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The dynamics of transformation twins in SrxBa1−xSnO3 �x=0.6,0.8� perovskite has been studied by dynami-
cal mechanical analysis in three-point bend geometry. This material undergoes phase transitions from ortho-
rhombic to tetragonal and cubic structures on heating. The mechanical loss signatures of the transformation
twins include relaxation and frequency-independent peaks in the orthorhombic, and tetragonal phases, with no
observed energy dissipation in the cubic phase. The macroscopic shape, orientation, and relative displacements
of twin walls have been calculated from bending and anisotropy energies. The mechanical loss angle and
distribution of relaxation time are discussed in terms of bending modes of domain walls.
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The attenuation of seismic waves at frequencies from
1 mHz to 1 Hz is expected to affect the geophysical signa-
tures of mantle-forming minerals in the deep earth, such as
�Mg,Fe��Si,Al�O3 perovskites.1–3 �Mg,Fe��Si,Al�O3 perov-
skite is orthorhombic at lower mantle pressures and
temperatures,4 but is metastable at ambient T and P. Thus,
structural analogs with a stable orthorhombic crystalline
structure are needed for studying and modeling the low-
frequency mechanical properties of perovskite. Ferro-
elastic perovskites, in particular, those isostructural with
�Mg,Fe��Si,Al�O3, develop mobile domain structures in
their low-symmetry �ferroelastic� phases.5 Mechanical loss
or internal friction of these domain structures results in a
dissipation peak related to the microstructure and its mobil-
ity. In the high-symmetry �paraelastic� phase, the ferroelastic
transformation twins are absent and the dissipation of me-
chanical energy is �comparatively� negligible.1,5

Earlier observations have stimulated much interest in the
displacement of the domain walls on the mesoscopic scale,
where the needle growth from crystal interfaces is a time-
dependent self-adjustment toward a new equilibrium, depen-
dent on temperature and applied external stress �. The dy-
namics of relaxation depends on a viscosity function B
�Pa s/m� that originates from the internal structure of the do-
main wall and the domain-wall–point-defect interactions. As
the viscous displacements of domain walls from their equi-
librium positions are, by their very nature, dissipative in en-
ergy, they can be investigated by mechanical spectroscopy.6

Previous studies of domain-wall trajectories have only
considered the static case.7 Here, we extend that approach to
include time dependence. The motion of a single transforma-
tion twin through an inhomogeneous concentration of point
defects at given T and � is described by the following time-
dependent equation:

B
dy�x,t�

dt
= − S

d4y�x,t�
dx4 + U

d2y�x,t�
dx2 − �y�x,t� + � , �1�

where y�x , t� gives the trajectory of wall position in the elas-
tically soft direction of the crystal, B is the dragging force
per unit length depending on the intrinsic viscosity of wall
width, � is the Peierls force responsible for the lateral mo-

tion, and S and U are the bending and the anisotropy energies
of wall segments, respectively.

Equation �1� determines the wall profile from the mini-
mum condition that the total energy density7

E�y�x,t�� =� �Eanisotropy + Ebending + EPeierls�dx �2�

is given by the Euler-Lagrange equation

�E�y�x,t��
�y�x,t�

= Fdiss + Fext, �3�

with dissipative Fdiss=Bdy�x , t� /dt and driving Fext forces
per unit area of wall surface. Ebending=S�d2y�x , t� /dx2�2 and
Eanisotropy=U�dy�x , t� /dx�2 measure the excess energies for
bending and rotation of wall segments with respect to the
elastically soft direction of the crystal. If dissipative forces
act on a domain wall, then the wall dynamics is damped. In
the approximation of defect-free bulk or weak domain-wall–
defect interactions, this damping is associated with the asym-
metric growth of needles from the crystal interfaces due to
the local structure of those interfaces and microscopic shear-
ing of the sample. Here, we examine the effect of internal
conformational arrangements of wall segments due to the
movement of asymmetrical domain walls during an external
stress perturbation.

