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The exact, linear response at steady state is calculated for reacting, but otherwise noninteracting, thermal
defects driven by defect creation processes. The theory applies to vacancies and interstitials in the bulk, or to
adatoms and advacancies on surface terraces. A wide variety of possible driving forces includes nuclear
reaction, particle irradiation, epitaxial growth, surface erosion, and sublimation. When the defect life cycle
typically starts and ends with spontaneous pair creation and annihilation, both species respond to the difference
of their separate driving terms �the “Poisson” regime�, and the law of mass action holds everywhere with a
position dependent chemical potential �*�r�. The value of �*�r� in linear response is employed here to discuss
the conditions under which thermal defects precipitate, particularly as islands on terraces and dislocation loops
in the bulk. It is shown, for the Poisson regime, that an approximate symmetry exists between processes for the
two antidefects. Specifically, if �c

* suffices to nucleate a precipitate of one antidefect, then −�c
* is required to

nucleate the other.
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I. INTRODUCTION

In crystalline solids, the flow of matter by reaction or
diffusion is mediated by thermal point defects.1–3 Bulk met-
als support reacting antidefects that are vacancies and inter-
stitials, of which the former generally determine behavior
close to equilibrium.1,2 On the surfaces of crystals, the an-
tidefects are advacancies and adatoms, of which the latter are
thought to be dominant on many metal surfaces.4–7 �Such
surface and bulk processes are not, in reality, entirely distinct
but rather are linked by specific mixed reactions in a way
described elsewhere�.8 A variety of interesting phenomena
occur when a system of defects is driven by an external
agency.9–11 When unperturbed, thermal point defects are cre-
ated and annihilate at fixed sinks such as dislocations and
surface steps; antidefect pairs also form and annihilate spon-
taneously in translationally invariant crystal, either surface or
bulk. These are the processes by which thermal defects es-
tablish their equilibrium concentrations, when their chemical
potential � is zero. When an external force creates additional
defects, the defect system is driven from equilibrium, and the
chemical potential remote from fixed sinks then generally
differs from zero. Under these conditions thermal point de-
fects may nucleate new sinks at which the excess population
precipitates. In the present paper, these phenomena are
treated comprehensively within a single linear formulation
that becomes exact for small perturbations. In application to
practical cases it often turns out that precipitation does in-
deed require only small changes of defect chemical
potential.12

The processes of interest here take place under a variety
of circumstances that have received earlier experimental at-
tention. They occur, for example, when interstitials nucleate
and precipitate out as dislocation loops in irradiated metals
and semiconductors.13 Exotic cases for bulk vacancies are
exemplified by precipitation in quenched metals as stacking
fault tetrahedra,14 or as a spatially extended “void lattice”15

from supersaturation in a material driven by irradiation. In
the area of surface science, the creation of surface islands of

both signs is observed in the erosion and the epitaxial growth
of crystals by means of ion beams.16,17 Very similar struc-
tures result when atoms sublime from surfaces into vacuum
at elevated temperatures, and so this drives the system from
equilibrium.18,19

Nucleation of precipitates from supersaturated solution,
and the flow of reacting species to these and other sinks, are
topics that possess extensive literatures. A current treatment
of processes in irradiated alloys, with references to earlier
studies, is given by Doan and Martin.20 A treatment of sur-
faces during sublimation is given by Pimpinelli and Villain,12

together with earlier experimental literature. Several works
treat the molecular dynamics of ion beam impacts on crystal
surfaces,11,21 including nucleation of sinks, but generally
omit subsequent long term equilibration.

The present research was undertaken to place these sev-
eral processes in a unified context. The goal is to treat driven
defect systems exactly, for the limit of small driving forces.
The linear response of the chemical potential �* to the driv-
ing force may then be obtained precisely, and this may suf-
fice to determine the nucleation of precipitates also. As men-
tioned above, precipitation of thermal defects occurs for
rather small changes of chemical potential, and so a linear
theory may find wide practical use.

The present discussion proceeds on the basis of two re-
cent advances. First, exact equations that describe the react-
ing �but otherwise noninteracting� system of antidefects in
the simultaneous presence of fixed sinks and driving forces
have been linearized and solved generally for the homoge-
neous limit in which driving terms are negligible.22 The in-
clusion of a driving force requires, in addition, particular
integrals for the linearized equations. General results for the
driven steady state are presented below for the case in which
the driving force is spatially uniform. These have practical
value because defect creation is often quite uniform in cases
of nuclear decay, ion beam irradiation, and of sublimation.
The equations remain symmetrical between the two species
of antidefect and may be solved to obtain their self-
consistent linear disturbances.
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The chemical potential can be derived from these concen-
trations. A second recent advance pertinent here is the
recognition22 that a reacting defect system has a chemical
potential �* and temperature T* of its own, generally differ-
ent from those of the embedding lattice, namely � and T. In
particular, the quantity �* determines the size and sign of the
driving force for defect precipitation in the present treatment
of strongly reacting antidefects.

In what follows, the necessary equations are gathered in
Sec. II A, and solved in Sec. II B, with application to geom-
etries of interest deferred to Appendix A. The topic of Sec.
III is the resulting chemical potential and its characteristics
in several well-defined limits. For strongly reacting systems
these include a “Poisson” regime in which driving forces
create a substantial excess of one defect species, and a “Fren-
kel pair” regime in which the two species form at compa-
rable rates. For weaker reactions, relative to diffusion, the
Poisson regime has different characteristics. Section IV then
considers applications of the results to precipitation of driven
defects. For the strongly reacting Poisson regime, this in-
cludes a predicted symmetry between driven precipitation of
the two defects separately. The distributions of precipitates
expected in the several limiting regimes of behavior are dis-
cussed in Appendix E.

