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Defects in graphene are of crucial importance for its electronic and magnetic properties. Here, impurity
effects on the electronic structure of surrounding carbon atoms are considered and the distribution of the local
densities of states is calculated. As the full range from near field to the asymptotic regime is covered, our
results are directly accessible by scanning tunneling microscopy. We also include exchange scattering at
magnetic impurities and elucidate how strongly spin-polarized impurity states arise.
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I. INTRODUCTION

Graphene, a recently discovered allotrope of carbon and
the first known example of a truly two-dimensional �2D�
crystal,1,2 has unique electronic properties,3–17 such as an ex-
otic quantum Hall effect with half-integer quantization of the
Hall conductivity,3,4 finite conductivity at zero charge-carrier
concentration,3 strong suppression of weak localization,13

etc. The peculiar 2D band structure of graphene resembles
ultrarelativistic electron dynamics near two nodal points in
the Brillouin zone. This provides a new bridge between con-
densed matter theory and quantum electrodynamics �index
theorem and the half-integer quantum Hall effect,3 relativis-
tic Zitterbewegung18 and the minimal conductivity,12 and
“Klein paradox”19 and anomalous tunneling of electrons in
graphene through potential barriers16�. Unexpectedly, high
electron mobility in graphene and its perfect suitability for
planar technology make it a prospective material for next-
generation, carbon-based electronics.1

Impurity states are important contributors to these unusual
properties. Graphene is conducting due to carriers that can be
introduced either by a gate voltage1,3,4 or by doping.1,8,9 This
situation is very reminiscent of doped semiconductors, where
the desired properties are obtained by creating an impurity
band. Recent progress in scanning tunneling microscopy
�STM� made it possible to image impurity states for a wide
class of materials with very high spatial resolution. This so-
called “wave-function imaging” yields local images of the
impurity-induced wave function. Examples of wave function
imaging range from unconventional superconductors20,21 to
semiconductors,22,23 magnetic metals,24 and graphite sur-
faces.25–28 It allows one to investigate the formation of the
impurity band and the associated electronic properties. The-
oretical modeling and STM measurements of near impurity
site effects can be compared and thus elucidate, e.g., mag-
netic interaction mechanisms.23,29

The purpose of this paper is to address the question of
electronic properties of single and double impurities in
graphene in connection with future STM experiments and
impurity-induced ferromagnetism. The impurity states are
characterized by their energy and by their real-space wave
functions that determine the shape of the resonance. In con-

trast to previous studies,9,10,15 we consider the real-space
structure of the electronic state in the range from the impu-
rity site to the asymptotic regime, its dependence on the po-
tential strength, and the spin-exchange interaction.

The honeycomb arrangement of carbon atoms in graphene
can be described by a hexagonal lattice with two sublattices
A and B �see, e.g., Ref. 30�. With the Fermi operators ci and
di of electrons in cell i at sublattices A and B, respectively,
we describe a single and two neighboring impurities by Vs
=U0c0

†c0 and Vd=U0�c0
†c0+d0

†d0�+U1�c0
†d0+d0

†c0�. Here, U0

is the potential strength and U1 the change of sublattice hop-
ping between the two impurity sites. Related to the current
research are questions about impurities in graphite that have
been studied with STM.25–28 Only the atoms above hollow
sites are seen in STM on graphite. We find that impurity
states in graphene are qualitatively different from those in
graphite because of the sublattice degeneracy that is reflected
in a complicated sublattice structure of impurity-induced
resonances.

We find that impurity scattering produces low-energy
resonances with the real-space structure and the resonant en-
ergy Eimp as a function of U0 �and U1� clearly distinguishes
between single and double impurities. For single impurities,
we find in agreement with Skrypnyk and Loktev11 that Eimp
is well described by

U0 =
W2

Eimp ln� Eimp
2

W2 − Eimp
2 � , �1�

where W is the bandwidth. Hence, the resonance energy Eimp
approaches zero for U0→�. Only strong single impurities
�i.e., U0�10 eV� are capable of producing resonances
within 1 eV of the Dirac point. This result is similar to the
impurity states observed in unconventional superconductors
with Dirac spectrum.31

The resonance of a double impurity is basically deter-
mined by U0−U1. Its energy coincides with the Dirac point
at finite U0−U1=3t, where t�2.7 eV is the nearest-neighbor
hopping parameter of graphene.

