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Appearance of enhanced Weiss oscillations in graphene: Theory
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The magnetoconductivity of a single graphene layer weakly modulated by a one-dimensional periodic
potential is calculated. Pronounced Weiss oscillations periodic in the inverse magnetic field appear that are less
damped by temperature as compared with the same oscillations found in a typical two-dimensional electron

system with a standard parabolic energy spectrum.
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I. INTRODUCTION

Recently the successful preparation of monolayer
graphene films'3 has generated a lot of activity in the phys-
ics of two-dimensional (2D) Dirac fermions. The massless
energy spectrum and the specific density of states of elec-
trons and holes described by the Dirac Hamiltonian enabled
to study experimentally chiral tunneling and the Klein para-
dox in graphene,* and led to the discovery of the unconven-
tional “half-integer quantum Hall effect.”>>% The presence of
holes in graphene with a 2D Dirac-like spectrum was con-
firmed by measurements of de Haas-van Alphen and
Shubnikov-de Haas (SdH) oscillations.” These magnetic os-
cillations appear due to the interplay of the quantum Landau
levels with the Fermi energy in the metal, and serve as a
powerful technique to investigate the Fermi surface and the
spectrum of electron excitations.

Another technique which was successfully used to obtain
information on the electron spectrum of 2D systems is based
on the interaction of electrons with artificially created peri-
odic potentials with periods in the submicrometer range.
Such electrical modulation of the 2D system was created by
two interfering laser beams,® or by depositing an array of
parallel metallic strips on the surface,’ and led to the discov-
ery of Weiss oscillations in the magnetoresistance. These os-
cillations are a consequence of the commensurability of the
electron cyclotron orbit diameter at the Fermi energy and the
period of the above electrical modulation. They were found
to be periodic in the inverse magnetic field like the SdH
oscillations, but have a different period versus electron den-
sity dependence. The period for Weiss oscillations varies
with electron density (n,) as \n,, whereas that of the SdH
ones as n,. Theoretical calculations of these oscillations were
presented in Refs. 9-11, and it was shown that Weiss oscil-
lations in the magnetoresistance for motion perpendicular to
the oscillating potential can be understood as being a semi-
classical effect.!?!?

The Klein paradox in graphene where Dirac electrons can
penetrate through potential barriers with a rather high prob-
ability implies that electrical control of Dirac electrons can-
not be realized. Therefore, it is interesting to investigate the
sensitivity of Dirac electrons on the electrical modulation of
the graphene layer. Thus, we subjected the system to a peri-
odic potential that introduces a new length scale and a new
energy scale into the problem. We found that such a periodic
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potential also leads to Weiss oscillations in graphene which
are even more pronounced than in typical 2D electron gases
with a parabolic electron spectrum.

The paper is organized as follows. In Sec. II all necessary
expressions for the magnetoconductivity calculation are
given, and in Sec. III the obtained results for a graphene
layer are compared with results for the standard 2D electron
system. In Sec. IV the asymptotic expression valid in the
quasiclassical limit is obtained. Simple classical explanations
for the obtained results are presented in Sec. V. Our conclu-
sions are presented in Sec. VI.

II. ELECTRICAL MAGNETOTRANSPORT

We consider the graphene layer within the single electron
approximation where the low energy excitations are de-
scribed by the two-dimensional (2D) Dirac-like
Hamiltonian*

e
H0=UF0'-<—iﬁV +—A>. (1)
¢

Here o={0,,0,} are the Pauli matrices, and the vector po-
tential A={0,Bx} describing the magnetic field B={0,0,B}
perpendicular to the graphene layer is chosen in the Landau
gauge. The parameter vy characterizes the electron velocity
which is about 300 times smaller than the velocity of light.
The total Hamiltonian consists of two parts

H=Hy+ U(x), ()
where the additional potential
U(x) =V, cos(2mx/ag) (3)

describes the static electrical modulation of our 2D system in
the x direction.

We consider this modulation as a small perturbation to the
electron spectrum and calculate the conductivity correction
caused by it. We use the Kubo formula'# to calculate the
linear response to an applied external electric field. When the
magnetic field is sufficiently strong that we have well-
defined cyclotron orbits this formula can be simplified and
related to the scattering induced migration of the Larmor
circle center. It was shown in Ref. 13 that this so-called
diffusive conductance gives the main contribution to the
Weiss oscillations. Therefore, we shall restrict our calcula-
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tion to this diffusive conductivity and calculate the diagonal
component by the following expression which is valid in the
case of quasielastic scattering of electrons (see Ref. 15 for
details):

Oy = LL Ef(Eg)[l — fEQITEY) (v5)*. (4)

L,,L, are the dimensions of the layer, B=(kzT)™" is the in-
verse temperature (kg is the Boltzmann constant), f(E) is the
Fermi-Dirac distribution function, and w(E) is the electron
relaxation time. This diagonal component of the conductivity
is caused by the influence of the electric modulation on the
electron drift in crossed electric and magnetic fields and is an
order of magnitude larger than the other diagonal component
o, which appears due to the scattering on imperfections.
Symbol ¢ denotes the quantum numbers of the electron
eigenstate, and diagonal matrix elements of the velocity op-
erator v,({) can be calculated as derivatives of the energy
eigenvalue over the corresponding electron momenta.

