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We identify an extra magnetic anisotropy contribution due to roughness in ultrathin single crystalline mag-
netic films grown on randomly corrugated surfaces. In this picture, the magnetization follows the roughness
profile leading to a tilting of the magnetization away from the easy magnetization axis and hence to a
modification of the magnetic anisotropy. This “undulating” magnetic state competes with the alternative pos-
sibility of uniform in-plane magnetization, which carries a cost in magnetostatic energy due to surface charges.
The limits of validity of the model presented are discussed in terms of the roughness amplitude, correlation
length, film thickness, and the intrinsic magnetic parameters of the film.
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It has been widely recognized that surface roughness in
thin magnetic films leads to an extra magnetostatic energy
contribution to the magnetic energy via the so-called
“orange-peel” effect,1 resulting, for example, in changes in
the perpendicular magnetic anisotropy,2–6 extra anisotropy
terms in surfaces with directional morphology,2,7–10 and ad-
ditional magnetic coupling in multilayer systems.11–20 An-
other roughness contribution to the magnetic anisotropy can
be envisaged which may be important in ultrathin epitaxial
films that cover a randomly corrugated substrate surface:
While the magnetization follows the roughness profile, re-
ducing the magnetostatic energy contribution, the tilting
away from the easy axis of magnetization leads to an addi-
tional magnetic anisotropy contribution. This means that in
measurements of the magnetic anisotropy, unless the applied
magnetic field completely saturates the sample magnetiza-
tion �which may require fields of the order of a few T for low
anisotropy materials�, a residual ripple in the magnetization
will contribute to the magnetic anisotropy. This assumes that
the epitaxial relation between film and substrate is the same
on the flat portions of the surface as on the island slopes, as
is expected for ultrathin epitaxial films deposited onto a cor-
rugated surface �Fig. 1, left�.21 Further, we can expect this
mechanism to dominate at small thicknesses, while at larger
thicknesses the linear increase in exchange and anisotropy
energy which is associated with such a magnetic configura-
tion �including a volume magnetostatic energy contribution
that results from a slight divergence of the magnetization�
will exceed the magnetostatic energy associated with the
“orange-peel” configuration, whereby the system is expected
to fall into the usual uniform magnetic state �Fig. 1, right�.
We propose here that this mechanism may be an important
contribution to the effective magnetic anisotropy found in
single crystalline ultrathin magnetic films, and we calculate
by means of a simple model analytical expressions for the
effect of roughness on the effective magnetic anisotropy of
uniaxial and cubic anisotropy materials. We also discuss
qualitatively the transition point in thickness separating this
regime from that where the usual “orange-peel” effect con-
tribution sets in.

To estimate the magnetic energy associated with an undu-
lating magnetization, we consider a thin magnetic layer cov-

ering a nonmagnetic island, which we assume to have cylin-
drical symmetry and, in the simplest case, to have a conical
shape. Surface roughness is characterized in a first approxi-
mation by two parameters, the roughness amplitude � and
the correlation length �, which corresponds to the average
island size �see Fig. 1�; the parameter ��4� /� is a measure
of the island slope and is the relevant parameter in problems
dealing with surface roughness. The simple conical geometry
allows for the analytical calculation of energy expressions
for the exchange and magnetocrystalline anisotropy energies,
but other shapes can be calculated numerically; as we show,
the energy values do not depend significantly on the island
shape, indicating that the magnetic energy variation with the
roughness parameter is not very sensitive to the exact surface
morphology and that our expressions may be used to esti-
mate the variation in anisotropy in real systems.21 We con-
sider only the case of in-plane magnetized thin film systems
with weak anisotropies and we assume that the substrate
morphology has no directionality �which otherwise could
give rise to extra anisotropy terms2–4,7,9,10�. Since we assume
that the magnetization follows the island surface profile, the
magnetization distribution is determined by the substrate sur-
face S= �����r�−z=0,r�R0� �in cylindrical coordinates,
where R0�� /2 is the island radius�. One requirement is that
the magnetization M�r� is tangent to S, �� ·M�r�=0. In
order to determine the magnetic anisotropy, we need to cal-
culate the energy difference when the magnetization points
�on average� along the hard and easy magnetization axes. We
consider first the simpler case of uniaxial anisotropy and next
the case of cubic anisotropy.