In the steady-state limit �Bdy /dt→0�, the dynamics of
domain walls is suppressed in time by twin-wall–defect in-
teractions which, in general, determine needle trajectories
and the symmetrical shapes of needle tips.7 The tip remains
rigidly pinned in the vicinity of defects for the time of any
observation, but the trajectory may relax slowly causing a
microscopic deformation of the sample at large distances
from the pinning center within a characteristic time greater
than the lattice relaxation time. Such twin walls form, in
particular, needles with shapes which do not depend on T, P,
or the crystal structure in which they occur. Furthermore,
low-frequency spectroscopy measurements and in situ opti-
cal microscopy demonstrate that the needle motions toward
equilibrium �dy /dt�0� are subject to a Debye relaxation
with a distribution of relaxation times.1 The needles remain
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pinned on the crystal interfaces over a wide range of tem-
peratures and stresses, while a comb of the symmetric and
asymmetric needle tips is found to sweep between the
sample boundaries, yielding two mechanical responses in the
Cole-Cole diagram: one with an anelastic signature described
by a suppressed semicircle and other with a creep signature
at low frequency, which has yet to understand from a view-
point of domain-wall morphology and relaxation times.

SrxBa1−xSnO3 �x=0.6,0.8� perovskite is a model system
adopting the orthorhombic phase at room temperature. It un-
dergoes a number of phase transitions to cubic symmetry
with temperature �see Fig. 1�a��. The low-symmetry ortho-
rhombic �Pnma , Imma� and tetragonal �I4/mcm� structures

are related to the ideal cubic �Pm3̄m� structure of
SrxBa1−xSnO3, via tilting of the SnO6 octahedra about the
cubic symmetry axes.8 Experimentally, we have studied its
mechanical response by dynamical mechanical analysis
�DMA-7�, which permits measuring the mechanical loss and
elastic constants of SrxBa1−xSnO3 in parallel-plate stress
�PPS� and/or three-point bending �TPB� geometries.3 As the
elastic constants of perovskite are closely related to sponta-
neous strain induced during the SnO6 tilting, the mechanical
loss spectrum in Fig. 1 follows closely the phase transitions
with temperature.1,9,10 The peaks at 170 °C �Sr0.6Ba0.4SnO3�
and 580 °C �Sr0.8Ba0.2SnO3� are spectroscopic features of
the tetragonal-orthorhombic phase transitions �compared
with the phase diagram on Fig. 1�a��. The peak at 411 °C for
the 1 Hz mechanical loss spectrum of Sr0.8Ba0.2SnO3 de-
pends on frequency and is accompanied by a modulus
anomaly. By using the peaks as markers of the frequency-
temperature shifts, we estimated values of 1.85 eV and
10+14 s−1 for the activation enthalpy �Hact and the attempt
frequency �0, respectively. These values are characteristics
of a pinning-depinning transition, which is mainly attributed
to the interaction of domain walls with oxygen vacancies11,12

and cation interstitials13 in perovskites. The apparent activa-
tion energy for those pinning sites decreases with T in the
ferroelastic phase, as the energy landscape experienced by
the domain walls becomes insensitive to the defect distribu-
tion with increasing temperature �wall width increases dra-
matically at TC�. Here, we explore whether needle growth is
the origin for these apparent values of activation energy,
since needle displacements may contribute to the effective
energy through spatial redistributions of bending modes due
to the local structure of crystal surfaces.

Above 550 °C �Sr0.6Ba0.4SnO3� and 800 °C
�Sr0.8Ba0.2SnO3�, the measured loss angle is minimal, while
the stiffness of material is maximal. Such a behavior is a
manifestation of a transition to the cubic symmetry in which
the transformation twins no longer exist and domain-wall
dynamics has no bearing on dissipation.

