 5 cm−1.

Once adequate convergence is achieved for the electronic
structure, the phonon force constants are obtained using the
linear response. Within DFPT, the force constants are conve-
niently computed in reciprocal space on a finite q-point grid
and Fourier transformation is employed to obtain the real-
space force constants. The number of unique real-space force
constants and their accuracy depend upon the density of the
q-point grids: the closer the q-points are spaced, the more
accurate the force constants are. In this work, the dynamical
matrix is computed on a 6�6�4 q-point mesh40 commen-
surate with the k-point mesh.

V. RESULTS AND DISCUSSIONS

In Table I we report the nearest-neighbor force constants
for the artificial ordered structure A-B obtained from first
principles as described above. Subsequently, we use these
force constants as inputs to the ICPA and the ASR calcula-
tions. Figure 1 shows the corresponding dispersion curves.
The results clearly show that the force constants for the arti-
ficial ordered structure are not adequate to describe the lat-
tice dynamics for the disordered Fe50Pd50 system. In both the
ICPA and the ASR, the high frequency phonons are poorly
represented for all three symmetry directions. On top of that,
the high frequency branches suffer a split for large q values,
a feature not observed in the experiments. All these features
point to the fact that the first-principles force constants used
in the ICPA and the ASR calculations fail to capture the
complexities of the force-constant disorder in a random en-
vironment. This is quite understandable as we have used a
crude approximation for the force constants in random
environment. One single ordered structure, in no way, can

FIG. 2. Partial and total structure factors calculated in the ICPA
for various � values along the �� ,0 ,0� and �� ,� ,�� directions in
Fe50Pd50 alloy. The type of mode is labeled along a particular sym-
metry direction. The force constants used are given in Table I. The
solid curves, the dashed curves, the dotted-dashed curves and the
dotted curves represent the total, the Fe-Fe, the Pd-Pd, and the
Fe-Pd contributions, respectively.
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mimic the randomness in the environment around a given
chemical species. The fact that the force constants obtained
on this artificial structure are responsible for the disagree-
ment with the experiment is corroborated by the coherent
structure factors, particularly at high q values as demon-
strated in Fig. 2 where coherent structure factors for certain
high q values, obtained by the ICPA, are displayed. The
curves clearly show that the spurious high frequency peak is
due to the Pd-Pd pairs and to a smaller extent due to Fe-Pd
pairs. As is seen from Table I, the Fe-Fe and Pd-Pd force
constants differ by about 70%, thereby representing a situa-
tion of very strong disorder as is seen in the case of
Ni50Pt50.

3 The splitting of the high frequency branch is a
manifestation of this strong force-constant disorder, albeit
wrong in the present case.

In the pursuit of a quantitatively better set of force con-
stants for the system so, that the suitability of the ICPA and
the ASR can be properly tested, we went ahead and used the
force constant data as reported in experiments.41 The force
constant data were obtained by fitting a Born–Von-Karman
force constant model to the frequencies were obtained from
neutron-scattering data on the ordered L10 FePd at 860 K,

very close to the order-disorder transition temperature
950 K. The reason behind using the experimental force con-
stants obtained from an ordered L10 structure for disordered
calculations were twofold: first, the L10 force constants
should be a better approximation for random alloy force con-
stants than the artificial cubic structure ones because the L10
structure allows structural relaxation and therefore a varia-
tion in the bond distances between different chemical species
pairs although in a restricted way. Nevertheless, this re-
stricted degree of relaxation could be crucial in capturing the
nature of forces between various chemical species as has
been seen in the case of NiPt alloys.42 Second, since the L10
data was taken at 860 K and the disordered fcc data was
taken at 1020 K, both of them lie very close to the order-
disorder transition temperature. At a first-order order-
disorder transformation at finite temperatures, the ordered
phase is only partially ordered and the disordered phase, it is
in equilibrium with, has short-range order. Examination of
the correlation functions has shown that ordered and disor-
dered states rather show similar atomic arrangement in the
vicinity of the order-disorder transformation. It is therefore
expected that in the present case, the L10 force constants at

FIG. 3. Dispersion curves �fre-
quency � vs reduced wave vector
�� for Fe50Pd50 alloy. The upper
panel corresponds to the ASR re-
sults however the lower panel to
the ICPA results. The filled circles
are the experimental data �Ref.
41�. The error bar in the ASR re-
sult basically represents the full
widths at half-maxima �FWHM�
at various � values. The force con-
stants used are given in Table II.
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860 K would not change significantly in the disordered
phase at 1020 K. These intuitive arguments are well sup-
ported by the dispersion curves presented in Fig. 3. Both the
ICPA and the ASR results agree reasonably well with the
experimental data. The spurious splitting obtained earlier dis-
appears. This disappearance can be understood better if we
look at the force constants used for this calculation. Table II
lists the experimental force constants used as inputs for the
ICPA and the ASR calculations.