II. LINEAR RESPONSE IN DRIVEN SYSTEMS OF
THERMAL POINT DEFECTS

A. Basic equations

In this work we treat surface and bulk processes as sepa-
rate phenomena in their respective two- and three-
dimensional domains, neglecting the coupling caused by
transitions in which defects hop between surface and bulk
sites.8 Within this limitation, the defect processes of interest
here may be treated without specifying the particular geom-
etry of concern. By c1�r , t� we designate the occupation
probabilities of defect sites containing an added atom �inter-
stitial or adatom in the two cases� and by c2�r , t� the occu-
pation of sites with missing atoms �vacancy or advacancy�.
The equilibrium values c̄1 , c̄2, of these quantities are con-
stants in unperturbed systems at a fixed temperature.

The equations that determine the rate at which the c
change with time are22

ċ1 − D1�
2�c1 − c̄1� − K12�c̄1c̄2 − c1c2� = K1�r,t�; �1a�

ċ2 − D2�
2�c2 − c̄2� − K12�c̄1c̄2 − c1c2� = K2�r,t� . �1b�

Here, rate constants are, by convention,23 written as K. K1 is
the position- and time-dependent rate, per added-atom site, at
which defects are created by external agencies; K2 is the
analogous quantity for missing-atom sites. K12 is the rate
constant for antidefect reaction, with K12c̄1c̄2 the rate per
lattice site at which pairs are created, and K12c1c2 the anni-
hilation rate. D1 and D2 are the hopping diffusion
coefficients8 of the two species, so that the first two terms of
Eqs. �1a� and �1b� comprise the diffusion equation for the
excess of a species, in the absence of reactions and driving
terms. Note that Eqs. �1� are written for a lattice in which

vacancy defects and added atom defects have equally numer-
ous sites; cases with different site densities can be accommo-
dated with more elaborate notation.

It is important that the reaction terms in Eqs. �1a� and �1b�
are identical, so that

�2�D1c1 − D2c2� = K2 − K1 �2�

holds everywhere for the steady state �when the ci lack time
dependence�. At fixed sinks where ci→ c̄i for both species,
and thus ċi→0, the boundary conditions are evidently

− �2D1c1 = K1; − �2D2c2 = K2 �3�

�at fixed sinks, regardless of time-dependent forces�.
In this paper we treat weak perturbing forces for which

the defect concentrations undergo only small fractional
changes. The nonlinear Eqs. �1� may be linearized by writing
c1= c̄1+s1; c2= c̄2+s2. Then

� �

�t
− D1�

2 + K12c̄2�s1 = − K12c̄1s2 + K1�r,t�;

� �

�t
− D2�

2 + K12c̄1�s2 = − K12c̄2s1 + K2�r,t� . �4�

With nonlinear terms in c1 ,c2 eliminated, Eqs. �4� become
linear in s1, s2. They are to be solved simultaneously subject
to boundary condition �see above�:

si = 0; �2si = − Ki/Di, �5�

at fixed sinks, where ci= c̄i.
A general comment on regimes of behavior for Eqs. �1� in

the driven steady state may be helpful here. With time de-
pendence eliminated, the response may reasonably be named
diffusion dominated when the term on the left containing D
is larger than that containing K12, and reaction dominated in
the opposite case. The former regime may remain linear for
large perturbations, but linear response in the reaction domi-
nated regime is clearly limited to driving forces Ki such that
Ki�K12c̄1c̄2. Otherwise the term K12�c1c2− c̄1c̄2� cannot pos-
sibly remain linear in the perturbations s1, s2 of the equilib-
rium defect densities.

B. The steady state of linear response to uniform driving
forces

Here we find general solutions for Eqs. �4� for specific
impressed conditions. The relevant conditions are �a� that the
driving terms K1 and K2 are constants, specifically uniform
in space, and time-independent; and �b� that the system is
studied in the steady state of response to these driving terms.
Then, setting � /�t→0 we find

�− D1�
2 + K12c̄2�s1 = − K12c̄1s2 + K1;

�− D2�
2 + K12c̄1�s2 = − K12c̄2s1 + K2. �6�

It follows that
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�2��1�s1 = �2��− K12c̄1s2 + K1� = − K12c̄1�− K12c̄2s1 + K2�

+ K12c̄1K1, �7�

in which, for brevity, the operators in brackets from Eqs. �6�
are written �1�, �2�. Equations �6� can now be separated to
leave

�D1D2�
4 − �D1c̄1 + D2c̄2�K12�

2�s1 = K12c̄1�K1 − K2�;

�D1D2�
4 − �D1c̄1 + D2c̄2�K12�

2�s2 = K12c̄2�K2 − K1� . �8�

We can find s1, s2 in general as follows. The quantity
�1=�2s1 satisfies the equation

��2 − �2��1 = �1, �9�

in which

�2 = K12�D1c̄1 + D2c̄2�/D1D2; �1 = K12c̄1�K1 − K2�/D1D2.

�10�

This is the wave equation for imaginary eigenvalue,24 �, to
be solved subject to the boundary condition, from Eqs. �5�,
of �1=−K1 /D1 at fixed sinks. Suppose that, for any particu-
lar sink geometry, the eigenfunction of the wave equation
��2−�2���r�=0, with �=1 at fixed sinks, is g��r�. The solu-
tion �1=−�1 /�2+A g��r�, of Eq. �9�, with A in general an
arbitrary constant, is now found from the boundary condition
as

D1�1�r� = − K1 + A�g��r�/g���� − 1�; �11a�

D2�2�r� = − K2 + A�g��r�/g���� − 1� , �11b�

with

A = −
D1c̄1K2 + D2c̄12K1

D1c̄1 + D2c̄12

. �12�

With �1=�2s1, the general solutions now follow as

D1s1 =
D1c̄1�K2 − K1�
D1c̄1 + D2c̄2

f�r� +
A

�2� g��r�
g����

− 1� ,

D2s2 =
D2c̄2�K1 − K2�
D1c̄1 + D2c̄2

f�r� +
A

�2� g��r�
g����

− 1� , �13�

in which f�r� is the solution of the Poisson equation
�2f =1 that has f�r�=0 for the fixed sinks at r=�, and with
��2−�2�g�r�=0, with g=1 at fixed sinks. It may be verified
by inspection that Eqs. �13� are solutions of ��2−�2��2si

=�i that satisfy the desired boundary conditions s=0 and
�2si=−Ki /Di for fixed sinks at r=�. Specific solutions for
some cases with simple geometries are presented in Appen-
dix A.