On the macroscopic scale, the internal structure of domain
walls is determined by the spatial variations of the order
parameter below the phase transition.5 The pulling and push-
ing of neighboring structural units at the boundary separating
mesoscopic domains of different orientations �macroscopic
spontaneous strains� induce displacement fields, which
propagate in the elastically soft direction of the ferroelastic
phase via a knock-on effect. In the approximation when no

FIG. 1. �a� Temperature-composition phase diagram for the
solid-solution SrxBa1−xSnO3 stannate. Isochronal mechanical loss
spectra of �b� Sr0.6Ba0.4SnO3 and �c� Sr0.8Ba0.2SnO3 at frequency
between 1 and 6 Hz. For the cubic phase above �b� 800 °C and �c�
550 °C, the modulus saturates and the loss drops to a negligible
value, so the data are not reported.
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additional short-range interactions are considered, the coor-
dinate of wall displacement y�x , t� measured along the nor-
mal to domain wall is given by

y�x,t� = �
0

t �
0

l

G�x,�,t − s�f�����s�d�ds

+ �
0

t �
0

l

G�x,�,t − s�	��,s�d�ds . �4�

In Eq. �4�, f�x�=y�x ,0� accounts for the Cauchy initial con-
ditions, ��x� is the Dirac delta function, G�x ,� , t� is the
Green’s function, and 	�� ,s� is the nonhomogeneous term in
Eq. �1�. The explicit solution of G�x ,� , t� is14

G�x,�,t� =
2

l
�

n

sin�n

x

l
�sin�n


�

l
�

�exp	−
�

B
t −

U

B
�n


l
�2

t −
S

B
�n


l
�4

t
 . �5�

The Green’s function is calculated at t�0 for 0x l,
which accounts for the mesoscopic situations observed in
perovskites1,3 when the twin boundaries propagate through
the bulk under effect of applied stress while the surface of
the crystal is allowed to relax so that y=0 at x=0 and x= l. It
is relevant to define the relaxation time by �= �B /U�
��l /n
�2= �1/n�2�U or �= �B /S��l /n
�4= �1/n�4�S, where �U

and �S are the single Debye relaxation times, in the limiting
cases that either the anisotropy or bending energy dominates
the total energy. The Peierls contribution is not considered
further in Eq. �5� as the domain walls mainly interact with

defects at temperature at which EPeierls=�y�x , t� is much
smaller than Ebending and Eanisotropy. Thus, we neglect the in-
fluence of sample geometry at high temperatures �EPeierls

→0� and calculate domain walls with universal shapes of
needle tips. By contrast, at very low temperature, the Peierls
energy scales with the barrier height of the Landau double-
well potential and, thus, dominates over all energies in the
energy landscape. The wall trapping is determined by the
lattice potential �EPeierls� and/or point defects, and the energy
for thermal activation is calculated from the energy barrier in
the Landau potential.15

The domain profiles at high temperatures are calculated
for a stress field which is abruptly applied at t=0 and held to
a constant value �0 at t�0. From Eqs. �4� and �5�, one
obtains

y�x,t� = IT + �*�
0

t �
0

l

G�x,�,s�d� ds . �6�

The initial trajectory �IT� determines the wall trajectory at
t=0 for a stress level exceeding the threshold for nucleation.
The profiles of domain walls from Eq. �6� are plotted in Fig.
2. Simulations were carried out with l�10 nm, S /U / l2

�0.1, �*=�0 /B�106 nm s−1, and �0�1000 mN/mm2,
which are values typical for the needle profiles in
ferroelastics.5,7 The parabolic tips of domain walls follow a
Debye relaxation pattern toward an equilibrium position both
whether the trajectories are dominated by the anisotropy
�Fig. 2�a�� or bending �Fig. 2�b�� energies. The geometry of
the needle tip is strongly dependent on the stress profile
	�� ,s� applied on the perovskite surface. Figures 2�a� and
2�b� are examples of time-dependent wall evolution calcu-