FIG. 1. Schematics of the magnetization profile in a thin and a
thick film with coherent interfaces.
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For the case of systems with uniaxial anisotropy, we ex-
pect no change in energy with roughness when the magneti-
zation lies in the �magnetic hard� plane perpendicular to the
easy axis direction, while when the magnetization is aligned
�on average� along the easy axis, there is a spread in the
magnetization that increases the magnetic energy. Assuming
the �100� direction to be the easy axis, we have for the an-
isotropy energy

Eanis
�100� = Kut	

0

R0

rdr
1 + ��2	
0

2�

d	
��2 cos2	

1 + ��2 cos2	
, �1�

where t is the magnetic film thickness, Ku is the uniaxial
magnetic anisotropy constant, and ���r� denotes the deriva-
tive of ��r�; this gives for the anisotropy energy density
eanis

�100�=Ku�1−1/
1+�2� while along the �010� hard magneti-
zation axis eanis

�010�=Ku and therefore we have for the effective
uniaxial anisotropy constant Ku

eff=eanis
�010�−eanis

�100�=Ku /
1+�2.
We see that the correction to the effective anisotropy is of
second order for small roughness values; we see also that the
effect of roughness in this model is always to decrease the
effective magnetic anisotropy.

We consider now the more complicated but more interest-
ing case of in-plane cubic anisotropy. We assume for con-
creteness that the �100� and �110� directions correspond, re-
spectively, to the hard and easy directions �i.e., cubic
anisotropy constant K1
0� of magnetization in the �001�
plane of cubic materials. The relevant quantity is now the
energy difference eanis

�110�−eanis
�100�, which for a perfect planar

film gives K1 /4. We next calculate this energy difference as a
function of the roughness parameter.

(a) Magnetic anisotropy along the �100� direction. We
calculate the resultant anisotropy energy Eanis=K1��2

2�3
2dv,

where we assume that the magnetization lies in the �010�
plane such as one would expect upon saturation along the
�100� direction. We have

Eanis
�100� = K1t	
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which depends only on the parameter �=4� /�. For a general
surface z=��r� Eq. �2� is very difficult to calculate analyti-
cally or, if possible, it is likely to be too complicated to be
useful; however, the case of a conical surface is easy to cal-
culate and yields

eanis
�100� =

K1

�

�2

1 + �2� 1
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arctan�1 + �2�−1/2


1 + �2  . �3�

In the inset to Fig. 2 we plot the roughness anisotropy
energy density contribution �normalized to K1� as a function
of the roughness parameter �=4� /� and we compare it with
numerical results for more realistic island shapes, Gaussian
and sinusoidal, showing that, in fact, the change in energy is
not very sensitive to the exact island shape. The energy
reaches a minimum �for K1
0� at �=1, which we expect
since it corresponds to an island slope of 45°, along which
direction the magnetocrystalline anisotropy is lowest in the
�100� plane.

(b) Magnetic anisotropy along the �110� direction. This

problem is identical to that solved previously, but now we

require the magnetization to lie in the �1̄10� plane or, equiva-
lently, that M�S and M ·n=0 where n is a vector normal to

the �1̄10� plane. These conditions allow us to write the mag-
netization as a function of the local coordinates; the magnetic
energy is now Eanis=K1���i

2� j
2dv �i� j�, since now all the

magnetization components are nonzero in the general case.
We can then show that

Eanis
�110� =

�K1t
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Again, the case of a conical surface can be solved immedi-
ately, giving for the energy density

eanis
�110� =

K1
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2

�2
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We see in particular that eanis
�110�=K1 /4 for �=0, as expected.

In the inset to Fig. 2 we show the normalized roughness
anisotropy energy density variation with the roughness pa-
rameter � along the �110� direction. It is seen that the effect
of roughness is to decrease the magnetic anisotropy energy,
since more spins now point closer to the �111� direction; for
very large roughnesses, however, a larger portion of the spins
will point along the �001� direction and therefore the mag-
netic energy gradually increases to zero �K1
0�.

We can now calculate the effective magnetic anisotropy
associated with film roughness from the above expressions;
since the resulting expressions cannot be simplified beyond
their initial form, we shall consider here only their graphical
representation, shown in Fig. 2; it shows that the effect of
roughness is, within the model proposed here, to decrease the
effective magnetocrystalline anisotropy. This decrease is
quite significant for large values of �. We should point out
that, although we plotted 4� /� up to 2, such large values are

FIG. 2. Variation of the normalized energy density difference
with the roughness parameter 4� /� for several surface profiles. The
inset shows the variation of the normalized energy with the rough-
ness parameter 4� /� for several surface profiles, with the magneti-

zation lying in the �010� and �1̄10� planes.
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rather unrealistic, and we expect in all practical cases the
latter parameter to be limited up to 0.3 for very rough films;
for this value of 4� /�, the effective anisotropy is reduced by
�5%, which corresponds to a large change in the measured
anisotropy with respect to that of a perfectly flat film.