The form of these solutions is of some general interest.
Under conditions where reactions are dominant �K12 and
hence �, large�, the second term on the right in Eqs. �13� may
be neglected and the solutions become

s1 =
c̄1�K2 − K1�
D1c̄1 + D2c̄2

f�r�; s2 =
c̄2�K1 − K2�
D1c̄1 + D2c̄2

f�r� . �14�

As now s1 / c̄1=−s2 / c̄2, Eqs. �14� correspond to the system at
equilibrium with a changed chemical potential �*�r�
=kBTs1�r� / c̄1. Note that the system responds only to the dif-
ference of the creation rates K1, K2 because, in this limit, all
other excess defects annihilate by reaction, and only this dif-
ference reaches the fixed sinks.

In the opposite limit, �→0, in which reactions become
negligible, �−2 �g��r� /g����−1�→ f�r�, and from Eqs. �13�,

D1s1 = − K1f�r�; D2s2 = − K2f�r� , �15�

so that the two species of antidefect diffuse to the sinks in-
dependently. It is certainly of interest that these are solutions
of the Poisson equation in both the fast reaction and slow
reaction limits, but with differing driving terms.

A further limit is reached when K1=K2=K, and the first
�Poisson� term in the response vanishes identically. Then the
driving process creates only Frenkel pairs. The exact linear
response is

D1s1 = D2s2 =
K

�2�1 −
g��r�
g����� . �16�

Hence in the limit of weak reaction �� small� we recover
Eqs. �15� with K1=K2, while for � large the result is

D1s1 = D2s2 =
KD1D2

K12�D1c̄1 + D2c̄2�
�1 −

g��r�
g����� . �17�

It will normally be the case that one defect dominates
mass diffusion so that, say, D1c̄1�D2c̄2. Then with K1=K2
=K, for r far from �, where g��r� /g����→0 in the limit of
strong reactions for which � is large,

s1 =
KD2

K12D1c̄1

; s2 =
K

K12c̄1

, �18�

and analogous results when D2c̄2�D1c̄1. A notable point, to
which we return below, is that the concentration of the non-
dominant defect may exhibit a larger absolute increase than
that of the dominant defect �see Eqs. �18�� under these cir-
cumstances. The fractional increase, s2 / c̄2=K /K12c̄1c̄2, is
evidently the ratio of rate, per site, of driven defect creation,
to the rate of spontaneous creation, whereas s1 / c̄1 is smaller
by a factor D2c̄2 /D1c̄1. This is the ratio of the mass diffusion
coefficients. The reverse result holds when the minority and
majority roles are exchanged.

III. CHEMICAL POTENTIAL IN THE DRIVEN SYSTEM

A. General concerns

Chemical processes such as precipitation or sublimation
are responsive to the chemical potential of the defect
system.25,26 In the present context, the factors of concern in
the chemical potential are not entirely trivial. When the re-
action between antidefects is not significant, it is reasonable
to treat the defects as entirely distinct, each with its own
chemical potential:
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�1 = kBT ln�c1/c̄1� � kBTs1/c̄1;

�2 = kBT ln�c2/c̄2� � kBTs2/c̄2, �19�

with T the temperature of the embedding lattice. When, how-
ever, the reactions are important, the defect system as a
whole can be ascribed22 its own temperature, T*, and chemi-
cal potential, �*, that, respectively, describe the ability of the
defect system itself to provide heat energy and atoms to lat-
tice sinks. The relevant quantities22 are

T* = T
ln c̄1c̄2

ln c1c2
; �20a�

�* =
kBT

2
� ln c̄1c̄2 ln�c1/c2�

ln c1c2
− ln�c̄1/c̄2��

= �kBT/2��T* ln c1c2 − T ln c̄1c̄2� , �20b�

in which the second form of Eq. �20b� follows from use of
Eq. �20a�. These quantities are not intuitive in form, but cor-
rectly reduce to T*=T and �*=� in the limit ci→ c̄i. More
generally they determine arbitrary populations c1, c2 of two
antidefects by a common temperature and chemical poten-
tial. T* and �* are certainly the appropriate variables with
which to describe the transfer of heat energy and particles
between fixed sinks and a strongly reacting defect assembly.

One concern here is with nucleation processes that are
dominated by �*. It is worth noting that T*=T for distribu-
tions given by Eqs. �14� with strong reactions �i.e., the law of
mass action holds for a fixed temperature, T, common to the
lattice and defects�. The remainder of this section treats the
chemical potential created by linear response in driven sys-
tems of reacting thermal defects.

B. Exact chemical potential in linear steady state response

To determine the linear response in �*, Eq. �20b� may be
rewritten, with ci= c̄i�1+si / c̄i�, and with the logarithms ex-
panded, to obtain the first order result

�* =
kBT

2
� s1

c̄1

−
s2

c̄2

−
ln�c̄1/c̄2�
ln c̄1c̄2

� s1

c̄1

+
s2

c̄2
	� . �21�

With the ci	1, the factor containing logarithms,
�ln c̄1−ln c̄2� / �ln c̄1+ln c̄2�, is 
±1 when one antidefect ex-
ists in much larger concentrations than the other, and other-
wise has still smaller magnitude. Also, for strong reactions,
s1 / c̄1�−s2 / c̄2, and these two facts then combine to make the
last term on the right usually unimportant.