FIG. 2. Needle profiles calcu-
lated for t from 0 to 100 s in 2 s
steps. Each trajectory corresponds
to a different time. The stress is
abruptly applied at �0 �t=0� and
held to a constant value �0 at t
�0. �a� PPS mode, anisotropy
dominates over bending energy.
�b� PPS mode, bending dominates
over anisotropy energy. ��c� and
�d�� Similar concepts of energies
but in TPB mode.
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lated from Eq. �6� for a homogeneous stress profile along the
surface �the PPS mode�. In the TPB mode, we induced an
inhomogeneous stress profile through the sample by applying
a dynamic force in the middle of SrxBa1−xSnO3 surface, e.g.,
at �0=1/2 precisely. Thus, by substituting 	�� ,s�d� ds with
�*���−�0�d� ds in Eq. �4�, we calculated the wall trajectory
in the TPB geometry as follows:

y�x,t� = IT + �*�
0

t

G�x,�0,s�ds . �7�

The results are plotted in Figs. 2�c� and 2�d� for
E�Eanisotropy and E�Ebending, respectively. Time ranges
from 2 to 100 s were used for wall simulations in both ge-
ometries.

The wall trajectory in Figs. 2�c� and 2�d� ends in a tip,
which diverges from the parabolic one observed in Figs. 2�a�
and 2�b�. Eanisotropy yields a straight trajectory around the
needle tip for large t, which is identical to the steady-state
profile calculated in previous works.7 For small t, however,
exponential needles develop in time with tip angles which
vary with the needle half-width due to the inhomogeneous
stress profile along �. They are not characteristic-length de-
pendent as EPeierls→0. They are due to the macroscopic
sample deformation caused by the strain along the soft direc-
tion as a result of accommodation of wall relaxation at
�=0 and �=1, as well as the absence of bending energy.
Indeed, the excess of Ebending does maximize the curvature of
the wall trajectory at each point along �, as in Fig. 2�d�, by
superimposing a modified parabolic shape upon a straighter
shape at the vicinity of the pinning centers on the surface.
Strictly speaking, the maximum curvature of the parabolic
profile at �=1/2 in Fig. 2�d� is a result of the smooth con-
nection of the rotated parts of the wall around the center.

In the PPS mode, neither exponential nor linear trajecto-
ries are calculated from Eq. �6�. The profiles in Fig. 2�a� are
insensitive to the anisotropy energy since it is suppressed by
the homogeneous sample deformation, which introduces par-
allel shift and constant curvature of domain walls at each
point along the soft direction in the PPS mode. Furthermore,
the wall displacements for Ebending are also strengthened by
this deformation, making their trajectories in Fig. 2�b� to
look similar to the ones calculated for Eanisotropy in Fig. 2�a�.

Building on the results in Fig. 2, we observe that the wall
displacement in the TPB mode depends on the magnitude of
anisotropy and/or bending energy and the stress profile on
the crystal surfaces. The boundary conditions applied in Eqs.
�4� and �5� define a planar interface for needle growth at
t�0. In contrast, the surfaces of real experimental samples
are highly rough and nonplanar. For the purposes of model-
ing, we may consider a saw-toothed boundary along � with
an average slope, which depends on the redistribution of nor-
mal stresses across the boundary plane.16 The shear compo-
nent of the stress is relaxed along � �strong pinning sites on
the surface�, causing a displacement along the soft direction
which is driven by the stress balance between the internal
stresses acting on the boundary plane and �. This results in a
shift of the resulting stress from �0=1/2 toward another

point �0�1/2, which accounts for needles with tips at
�0�1/2 and an asymmetric shape.

In Fig. 3, the trajectories are calculated with a stress ap-
plied at �0=1/3, which describes a model example of wall
behaviors expected due to an inhomogeneous stress profile
with � acting away from the center in the TPB geometry.
The offset of the tip from the center is critical to the needle
symmetry in crystals with a large Eanisotropy and less critical
in crystals with large Ebending. Indeed, for Ebending, the shift of
the tip toward the center is balanced by the angular momen-
tum for each length element that rotates the wall toward the
center and the time-dependent sliding of each length element
toward the equilibrium state, Fig. 3�b�. Note that no tip shift
with time is predicted for Eanisotropy in Fig. 3�a� because the
wall dynamics is constrained along the elastically soft direc-
tion of the crystal, in particular, which is the axis of energy
minimum of the conformational arrangements of wall seg-
ments.