This reduction in the effective anisotropy is a result of the
fact that the roughness-induced anisotropy energy behaves
differently along the easy and hard axes; in fact, if the
changes in energy with roughness were identical, no varia-
tion in the effective magnetic anisotropy would ensue �see
inset of Fig. 2�.

The remaining question is to determine for which set of
sample parameters �t, �, and �� one expects this model for
the magnetization configuration to be applicable as opposed
to the case of uniform magnetization. Intuitively, one expects
the present model to apply for relatively large values of �
and small t; the uniform case should be more favorable for
small � and large t. Unfortunately the problem is too com-
plicated to allow us a complete study, but we can neverthe-
less discuss the relative size of the different energy terms
involved and the limits for which we expect our model to
apply.

For the case of the undulating magnetization profile
�which for simplicity we call the “undulating” state, Fig. 1,
left�, we have both a contribution from the anisotropy and
exchange energy; the magnetostatic energy is nonzero,
stricto sensu: Although there are no surface “magnetic pole
charges,” there is a volume charge distribution arising from a
nonvanishing divergence of the magnetization. The calcula-
tion of this energy term is exceedingly complicated, and this
term needs to be taken into account in estimating the transi-
tion thickness that separates these two magnetic states. The
case of uniform magnetization has been widely studied in the
literature for �� t, for instance, by Zhao et al.,5 who provide
a convenient expression for the magnetostatic energy of a
magnetic film with coherent interfaces. If the demagnetizing
energy of the undulating state is not taken into account, the
model predicts that the uniform state is higher in energy for
an unphysically wide range of thicknesses. This is an indica-
tion of the importance of the magnetostatic energy term in
determining the details of the spin state of lowest energy in
ultrathin films and nanostructures.22 For � comparable to or
smaller than the exchange length, the undulating state leads
to a very large exchange energy, suggesting that at such short
length scales a local uniform magnetization configuration en-
sues, i.e., the undulating state is expected to be a “macro-
scopic” state, insensitive to the nanoscale variations in sur-

face roughness �such small scale roughness could give rise to
step anisotropies,23,24 but this should not affect the effective
anisotropy for a random roughness profile�. For very small
roughness values these two different states �uniform and un-
dulating� are largely undistinguishable, but for larger rough-
ness amplitudes and small thicknesses, we expect the undu-
lating state to be lowest in energy.

Variations in the uniaxial, growth-induced, anisotropy of
Co films as a function of film roughness have been reported
by Li et al.,25 who find that for very large substrate rough-
nesses ���0.4� the anisotropy vanishes. However, the Co
films in this earlier study are very thick �97 nm�, are not
single crystalline, and the rougher films do not seem to be
conformal with the substrate. In the work by Li et al. the
vanishing of the anisotropy must therefore be due to other
factors, such as morphology-induced changes in growth-
induced anisotropy. More recently, experimental results on
the magnetic anisotropy of fcc Co films grown on rough
Cu�001� substrate layers suggest a reduction in the effective
anisotropy constant with increasing film roughness that can
be accounted for by the present model.21 In fact, it is found
that 7 and 17 nm thick fcc Co�001� films exhibit, respec-
tively, a reduction in magnetic anisotropy with roughness �
��0.03 and 0.3 for the smooth and rough films, respec-
tively� of approximately 25 and 8 % while our model pre-
dicts a change in anisotropy of about 4.3%. Since real sur-
faces tend to be more complex than the uniform distribution
of islands assumed in our model,26–28 an exact numeric com-
parison of the change in magnetic anisotropy with roughness
is difficult. However, our model explains well the sign and
magnitude of such changes;21 accuracy may be improved by
considering a weighted expansion in the surface roughness
components, if known. Our work implies that the substrate
roughness may introduce changes in the effective magnetic
anisotropy of ultrathin films and that, conversely, a control of
the magnetic anisotropy of ultrathin films must take into ac-
count roughness effects.

In conclusion, we suggest the existence of a magnetic
state for ultrathin films grown on substrates with a significant
surface roughness, whereby the magnetization follows the
substrate profile in order to avoid the formation of surface
charge poles. This leads to a reduction in the magnetic an-
isotropy and we develop a model that allows one to estimate
�by excess� the corresponding change in the effective mag-
netic anisotropy constant.
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