In full, the exact linear response obtained from Eqs. �13�
for the si and Eq. �21� for �* is

�*�r� = Bf�r� + C� g��r�
g����

− 1� �22a�

with

B =
kBT�K2 − K1�
D1c̄1 + D2c̄2

, �22b�

and

C =
kBT�K2D1c̄1 + K1D2c̄2�
2K12c̄1c̄2�D1c̄1 + D2c̄2�

h�c̄1, c̄2� , �22c�

with

h�c̄1, c̄2� =
D1c̄1 − D2c̄2

D1c̄1 + D2c̄2

+
ln�c̄1/c̄2�
ln�c̄1c̄2�

. �22d�

This response is linear in the driving forces Ki, as is appro-
priate for the limit under study. The term containing B cor-
responds to a perturbation that changes the chemical poten-
tial only, since T*=T. The term in C incorporates corrections
with T*�T close to sinks. From Eqs. �13� the term in g�r�
gives exactly compensating fluxes of the two antidefects.
The added fluxes result in an increase of sink fluctuations27

which, however, remain small in the linear regime. This mat-
ter is discussed further in Appendix C.

We continue by evaluating �* in terms of driving forces
K1, K2, for strong reactions in general, and also for the spe-
cial case of pure Frenkel pair creation, which has the special
interest mentioned in Sec. II B.

1. �*
„r… for dominant reactions

It is useful to understand the typical sizes of the compet-
ing terms in Eq. �22�. For the regime in which reactions
dominate the behavior �see Sec. II A�, the system remains
linear only when K�K12c̄1c̄2, so that the defect creation by
the driving forces does not overwhelm the dominant equilib-
rium pair creation. Also, both terms on the right of Eq. �22d�
are of magnitude less than or equal to 1. These facts cause
the term containing K12 to remain generally small compared
to the first �Poisson� term �that contains f�r�� throughout
almost the entire linear regime of �*. Here the Poisson term
alone thus provides a useful approximation to the full result.
It is an important point, in this limit of strong reactions, that
the responses to K1 and K2 are precisely equal in amplitude
and opposite in sign. Explicit functions f�r� showing the
response as a function of position, for specific examples with
various geometries, are given below in Appendix A. Under
other circumstances, when the second term on the right of
Eq. �22a� does become significant, the response remains lin-
ear in each of the driving forces K1, K2, but the two re-
sponses generally differ to some extent in magnitude and in
sign.

Since the Poisson portion of �* is dominant for strong
reactions, a simple understanding of the behavior may be of
value in an experimental context. Rather than divert the dis-
cussion here, the matter is deferred to Appendix B. There it
is shown how behavior in the Poisson limit is consistent with
a simple perspective, in which those defects that remain after
reaction, drain off to sinks in accordance with predictions of
the Nernst-Einstein equation.

2. Chemical potential in the diffusion-dominated regime

It is generally believed that, in most bulk metals up to the
melting temperature Tm, and on metal surfaces below

Tm /3, thermal defects are created predominantly at fixed
sinks.22 The typical life span of a defect then consists of
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passage by diffusion from the sink at which it is created to
the sink at which it eventually annihilates. Reactions among
antidefects thus play a minor role, and it becomes necessary
to consider the two antidefects as possessing their indepen-
dent chemical potentials, �i=kBT ln�ci / c̄i�, separately.

The required results follow directly from Eqs. �15� by
linearizing the logarithmic terms as

�1�r� =
kBTK1

D1c̄1

f�r�; �2�r� =
kBTK2

D2c̄2

f�r� . �23a�

Evidently the response no longer depends only on K1−K2,
and instead the two species respond differently to their sepa-
rate driving forces. Indeed for large driving forces for each
antidefect it is possible that both may simultaneously exceed
whatever criterion determines the onset of nucleation. The
form taken by the chemical potentials can again be readily
understood from the Nernst-Einstein relationship �see Ap-
pendix B�.

Outside the linear regime, when the driving forces are
large, the result

�i = kBT ln c̄i�1 + Kif�r�/Dic̄i� , �23b�

with i=1 or 2, remains valid up to Ki sufficiently large that
�R
1, whereupon the ci are both reduced by reaction. Note
also that the response ��r� no longer remains a solution of
Poisson’s equation in this extended regime, because the term
in f is in the argument of the logarithm.

3. �* for pure Frenkel pair creation

When K1=K2=K, the Poisson term in ��r� is exactly zero
and, contrary to the conditions described above, the second
term on the right of Eq. �22� assumes importance. Where the
second term is significant, the ratio of the two terms is
�2R2
K /K with 
K the difference between K1 and K2. In
this regime, the driving forces create the two antidefects at
equal rates, and a sufficiently fast reaction could then com-
pletely suppress defect density changes. From Eqs. �22� one
then has

��r� =
kBTK

2K12c̄1c̄2
�D1c1 − D2c̄2

D1c1 + D2c̄2

+
ln c̄1 − ln c̄2

ln c̄1 + ln c̄2
�� g��r�

g����
− 1� .

�24�

As explained in what follows, the first concentration-
dependent term in the braces has the effect of stabilizing
dominant defects and destabilizing the minority species. Of-
ten, one species will dominate transport, and the term in
question is then approximately ±1, taking the sign of the
dominant defect: i.e., +1 for D1c̄1�D2c̄2, and −1 for the
opposite case. Since the r-dependent factor is everywhere
negative, the first term of the factor in braces, for a positive
force K, drives � negative, which destabilizes the minority
species. To the contrary, the second term, containing loga-
rithms of small quantities 	1, creates the opposite trend. The
two terms are evaluated approximately in Sec. III C for rea-
sonable models to find that the first term dominates, and the
net response has its sign and a magnitude between 0.5 and 1,
relatively independent of T. The overall effect is that a sys-

tem driven sufficiently hard at K1=K2 eventually reaches a
chemical potential of magnitude large enough to nucleate
minority precipitates. The minority defects thus selected are
then forced out of solution to some extent �see Sec. III C
below�.

These predictions are of practical interest. In most metals,
vacancies are certainly the dominant defects both in site oc-
cupancy c̄ and in mass transport Dc̄.28 It is therefore of spe-
cific interest in the present connection that interstitials �the
minority species� formed in Frenkel pairs of irradiated met-
als are well-known to precipitate out, usually to form dislo-
cation loops �“interstitial loops”�.9–11 Although as yet not
fully verified by experiment, adatoms are believed to be the
majority species on most surfaces4–7 and advacancies the mi-
nority. It might therefore be anticipated from Eq. �24� that
advacancy islands form on metal surfaces irradiated by ion
beams of the “neutral energy” at which adatoms and adva-
cancies are created in equal numbers. Here one recognizes
that a beam of self-ions at low impact energies causes epi-
taxial growth on the crystal surface, while at high impact
energies there occurs sputtering with a net loss of ions from
the surface. In between these extremes lies the “neutral en-
ergy” at which there is neither net addition nor loss of ions
from the surface, only the steady state creation of adatom-
advacancy �Frenkel� pairs.