The Weiss oscillations can be seen in the diagonal com-
ponent of the magnetoresistance which actually is the inverse
conductivity tensor p,,= 0,/ (0y,0y,—0y,0y,). In our case of
small linear response it can be presented as py=0oy,/ of}, as
the leading term of the Hall conductivity o, ~ 1/B does not
depend on the small electrical modulation.

The energy eigenvalues are defined through the solution
of the stationary Schrodinger equation

{H-E}¥(r)=0 (5)

with total Hamiltonian (2). Using the perturbation expansion
in V, powers we shall follow Ref. 13 and restrict ourselves
by the lowest nonvanishing term contributing to o,. For this
purpose we must solve the zeroth-order Schrodinger equa-
tion with the Hamiltonian H,,. Due to the system homogene-

ity along the y axis we substitute the eigenfunction as

tk y a(x)>
V(r)= \”Ly )(b(x) . (6)

and transform the zero order eigenvalue problem into the
following set of two ordinary differential equations for the
wave function components:

g9
—iﬁvF<——i—+£2>b—Ea=0, (7a)

ox dy I

PR
—iﬁvF<—+i——52)a—Eb=0, (7b)

ox dy I

where [=vcfi/eB is the magnetic length. Solution of these
equations can be easily obtained making use of the analogy
with the harmonic oscillator eigenvalue problem. It reads

h
UT\"ZH, (8a)
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Elk)y (
\ 2L )

n k (I‘)

i<1>n_l[(x+xo)/l]> (3b)

D, [(x +xp)/1]

where

%2

e
D, (x) = T\/—'VH (%) 9)

is expressed in the normalized Hermitian polynomials, and
xo=1[%k, indicates the localization of the electron in the x
direction.

In first order perturbation expansion one must add to the
above energy eigenvalue the diagonal matrix element of the
potential (3) calculated with the above eigenfunctions,

AEnk —f dxf dy ¥ ik (r)U(x)‘I’n,ky(r)

= ? O cos(Kxg)e ™[ L,(u) + L,_(u)], (10)

where K=27/a,, u=K>*?/2, and L,(u) is a Laguerre polyno-
mial. This energy correction makes the degenerate Landau
levels k, dependent, expands them into bands, what finally
leads to nonzero velocities,

wk, 14

= prho =L
y—U

—ZAE
Y hok, M

=~ e L 1) + Ly ()Tsin(Kx). (1)

Now substituting the velocities in Eq. (4) and specifying
the summation over quantum numbers as

Lv Lx/l2 *
2=k (12)
¢ m™Jo n=0

we obtain the final expression for the diffusion contribution
to the dc conductivity,

yy = AOCI) 5 ( 1 3)
where
e’ Vo1

A0—87T2_ ﬁ ) (14)

and the function

1 o 8(E)
o= e T

will be considered as a dimensionless conductivity. In this
expression we introduced the following exponential function
g(E)=exp[ B(E—Er)] where Eg is the Fermi energy.

[L,) + L, (15)

III. COMPARISON WITH THE USUAL WEISS
OSCILLATIONS

It is interesting to compare the obtained expression for dc
conductivity with the same conductivity calculated in Ref. 13
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FIG. 1. The dimensionless conductivity versus inverse magnetic
field: curve 1, Dirac electrons; curve 2, electrons with parabolic
energy spectrum.

for the case of a 2D electron system localized at the interface
between two semiconductors and having a parabolic energy
dependence. Comparing velocity expression (11) with the
equivalent one in Ref. 13 [see Eq. (4)] we notice that the
diffusive conductivity for the system of Dirac electrons dif-
fers from the one for the standard interface case by replace-
ment of the Laguerre polynomial L, () by the average of two
successive polynomials [L,(u)+L,_,(u)]/2. And of course,
two different expressions for the Landau level energies [Eq.
(8a) for Dirac electrons and E'=fiw(n+1/2) with ,
=eB/mc for the parabolic electron spectrum case] must be
used.