The above results show that for nonplanar interfaces, the
normal stresses cause a narrow distribution of the needle
shapes for E�Ebending �Fig. 3�b�� around the wall trajectory
of the most probable shape �e.g., one which is a parabolic tip

FIG. 3. Needle profile for a stress at �0= l /3 in TPB mode. �a�
Anisotropy energy dominates bending energy. �b� Bending energy
is larger than anisotropy energy.
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in the center at equilibrium� and a much broader one for
E�Eanisotropy �Fig. 3�a��. Thus, a distribution of relaxation
times around �m �the most probable value�, together with
broadening of the relaxation spectra around �=1/�m in fre-
quency space, is expected from the intrinsic effects of needle
movements. Building on previous work on distribution of
relaxation times in perovskites, we also know that the dy-
namics associated with the needle motions throughout a non-
uniform distribution of defects may generate a stretched ex-
ponential relaxation.1 For the sake of completeness, an
asymmetric profile in perovskites may be obtained by needle
growth not only from surface defects but also from bulk
defects when needles split into pairs with smaller tip angles
due to minimization of Eanisotropy contribution.5 The trapping
of one of those tips into the stability field of point defects or
lattice singularities �a probabilistic process� suppresses the
tip displacement along the soft direction and promotes an
asymmetric shape via lateral displacements of other tip into
the bulk. It would be, however, difficult to distinguish needle
dynamics due to surface and bulk defects quantitatively from
mechanical spectroscopy alone, and additional observations,
such as transmission electron microscopy, would have to be
made to confirm such a description.

For this reason, we chose here a qualitative description of
the underlying mechanism by deriving the probability den-
sity function of intrinsic movements of domain walls. The
Eanisotropy effects on the loss dynamics will be considered
firstly. The complex compliance in � space, J*�x ,w�, can be
calculated in a straightforward manner6 from

J*�x,�� = JU + i��
0

�

�J�x,t� − JU�exp�− i�t�dt , �8�

where J�x , t�=JU+y�x , t� /L /�. Thus, from Eq. �8�, one gets

J*�x,��  J1 − iJ2

= JU +
l2

LU
�

n

sin�n

x

l
�

n


sin�n

�0

l
�

n


1

1 + i��n
,

�9�

where JU=1/E is the unrelaxed compliance and L is the
width of the sample in the elastically soft direction. Further,
the discrete �n spectrum can be approximated by a continu-
ous spectrum for time intervals closely spaced and relative to
1/�. Examples of statistical developments with a continuous
rather than a discrete distribution of relaxation times are the
motion of dislocations in the multiwell energy diagram de-
pendent on the segregation of point defects on the dislocation
line17,18 and the grain boundary sliding lubricated by an
amorphous intergranular layer causing stretched exponential
relaxation due to the interaction between the relaxing species
into the film.19 Following Nowick and Berry,20 we define the
distribution in terms of ln �, rather than in � itself. The ex-
pressions for J1 and J2 in the continuous limit are

J1 − JU

�J
= �

−�

� X�ln��/�D�/��
1 + �2�2 d ln��/�D� �10a�

and

J2

�J
= �

−�

�

X� ln��/�D�
�

� ��

1 + �2�2d ln��/�D� . �10b�

In Eq. �10�, �J=JR−JU= l2 / �LU� /2 is the magnitude of the
domain-wall relaxation, and � is the distribution parameter
proportional to the half-width of X���. Following Nowick
and Berry20 and Tobolsky,21 we substitute ln���D� with z and
ln�� /�D� /� with �:

J1 − JU

�J
= �

−�

� X���
1 + exp�2z + 2���

d�  f1�z,�� �11a�

and

J2

�J
= �

−�

� X���
cosh�z + ���

d�  f2�z,�� . �11b�

Equations �11a� and �11b� are similar to those used by Now-
ick and Berry20 and Tobolsky21 for the box and lognormal
distributions of relaxation times. The normalized probability
density function of domain walls,