C. Bulk and surface behavior for a standard metal

To place the results for the chemical potential in perspec-
tive we evaluate some values for typical cases of pure bulk
metals and for their typical close packed surfaces. It has
recently been suggested22 for both cases that all metals con-
form sufficiently well to an average model as to provide a
useful guide for typical behavior. Values of c̄i�T� and Di�T�,
that scale among metals as T /Tm, are reproduced for the
reader’s convenience in Appendix D. Here they are em-
ployed to illustrate typical behavior.

The inverse distance � is important as it compares diffu-
sion rates to reaction rates such that reactions dominate when
�R�1, in which R is the system size �see Appendix A�. The
values of � for bulk and surface of model metals are shown
in Fig. 1. For surface systems with sinks �usually steps�
spaced 
10 nm apart, reactions dominate above 
Tm /4,
whereas, for the bulk, reactions dominate only for
R
10 �m, even at Tm.

In the Frenkel pair regime, the magnitude of �*�r� varies
in proportion to the function h�T� in Eq. �22d�. This is the
sum of two terms which, respectively, contain mass diffusion
coefficients, Dic̄i, and the equilibrium concentrations c̄i. Fig-
ure 2 shows these terms, marked 1 and 2, evaluated for metal
surfaces �solid lines� and for the bulk �dashed lines� as a
function of T /Tm, for the standard parameters given in Ap-
pendix D. The totals, marked T, and given as heavy lines, are
fairly independent of temperature and of magnitude typically
between 0.5 and 1. With these parameters, the surface �posi-
tive� and bulk �negative� totals have opposite signs because
adatoms dominate transport on surfaces whereas vacancies
dominate mass transport in the bulk metal.

Interest centers also on the typical magnitude of the Pois-
son term relative to the Frenkel pair term. As mentioned
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above, the ratio in the region K1
K2 is given approximately
by �2R2
K /K with 
K=K1−K2. More generally, ��R�2

gives a typical order of magnitude for the relative size, and
consequently �R gives the relative gradients.

IV. NUCLEATION OF THERMAL DEFECT PRECIPITATES

The results for steady state linear response of a driven
defect system, presented above, may find applications in
various practical cases of precipitation including, for ex-
ample, those that include driving forces for defect creation
due to epitaxial growth, erosion, fusion, fission, particle irra-
diation, sublimation, and so on. Precipitates nucleate when
the chemical potential of the defects becomes unfavorable
relative to that in the precipitate. Given an accurate theory of
nucleation, the expressions for �* derived above then pro-
vide precisely the information needed to predict the condi-
tions under which precipitates nucleate in terms of the driv-

ing forces applied to the reacting assembly. This requires that
values of �* be inserted into equations that determine the
nucleation rate.25,26 It is not, however, clear at present that
nucleation theory is fully predictive in any single case. In
any event, results are particular to the case studied, and will
not be considered here, leaving full development for specific
applications to specialized works. Here we consider instead
two generic features of the behavior. These include, first, a
symmetry for strong reactions between behavior for the two
antidefects; and second, the typical magnitude of �* required
for nucleation of defect precipitates on metal surfaces and in
their bulk. A related topic, concerning the spatial distribution
of precipitates throughout the driven volume occupied by the
reacting defect assembly, is deferred to Appendix E.

A. Precipitation of thermal defects

Precipitation of particles from a random assembly takes
place, in principle, when the chemical potential of the par-
ticles exceeds a critical value required to nucleate the new
structure. Once nucleated, the precipitates driven by the
chemical potential grow in size without bounds. A large
literature25,26,12 explores the character of the required critical
nucleus and the rate at which nuclei form in the equilibrating
precursor configuration for which the particles are dispersed
in a macroscopically homogeneous fashion. Dimensionality
enters into the process largely through the available distribu-
tion of nucleus geometries as a function of cluster size. A
useful paper by Pimpinelli and Villain12 offers a careful dis-
cussion of the case d=2 for comparison with d=3, with the
altered distribution of cluster distribution d=2 entails. The
central features of �i� a critical size of nucleus that separates
transient clusters from those that grow; and �ii� growth25,26

and fluctuation27 by attachment of new particles through dif-
fusion, remains common to the two cases. For this reason it
remains possible to conduct the discussion with some gener-
ality.

Precipitation theory was developed for atoms in solution.
Our present interest is focused on thermal defects and, unlike
atoms, these are not independently conserved at fixed sinks.
New features that require a separate discussion are thereby
introduced. As a practical matter, defects tend to precipitate
into disks one atom thick, as sketched in Fig. 3, and for
clarity we confine the discussion to precipitates having this
geometry. In the three-dimensional �3D� bulk, such precipi-
tates occur as dislocation loops that form a finite region in
which a new atomic plane nucleates between existing planes
of the perfect crystal, or in which vacancies aggregate on a
plane to eliminate a finite area of that plane �see Fig. 3�a��. In
either case the perimeter of the disk is an edge dislocation,
and the area may or may not contain a stacking fault. For 2D
terraces, precipitates include islands either of vacancies �“la-
cunae” or “Lochkeime”18,19,29� or of adatoms; in either case
the perimeter of the island is a step edge, as in Fig. 3�b�.

Precipitates occur more generally in a variety of differing
geometries, not discussed here. Specifically, 3D loops may
include a stacking fault in which planes occur out of se-
quence; other geometries include stacking fault tetrahedra
and almost spherical voids. Here we consider 2D islands and
3D dislocation loops.