In comparison with DFPT values, the Pd-Pd force con-
stants are a lot softer and the Fe-Pd force constants harden.
The fact that the force constants and their behavior is indeed
the deciding factor is again exemplified by the coherent
structure factors for the selected high q vectors as shown in Fig. 4. The figures show that the single high frequency peak

is now mostly because of the Fe-Fe and Fe-Pd contributions,
rather than the Pd-Pd contribution. This points to the fact that
the Pd-Pd contribution was overestimated and the Fe-Fe and
the Fe-Pd contributions were grossly underestimated by the
DFPT calculations on the artificial cubic structure because of
the lack of relaxation in such structure. This in turn can be
understood by looking at the bond distances between various
pairs of species. In the cubic structure, the Fe-Fe, Pd-Pd, and
the Fe-Pd distances were the same and in the present case
was taken to be 5.12 a.u. The L10 structure at 860 K, on the
other hand, had Fe-Fe and Pd-Pd distances to be 5.25 a.u.
and the Fe-Pd distances to be 5.08 a.u. Thus, the Pd atoms,
in the artificial cubic structures, were made to vibrate in a
smaller volume and because of the smaller distance between
two like atoms, the Pd-Pd force constants became harder.
Figure 5 compares the ICPA and the ASR results for the
phonon densities of states. Both the approximations produce
identical features. The peaks and the band edges have quan-
titative agreement among themselves and with the experi-
mental results.41

Figure 6 displays the full width at half-maxima �FWHM�
data associated with the finite lifetimes of phonons due to
disordered scattering. The upper three panels show the
widths as a function of wave vector ��� along the three sym-
metry directions extracted from the ASR method, while the
lower three panels show the ICPA results. There are some
quantitative differences between the two results. This is to be
expected because the FWHM is extremely sensitive to the

TABLE II. Real-space nearest-neighbor force constants for
Fe50Pd50 obtained from experimental data �Ref. 41� on L10 struc-
ture at 860 K. The units are dyn cm−1.

Pair Force constant Direction

Fe-Fe −5650 1xx

Fe-Pd −14050 1xx

Pd-Pd −19 450 1xx

Fe-Fe −9750 1xy

Fe-Pd −16 550 1xy

Pd-Pd −22 350 1xy

Fe-Fe 4100 1zz

Fe-Pd 2500 1zz

Pd-Pd 2900 1zz

FIG. 4. Partial and total structure factors calculated in the ICPA
for various � values along the �� ,0 ,0� and �� ,� ,�� directions in
Fe50Pd50 alloy. The type of mode is labelled along a particular sym-
metry direction. The force constants used are given in Table II. The
solid curves, the dashed curves, the dotted-dashed curves, and the
dotted curves represent the total, the Fe-Fe, the Pd-Pd, and the
Fe-Pd contributions, respectively.

FIG. 5. Phonon density of states for Fe50Pd50 alloy. The upper
and lower panels show the ICPA and ASR results, respectively. The
force constants used are that of the experimental paper �Ref. 41�
given in Table II.
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underlying approximation. However, a careful look sug-
gestes that the important peaks and valleys occur nearly at
the same positions. At this point we are unable to comment
upon which approximation fares better because of the unvail-
ability of experimental data.

In Fig. 7, we have shown the total coherent structure fac-
tors at various � values along the three symmetry directions
with various modes of vibrations. The upper box shows the
ASR result while the lower shows the ICPA result. In both
the cases, the different curves for different � values are
shifted along the x axis in order to facilitate vision. At a first
glance it may appear that the two results are rather different.
However, a careful look will convince us that the apparent
difference arises because of the different ways in which the
coherent structure factors are calculated by the ICPA and
ASR. In the ICPA the structure factors are separately calcu-

lated for each branch, transverse and longitudinal, along each
symmetry direction. That is why the ICPA shows seven pan-
els. In the ASR, on the other hand, the L and T branches for
���0� and ����� directions are calculated together. These pan-
els show two peaked structures. A careful inspection shows
that the peak positions are almost identical in the two meth-
ods. The almost similar dispersion curves of Fig. 3 is a tes-
timony to this statement.

Another important point of this figure are the qualitative
similarities in the line shapes in the two approximations.
They are generally sharp peaked for low wave vectors, wider
but symmetrical for the medium wave vectors and wide and
asymmetric for large wave vectors for all the three symmetry
directions for both ICPA and ASR. The structure factors from
ICPA and ASR are quite close as far as peak positions and
shapes are concerned.

FIG. 6. Disorder-induced
FWHM’s vs wave vector ��� for
Fe50Pd50 alloy. The upper and
lower panels show ASR and ICPA
results, respectively. The force
constants used are given in
Table II.
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VI. CONCLUSIONS

This paper has continued the development of the
augmented-space recursion2 and the itinerant coherent poten-
tial approximation �ICPA�3 for studying the vibrational prop-
erties of disordered metallic alloys. A brief description of the
two methods combined with a first-principles calculation �the

so-called DFPT� of the dynamical matrices has been re-
ported. The power of these approaches has been illustrated
by explicit calculations on the Fe50Pd50 alloy.

Both the theories are unique and systematic in the sense
that they produce almost identical results for a particular sys-
tem. Both the theories can explicitly take into account the

FIG. 7. Total coherent structure factors in different directions with different branches for Fe50Pd50 alloy. The upper and lower box shows
ASR and ICPA results, respectively. In each of the different directions and branches, the various curves indicate the total structure factors for
various � values starting from the lowest value to the edge of the Brillouin zone. In both the boxes, the different curves for different � values
are shifted along the x axis in order to facilitate vision.
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fluctuations in masses, force constants and scattering lengths.
We propose the methods as computationally fast and accu-
rate techniques for the study of lattice dynamics of disor-
dered alloys. A correct quantitative trend �comparable to the
experimental results� of the phonon dispersion and the pho-
non density of states has been predicted by both the method-
ologies when the experimental force constants has been used
in the calculation. Of course there is a fairly obvious general
comment to be made with regard to the self-consistency of
the procedure. This is precisely the reason that a first-
principles estimate of the dynamical matrices on parent or-

dered alloys do not yield quantitatively accurate results �in
comparison with the experiment� for the disordered alloy. We
shall propose that we need to go beyond and estimate the
dynamical matrices from a model of embedded atoms in a
fully disordered background.
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