X� ln��/�D�
�

� 
�sin	


ln��/�D�
�


�
 ln��/�D��2

�
−�

� �sin�

v
�
��
v�2

dv

=
1

�� sin	

ln��/�D�

�





ln��/�D�

�
�

2

, �12�

is a corollary of the Fourier transforms of the integral kernel
�Eq. �5��. It assigns the distribution density of relaxation time
around some mean value �U in the interval �� ,�+d�� as a
result of the probability density of finding a needle trajectory
defined by � around the most probable needle bending mode
defined by �U in the range between � and �+d�. The distri-
bution parameter was introduced in the sinc2 function �Eq.
�12�� through the offset of needle tips from the center �Fig.
3�, which follows from the redistribution of the normal stress
along � as a consequence of surface inhomogeneity.

In Fig. 4, the relaxation peaks in Sr0.8Ba0.2SnO3 are well
modeled by a distribution of Debye peaks tan ��z ,�� calcu-
lated from Eq. �11� in terms of variable 1 /T, rather than in
ln���D� itself, for thermally activated atomic motions. We
calculated �=10.3 and �J /JU=0.35 from the relative peak
width, r2����T−1��� /�T−1�0�=3.7, and the relative peak
height 2f2�0,��J2�0� /�J=0.28, where �T−1�0� and J2�0�
are the half-width and the relaxation strength of the single
Debye peak, respectively. For the fit, we used a Debye peak
with relative peak width given by �Hact /r2���, as well as the
values of �tan ��P and TP at the maximum of the peak. The
internal friction peak in Fig. 4�a� and therefore the relaxation
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process are completely characterized by �0, �Hact, �, and
�J /JU.

The values of �J /JU, f2�0,��, and r2��� calculated from
Eq. �11� differ from the ones calculated and tabulated by
Nowick and Berry for the lognormal distribution.20 This dif-
ference is a corollary of the maxima existing at x= ±3/2

around the main maximum at x=0 in sinc2�x�, which results

in an additional statistical broadening of relaxation times for
large �. For small �, however, the broadening of the domain
walls is described by the Gaussian-like distribution20 as the
central maximum in sinc2�x� smears out the effect of other
maxima. The transition from small values of � to larger ones
gives a transition in J2−J1 space, which does not result from
the onset of low-frequency creep in the material but does
result from the different quantitative description of the wall
dynamics in terms of distributions of relaxation times. Ex-
perimental studies on superelasticity show that � changes
with temperature,1 e.g., it decreases with increasing T �the
distribution of the relaxation time is more likely to be in the
activation energy rather than in the limit relaxation time.1,20�,
through a number of factors �wall width, wall density, and
surface roughness� which are intrinsic function of
temperature.3,10 Thus, the systematic dependence of � with T
may lead to a transition in the J2−J1 diagram,1 as well as
positive shift in the effective value of the activation energy.

In conclusion, for E�Eanisotropy, the needle trajectory of
ferroelastic domain walls gives rise to a distribution of relax-
ation times for wall dynamics around �U. This, however, is
not found when E�Ebending. It follows from Eqs. �4� and �5�
that the Ebending effects can be introduced in J2 and J1 spectra
by replacing X��� with X��� /�2 into Eq. �11�. For integral
operations, it is more convenient to normalize the latter and
write in terms of ���� lim

�→0

�X���� / ��2+���. Both integrals

reduce to the Debye equations for E�Ebending. Hence, needle
dynamics is governed by a single Debye relaxation time �S,
which determines a needle trajectory of a modified parabolic
shape. No broadening of relaxation peaks in terms of relax-
ation times exists in a crystal with E�Ebending. Additionally,
it follows from S /U� l2 for l�100 nm and �S=2
 /�S
= �B /S��l4 /
4� that the maximum in the energy dissipation is
described by a relaxation peak in the kilohertz frequency
range, which is much higher than the frequency range in
Figs. 1 and 4, and the frequency of seismic waves, although
the influence of pressure in the deep earth on this relation has
yet to be determined.
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