FIG. 1. Using defect parameters collected in Appendix B, the
figure shows values of the reaction wave vector � �Eq. �10�� for
surface and bulk systems. For �R�1, with R the system size, ther-
mal defect lifetimes are dominated by pair creation and annihila-
tion, rather than to processes at fixed sinks.

FIG. 2. Values of h�T� from Eq. �23d�, obtained using defect
parameters from Appendix B. These determine the sign and size of
the Frenkel pair term in �*�r�.
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Two features of the precipitation process for thermal de-
fects require a particular note. First, a precipitate containing
n thermal defects of species 1 can grow to size n+1 either by
absorbing a further type 1 defect or by emitting a type 2
thermal defect. Complementary remarks apply to shrinking
of type 1 precipitates and to growth or shrinking of type 2
precipitates. This behavior lies in clear distinction to impu-
rity cases in which growth and shrinking of nuclei are asso-
ciated specifically with addition and emission of impurities,
respectively. The important consequence, for systems in the
reaction-dominated regime, is that the evolutions of nuclei
for types 1 and 2 precipitates both are determined by the
same mass transport coefficient D1c̄1+D2c̄2. This is the case
because the flow of each species between solution and a
nucleus is determined by the same chemical potential �*. In
the contrary case that behavior is diffusion dominated, the
flow to type 1 and type 2 nuclei is determined by transport

coefficients D̄1c̄1 and D̄2c̄2, respectively, because the chemi-
cal potential gradients generally differ between the two spe-
cies.

A second property of nuclei formed from thermal defects
lends further symmetry to the occurrence of type 1 and type
2 precipitates. This is the fact that both types of precipitate
comprise a perfect crystal encircled by an edge dislocation
loop �or perfect terrace enclosed within a step edge, for the
surface case�. The result is that the energetics of nuclei for
large size n become identical for the two species. This is
illustrated in Fig. 4, in which the energy is shown as a func-
tion of precipitate radius. Note that added-atom loops are
shown by positive r and vacancy loops by negative r. For a
positive chemical potential �*, favoring type 1 precipitation,
the energetics are shown on the left, and for negative �*,
favoring type 2 precipitation, on the right. The faint para-
bolic lines indicate the chemical potential change as n
=�r2 /� defects leave the solution, and the faint straight
lines represent the free energy 2�r of the perimeter, with 
its energy per unit length. The heavy lines in the two figures
represent the summed energies. The central point made here
is that, in this macroscopic discussion, the cases of type 1
and type 2 defects have identical descriptions. For chemical
potentials ±��*�, energies are identical in the two cases. We
emphasize that this symmetry holds only for reaction-
dominated systems where �* is a property of the entire de-

fect system. In diffusion dominated cases the flow links, in-
stead, to the separate chemical potentials of the two species.

A central result of this work for strongly reacting defect
systems may now be stated. In the relevant limit, the chemi-
cal potential �* of the thermal defect system depends,
through Eq. �22�, only on the difference K1−K2 of the forces
driving creation of the two species of thermal defect. In ad-
dition, the energetics of nucleation for the two species are
identical for opposite values of �*. Finally, the kinetics of the
two processes depend on the same transport coefficient
D1c̄1+D2c̄2. Therefore we deduce that the entire precipita-
tion processes for the two species must depend identically on
the driving forces. Specifically, if the minimum creation rate
K=K1−K2 is required to nucleate type 1 defects, then −K is
the minimum magnitude of differential creation required to
nucleate type 2 precipitates. This is a general prediction for
thermal defect precipitation from driven systems of reaction-
dominated thermal defects in the Poisson regime.

In reality, of course, some residual asymmetry of energet-
ics must be present for small n because the binding energies
of small clusters certainly differ to some extent between the
two species. The degree to which this symmetry breaking
affects actual nucleation has not been determined at the
present time. However, recent observations of island nucle-
ation by irradiation with self-ions of Pt on Pt�111� do exhibit
the symmetry predicted here.30

B. Magnitude of required �*

While the description of precipitation remains still to be
perfected, the available treatments contain parameters that
certainly possess the correct order of magnitude. It is there-
fore of interest that a treatment12 of surface defect nucleation
has specific predictions for the magnitude of � needed to
cause advacancy island nucleation. From the present per-
spective, this is the value of ±�* needed to nucleate islands
of the two signs; we further infer that the same results can be
adapted to the bulk cases of dislocation loops. Concern cen-
ters on the predicted magnitude of the required �* and
whether or not it conforms to the domain in which linear
response theory is valid. This is the question considered in
the present section. The differing distributions of precipitates

FIG. 3. Dislocation loops �left� and islands on a terrace �right�
are dominant precipitates for vacancy-type �top� and added-atom
defects �bottom� for bulk and surface systems.

FIG. 4. Energetics of thermal defect precipitates. Radii of loops
are indicated by r positive for added atom defects, and for vacancy
loops by r negative. The nucleation barrier for added-atom defects
when �* is positive �left� is then identical to the barrier for vacancy
defects with the reverse �* �right�. There results a symmetry be-
tween the two precipitation behaviors �see text�.
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over the irradiated region in the Poisson and Frenkel pair
regimes is a matter of further interest, deferred to Appendix
E.

In the present notation the chemical potential �c
* predicted

by Pimpinelli and Villain12 for nucleation is �c
* /�a2

�0.22 /kBT, with a the atomic cell radius and  the energy
per unit length of step edge. This gives

�c
*

kBT
�

s

c̄

 �a�2/2�kBT�2 


1

5
. �25�

Recent experiments on step fluctuations have shown that step
edges have 
200 meV/nm at high temperatures 
Tm /2,
on the close-packed surfaces of simple metals31 with Tm

2000 K; similar results are reported for Si �Ref. 32� at
elevated temperatures. These values give rise to the numeri-
cal estimate given on the right of Eq. �25�.