These differences in the expressions lead to essentially
different results for the dimensionless conductivity as shown
in Fig. 1. The results are shown as a function of the inverse
magnetic field for the temperature 7=6 K, electron density
n,=3x 10" cm™2, and the period of electric modulation «,
=350 nm. The dimensionless magnetic field b=B/Bj, is in-
troduced using the characteristic magnetic field By=c#i/ ea%
corresponding to the magnetic length equal to the modula-
tion period a,, which for the above case is equal to B
=0.0054 T.

We see that in graphene (curve 1) the Weiss oscillations
are more pronounced as compared with the system of elec-
trons with the standard parabolic energy spectrum (curve 2).
Furthermore, the Weiss oscillations in graphene are much
more robust with respect to temperature damping in the qua-
siclassical region of small magnetic fields. The physical rea-
sons for these differences are in different Fermi velocities of
Dirac and standard electrons. In order to confirm the above
statement we shall consider the asymptotic behavior of the
Weiss oscillations in the quasiclassical region which accord-
ing to Refs. 9, 12, and 13 describes the main features of the
above oscillations and which also allow for explicit analyti-
cal expressions.

IV. ASYMPTOTIC EXPRESSIONS

The asymptotic expression for the conductivity (15) is
obtained following the approach of Ref. 13 for the case of
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standard electrons. That approach is applicable when many
Landau levels are filled, and it is based on the following
asymptotic expression for the Laguerre polynomials:

1
L, (1) — ——= cos(2\nu — ml4). (16)
Va\nu

Taking the continuum limit

1(IE\* < 1\
n—>—<—) D —><—> f EdE,  (17)
2\vgh n=0 v/ Jo
and keeping in mind that u=277/b, we transform Eq. (15)

into the following integral:

\'Z( ! )2 j“ ¢(E)EdE
b=—|— —
m\veh/) Jo [g(E)+11*\n

1
X cosz(— \/Z>cos2<2\r’%— 7—T>
2 Vn 4

_ 2ay (7 g(E)dE z(mph>

h UFbe 0 [g(E) + 1]2 cos an
2 E
X cosz( T _ 7—7). (18)
Upbﬁ 4

Now assuming that the temperature is low (8~! <Ey) and
replacing E=E+s3"' we rewrite the above integral as

2ay 2( 77) ds é’ 2(27rp T 2mp )
O =——cos*| — ——cosT | —— ——+——5/,
vphbf pl) . (e+1) b 4 bB
(19)
where
E —
p= o _ kpag=\2mn,a, (20)
vih

stands for the dimensionless Fermi momentum of the elec-
tron. Note in Eq. (19) we replaced all energies E by the
Fermi energy E except that one which is included in the last
cosine function, where the small energy correction can influ-
ence the damping of the Weiss oscillations.

The obtained expression for the dimensionless conductiv-
ity can be calculated using the standard integral

fx cos(ax) doe T 1)
o cosh(Bx) ™~ 2Bsinh(am/2B)’

which leads to
__T of T 4L
CD_4772TDCOS<[7>{[1 A(Tpﬂ
+2A<1)cos2[2w<’—’—l>”, (22)
T, b 8

where
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FIG. 2. The graphene conductivity as a function of the inverse
magnetic field: curve 1, exact solution (15); curve 2, asymptotic
expression (22).

Alx)= — =2xe™", 23
( ) si ]( ) e ( )
and the symbol T}, defined as
kpTp=—"5— (24)
BID= 0 OUF

gives the temperature scale for damping of the Weiss oscil-
lations.

The validity of the asymptotic expression is seen in Fig. 2
where the Weiss oscillations for the Dirac electrons (curve 1)
are shown together with their asymptotic expression (curve
2) for the same parameter values as in Fig. 1 in the region of
strong magnetic fields where deviations of the asymptotic
expression to the exact expression are largest.

We see that the coincidence of the exact result and its
asymptotic expression is rather good everywhere except the
region of very strong magnetic field where SdH oscillations
become superimposed on top of the Weiss oscillations.

Here, we calculated only the extra contribution to the con-
ductivity resulting from the electrical one-dimensional
modulation and as such the pure SdH oscillations are not
included in our results. Nevertheless, this extra contribution
to the conductivity can exhibit SdH-type oscillations and it is
interesting to highlight their character. For this purpose in
Fig. 3 we show these oscillations for Dirac electrons (solid
curve) and standard ones (dashed curve) in more detail in the
region of strong magnetic field.

We see a clear 7 phase shift between these two oscilla-
tions in agreement with the known behavior of SdH
oscillations’ caused by the presence of half-filled zero energy
Landau level for Dirac electrons.