The result in Eq. �25� appears to confirm that the values,
s/c, of fractional defect concentration required for island
nucleation, under the stated high temperature conditions, are
quite small, and fall within the expected regime of linear
response. Note, however, that step energies are reported to be
a factor of 3–10 larger at low temperatures, so that it could
well be the case that linear response predictions fail below

100 K. In the case of dislocation loops in the bulk, with
dislocation energies33,34 
5 eV/nm, and nucleation condi-
tions probably fall outside the bounds of linear response at
all temperatures up to Tm.
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APPENDIX A: SOLUTIONS FOR GEOMETRIES OF
PRACTICAL INTEREST

Here the results of Sec. II are specialized to particular
cases that have geometries of practical interest.

1. Solutions in one dimension

We consider the behavior in a domain of the variable x
extending over −l /2�x� l /2. Then g��x�=cosh �x, f�x�
= �x2− �l /2�2� /2, and

D1s1 =
D1c̄1�K2 − K1��x2 − �l/2�2�

2�D1c̄1 + D2c̄2�
+

A

�2� cosh �x

cosh �l/2
− 1�;

D2s2 =
D2c̄2�K1 − K2��x2 − �l/2�2�

2�D1c̄1 + D2c̄2�
+

A

�2� cosh �x

cosh �l/2
− 1� .

�A1a�

The same solution describes, in addition, processes on a 2D
terrace of width l and infinite length, and also processes in a

3D rectangular slab of thickness l and of infinite extent in the
other two dimensions.

2. Solutions in two dimensions

Solutions for a rectangular area follow from Eqs. �16�
together with the separability of orthogonal dimensions. In
this separation, identical values of �2 must be retained in
each dimension, for each of which �2 /2 must replace �2.
Numerically, the factor is compensated by the increase in the
D that occurs because the mean square displacement in-
creases in proportion to dimensionality d.

Separate interest for 2D examples centers on the case of a
circular boundary such as a terrace bounded by a step that
forms a circle of radius R. Then g��r�= I0��r�, with I0 the
cylindrical Bessel function24 of the first kind �finite at r=0�
and zeroth order, for imaginary argument, and with f�x�
= �r2−R2� /4. Note that in the separation of the wave equation
in circular coordinates that � in the argument of the Bessel
function in Eq. �10� is �2=�x

2+�y
2. The result is

D1s1 =
D1c̄1�K2 − K1��r2 − R2�

4�D1c̄1 + D2c̄2�
+

A

�2� I0��r�
I0��R�

− 1�;

D2s2 =
D2c̄2�K1 − K2��r2 − R2�

4�D1c̄1 + D2c̄2�
+

A

�2� I0��r�
I0��R�

− 1� .

�A1b�

3. Solutions in three dimensions

Solutions for a rectangular block, and for a finite cylinder,
follow directly from Eqs. �16� and �17� using the separability
of the equations for orthogonal coordinates. Here we con-
sider the case of a spherical volume, radius R, as a model, for
example, of a crystalline grain isolated by a spherical grain
boundary. Then g��r�= i0��r�, with i0 the spherical Bessel
function of the first kind of zeroth order, for imaginary
argument,24 and with f�x�= �r2−R2� /6, so that

D1s1 =
D1c̄1�K2 − K1��r2 − R2�

6�D1c̄1 + D2c̄2�
+

A

�2� i0��r�
i0��R�

− 1�;

D2s2 =
D2c̄2�K1 − K2��r2 − R2�

6�D1c̄1 + D2c̄2�
+

A

�2� i0��r�
i0��R�

− 1� .

�A1c�

APPENDIX B: DEFECT FLOW IN THE POISSON
REGIME

Here we offer simple insight into behavior in the Poisson
regime for dominant reactions. Consider a region of dimen-
sionality d, extent R, containing �R /a�d particles, with a the
particle radius. Then, in the steady state, K�R /a�d defects
reach the boundary of area 
Rd−1 each second, with
K=K1−K2. The flux density in the steady state is
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J 
 KR/ad; �B1�

but the same flux density must also be given by the Nernst-
Einstein equation:

J = �dDC/kBT� � � , �B2�

with C=c /ad the concentration and dD the d-dimensional
diffusion coefficient. Using

�� 
 ��0�; c = c1 + c2; f�0� 
 − R2/d �B3�

�see, e.g., Sec. II C�; and

D = �D1c̄1 + D1c̄1�/�c̄1 + c̄2� , �B4�

one finds by equating the two expressions for J

��0� =
kBT�K1 − K2�
D1c̄1 + D2c̄2

f�0� , �B5�

just as in Eq. �23�. Note in addition that the diffusion coef-
ficient in Eq. �B4� can be derived more rigorously22 for a
system of reacting defects that obey the law of mass action.
From this perspective, the result for strong reactions in Eq.
�22� is just the behavior expected when products of the com-
pleted reaction drain to fixed sinks with the appropriate equi-
librium diffusion coefficient.

APPENDIX C: SINK FLUCTUATIONS FROM GRADIENTS
OF �*

It will often be the case that the perimeter of a driven
volume is a defect sink, as in the cases discussed in Sec.
III C. Examples are metal grains surrounded by grain bound-
aries and terraces contained between straight steps or en-
closed within a surrounding step edge �e.g., a circular island
of either sign�. Questions then arise about the effect of the
increased fluxes in amplifying fluctuations of the sinks them-
selves.

A simple example is the steady state rate at which a net
excess of one defect over the other reaches a boundary. The
answer is the rate at which new sites are created at the
boundary is just the net excess of defects created in the en-
closed region. Specifically, the excess is �K1−K2�V /� with
V /� the number of sites enclosed. This determines, for ex-
ample, the rate at which the region expands under the driving
forces.

An interesting question concerns the total rate at which
defects of either species attach to the boundary. The total rate
per unit area �dimension d−1� determines the rate at which
the boundary locus fluctuates in time. These boundary fluc-
tuations can be formulated as a diffusion problem in the con-
figuration space27 of the boundary geometry, for which the
time scale is the defect attachment rate. Antidefects of both
type contribute simply in proportion to their attachment
rates. The thermal equilibrium fluctuations occur on a time
scale determined by the mass diffusion coefficient
D1c̄1+D2c̄2. When the active region is driven by defect cre-
ation, the attachment rate is evidently increased by the ex-
cess defects reaching the boundary. It is then natural to en-
quire whether the resulting acceleration of boundary

fluctuation rates can be employed as a means to monitor the
net rate at which defects reach the boundary. In particular,
with defects generated in a volume, and being deposited on a
surface, it might seem that sufficiently large attachment rates
might readily be achieved for large radii.

That this is not, in fact, the case, at least within the
bounds of linear response, can be established by a simple
argument presented here. The attachment rate at sink sites
changes in proportion to the defect concentrations c at sites
next to the boundary. In equilibrium, these take the values c̄i
that create the equilibrium attachment rates Dic̄i mentioned
above. We see directly that the fractional change in attach-
ment rate must be just �c− c̄i� / c̄i; but this change of concen-
tration takes place over one atomic spacing in a system typi-
cally tens of nm or more in extent. It follows that to obtain
fractional changes 
1 in the attachment rate at a boundary,
the value of c near r=0 must be 
102c̄i or larger. Such
enormous changes correspond to very large driving forces
that certainly fall outside the limitations of linear response.
We conclude that sink fluctuations cannot offer a promising
means for monitoring defect fluxes within the linear regime.

APPENDIX D: BULK AND SURFACE DEFECTS FOR
TYPICAL METALS

The results employed above to estimate defect behavior in
metals and on metal surfaces are those presented earlier22 for
use in other estimates. They are collected here for the con-
venience of the reader.

Mass diffusion.

Bulk: D = 0.3 exp�− 17Tm/T�cm2/s;

Surface: D = 5 � 10−4 exp�− 6Tm/T�cm2/s . �D1�

Vacancy type defects.

Bulk: D = 5 � 10−2 exp�− 7Tm/T�cm2/s;

c̄ = 6 exp�− 10Tm/T�cm2/s; �D2a�

Surface: D = 3 � 10−4 exp�− 2Tm/T�cm2/s;

c̄ = 3 exp�− 6Tm/T�cm2/s . �D2b�

Added-atom type defects.

Bulk: D = 10−4 exp�− 0.5Tm/T� cm2/s;

c̄ = 107 exp�− 30Tm/T�cm2/s; �D3a�

Surface: D = 2 � 10−4 exp�− 1.5Tm/T�cm2/s;

c̄ = 3 exp�− 4.5Tm/T�cm2/s; �D3b�

Mass action.

Bulk: c̄1c̄2 = 6 � 107 exp�− 40Tm/T�cm2/s; �D4a�

Surface: c̄1c̄2 = 9 exp�− 10.5Tm/T�cm2/s . �D4b�
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APPENDIX E: DISTRIBUTION OF NUCLEATION EVENTS

Since it is driven by excess chemical potential, nucleation
is most probable where the change of �* caused by the driv-
ing forces is largest. For the natural geometries used in Sec.
II C this occurs in the center of the sample, specifically
where x=0 in one-dimensional cases, and where r=0 in two
and three dimensions �see Appendix A�. The chemical poten-
tial elsewhere is smaller, since si→0 at the fixed boundary
sinks. The point of further interest considered here is the
spatial distribution of precipitates. This depends on the mar-
gin by which �*�0� exceeds the critical value �c

*�0� at which
nucleation first takes place on experimental time scales, and
so differs between the Poisson and Frenkel pair regimes.

Suppose then that the nucleation rate for a given excess
��*=�*−�c

* is given by

J = J0��*, �E1�

which tends to zero with ��*, as is reasonable. To specify
��* in a practical way, suppose that �* at r=0 exceeds �c by
a fraction 
. Thus

�e
*�r� = �c

*�1 + 
��*�r�/�*�0� , �E2�

with �*�r� /�*�0� in general from Eq. �22�. With ��0� a
maximum, the chemical potential can be expanded in a series
about r=0 as

�c
*�r� = �c

*�0��1 − �r2 + ¯ � . �E3�

From Eq. �E2�, nucleation occurs only for r� �
 /��1/2, and
the mean square radius of nucleation events is now given
approximately by

�r2 = �
0

�
/��1/2

�c�
 − �r2�rd+1dr/�
0

�
/��1/2

�c�
 − �r2�rd−1dr


 d
/�d + 4�� . �E4�

Here, the dimensionality d determines how the volume ele-
ment depends on radius r.

Interest now centers on values of  that describe particu-
lar experimental cases. In the Poisson limit, whether reaction
or diffusion dominated, �c

*�r� /�c
*�0�
�R2−r2� /2d �see Sec.

III C�, so that �=R−2. Then

�r2 
 R2d
/�d + 4� �Poisson limit� . �E5�

This result is to be contrasted with the behavior in the
limit of Frenkel pair creation. As the precise behavior

depends on the particular geometry we employ, as a
specific illustration the case d=2 of islands on a terrace,
for which ��r� /��0�
�I0��r� / I0��R�−1�. For small r,
I0��r�
1+ ��r�2 /2+¯, while for �R large,35 I0��R�

�2��R�−1/2 exp��R�. We thus find for this case �

�2�R�1/2�5/2 exp�−�R�. With � thus exponentially small,
the mean square radius in Eq. �E4� undergoes a commensu-
rately large increase, and eventually at large �, nucleation
occurs everywhere except in a narrow band surrounding
fixed sinks. In this way the observed distribution of precipi-
tates may become a diagnostic for the system of reacting
defects. The chemical potential in the Frenkel pair limit is
much flatter at the system center than that in the Poisson as
confirmed by the values of �*�r� /�*�0� in Fig. 5. There,
nucleation events occupy larger fractions of the active vol-
ume as �R increases, in agreement with Eq. �E4� above. The
physical reason is that, in the Frenkel pair regime, the driv-
ing terms create no excess of either species, and little trans-
port occurs from the center to perimeter sinks. �* is, accord-
ingly, reduced. A gradient occurs near the perimeter, where
an imbalance over a distance 
�−1 is caused by differing
transport to sinks of the two species. In the Poisson regime,
in contrast, the gradient drives excess defects to perimeter
sinks and the precipitates are less disperse.
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