We compare now the obtained result for the conductivity
of the Dirac electron system with similar asymptotic result
for the system of electrons with a standard parabolic energy
spectrum taken from Ref. 13 which can be presented as fol-
lows:

PHYSICAL REVIEW B 75, 125429 (2007)

0.015 . . . .
F T=6K
r n=3 10"cm*
r ao=350 nm
I B,=0.0054 T
0.010 |- i
S
0.005 |-
B
0.000 LA I NS
0.000 0.005

B,/B
FIG. 3. The conductivity o, as a function of the inverse mag-

netic field in the region of very strong magnetic field: solid curve,
Dirac electrons; dashed curve, standard electrons.

o[ -3 ]}

(25)
where the critical temperature reads
bph?
kgTp=—07—5. 26
Ber 4772maé (26)
Keeping in mind that
kpay a
L_Zrh_Zop 27)
m m h

where v}, is the velocity of the electrons on the Fermi surface
for a parabolic energy system, the critical temperature can be
presented as

bh

kgTp=——0k.
BP 4772(1()F

(28)

For parameters used in Fig. 1 we have kp~1.4X10°, p
~ 50, and cos(7/p) ~ 1. Thus the asymptotic behavior of the
dimensionless conductivity for Dirac electrons (22) and stan-
dard electrons with parabolic energy spectrum (25) is char-
acterized by different temperature scales.

We see from Egs. (22) and (25) that the period and the
phase of Weiss oscillations are the same for both the Dirac
and the standard electron cases that are also evident from
Figs. 1 and 3. The period can be easily estimated equating
the increment of the cosine argument to 7,

277A§ =, (29)

and taking into account the definitions of the dimensionless
Fermi momentum (20) and magnetic field » immediately
leads to
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This coincidence of the periods confirms the quasiclassical
nature of Weiss oscillations and aggravates the discrimina-
tion between Dirac and standard electrons.

Nevertheless, there is a distinct feature in the Weiss oscil-
lations which enables to discriminate Dirac electrons from
the usual electrons. Comparing Eqgs. (24) and (28) we see
that

Tp vk
—p_ZF , (31)
Tp wvr
or the ratio of critical temperatures for the standard and Dirac
electrons is equal to the ratio of the corresponding velocities

at the Fermi surface. This can be estimated as

Tp _ ﬁv?ne (32)
Tp vpmay
and for typical cases it is less than unity. For instance, in the
case of the parameters used in Fig. 1 it is Tp/Tp~0.24 that
explains the different slope and damping of the Weiss oscil-
lations.

V. QUASICLASSICAL EXPLANATION

The obtained results can be understood from a simple
physical picture. In order to estimate the oscillation period
we write down the momentum of the electrons on the Fermi
surface,

pF=mchc’ (33)

which is identical in both cases. Then it follows that the
radius of the electron orbit is

2
R=FPE P (34)

The physical reason for the appearance of the Weiss oscilla-
tions is the commensurability of the electron orbit diameter
with the period of the electrical modulation, consequently,
the argument of the cosine function must be proportional to

R._ I p

=p—=-, 35
ag pa(z) b ( )
which we can see in both expressions (22) and (25).
The damping factor of the oscillations can be estimated as
follows. Due to thermal fluctuations there are electron orbits
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with various radii. The effective damping can be estimated as
the ratio of the above broadening of the orbit to the period of

the modulation,
1 6R
=——<g". (36)
a() C?EF

In the case of standard electrons (when Ep=p}/2m) it
reads

m IR, m kgT ma(z)

=— = = = kT,
"7 aoBprapr  apBlikpme,  pho, hpb "

(37

in agreement with the definition of the critical temperature
for standard electrons (26).
In the case of Dirac electrons (when Ep=vppf) the above
damping parameter can be estimated as
1 (9RC CkBT ag

b= BaovF&pF - aovFeB - ﬁbUF

kBT’ (38)

which coincides with the earlier obtained result for the criti-
cal temperature up to the same constant 477>. Now dividing
Eq. (37) by Eq. (38) we obtain the same critical temperature
ratio dependence on the ratio of the Fermi velocities (31) that
confirms the quasiclassical nature of the Weiss oscillations.

VI. CONCLUSIONS

In conclusion, we studied the Weiss oscillations in an
electrically modulated single layer of graphene. It was shown
that the static conductivity oscillations are periodic in 1/B
with period varying with electron density as Vn, like in the
2D electron system with standard parabolic energy spectrum.
Due to the larger Fermi velocity the conductivity oscillations
of the Dirac electron system are more pronounced and less
damped as compared with the 2D system of electrons with
parabolic energy spectrum for analogous parameters. The
found Dirac electron sensitivity to the electric perturbation
does not contradict the Klein paradox, because in contrast to
electron tunneling through barriers where both the electron
and the hole nature of the excitation plays a role, only the
electrons at the Fermi energy are responsible for the conduc-
tivity and for the studied Weiss oscillations. Thus, their be-
havior in the electric field is not overshadowed by the ad-
mixture of the hole states.
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