We give a detailed description of the local density of
states �LDOS�, the real-space fingerprint of impurities in
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graphene. Near the impurity site that LDOS exhibits an in-
tricate pattern. A single strong impurity placed on one sub-
lattice produces a peak in LDOS at low energies that is large
on the other sublattice. At large distances, these impurity
resonances have wave functions � that asymptotically decay
as ���2�1/r.

We will consider potential scattering �nonmagnetic� as
well as magnetic impurities, i.e., spin-dependent scattering.
In the latter case, the impurity-induced resonance will exhibit
a spin-dependent splitting that might lead to a strong spin
polarization of the impurity state. This observation, we be-
lieve, is important for the discussion of moment formation
and possible magnetic order in graphene.

II. MODEL AND RESONANT ENERGIES OF THE
IMPURITY STATES

To start with our theoretical model, we describe the car-
bon pz electrons within the tight-binding approximation by
H=��B

d2k
�B

�†�k�Hk��k� with

��k� = �c�k�
d�k� �

and

Hk = 	 0 ��k�
�*�k� 0


 ,

where ��k�= t� j=1
3 eik�bj−b1�. �B denotes the Brillouin zone

volume and c�k� �d�k�
 are the k-space counterparts of ci

�di�.30

The full Green’s function in real space G�i , j ,E� will be
obtained using the T matrix formalism,

G�i, j,E� = G0�i − j,E� + G0�i,E�T�E�G0�− j,E� . �2�

Therefore, the unperturbed Green’s function G0�i ,E� in real

space is calculated from its k-space counterpart G̃0�k ,E�
= �E−Hk+ i	�−1 by Fourier transformation. Numerical prob-
lems in carrying out the Fourier integrals are avoided by
linearizing the band structure in a vicinity of the Dirac
points, where all singularities occur. Outside these
regions, the full tight-binding band structure is taken
into account. Finally, the T matrix is given by T�E�
= �1− Ṽs�d�G

0�0,E�
−1Ṽs�d� with

Ṽs = U0	1 0

0 0



and

Ṽd = 	U0 U1

U1 U0



being the impurity potentials in k-space and matrix form.
Poles of the T matrix corresponding to impurity resonances

occur, if det�1− Ṽs,dG0�0,E�
=0, i.e.,

U0G11
0 �0,E� − 1 = 0 �3�

for a single scatterer and

�1 − U0G11
0 �0,E�
2 − U0

2G21
0 �0,E�G12

0 �0,E� = 0 �4�

for double impurity with U1=0—this case, we refer to as
scalar impurity. Equations �3� and �4� have solutions corre-
sponding to attractive and repulsive potentials U0. We limit
our discussion to the latter case, as the former is obtained by
reversing the signs of all energies. Near the Dirac points, we
have �Re�G0��
 �Im�G0�� so that the impurity resonances
Eimp as function of U0 can be calculated from the previous
two equations considering only the Re�G0�: The resulting
real impurity energies as a function of U0 are shown in Fig.
1. Adjusting the bandwidth parameter W in Eq. �1� to fit our
Eimp�U0� yields W=6.06±0.02 eV. An estimation of W can
be obtained by assuming linear dispersion in the entire Bril-
louin zone: W=�v fkc, where kc is the cutoff wave number.
Approximating the Brillouin zone by two circles with radius
kc around the two nonequivalent Dirac points results in �B

=2�kc
2 and correspondingly W=�v f

��B

2� �6.3 eV. That is,
the estimated and the fitted bandwidth differ only slightly.

It is quite remarkable that a pair of neighboring scatterers
produces a resonance at the Dirac point for U0=3t�8.1 eV,
while for a single impurity this occurs only in the limit of
infinite potential strength. This effect can be attributed to the
existence of two nonequivalent Dirac points in the Brillouin
zone. As a consequence, at E=0 the on-site Green’s function
G0�0,0� has finite off-diagonal G12

0 �0,0�=G21
0 �0,0�=− 1

3t but
vanishing diagonal components resulting via Eqs. �3� and �4�
in the characteristic Eimp�U0� curves.

For double impurities with sublattice hopping change U1,
it follows directly from the secular equation that the impurity
energy as a function of U0 and U1 is obtained from the scalar
case by replacing U0 with U0−U1.

III. REAL-SPACE IMAGE OF THE IMPURITY STATES

We obtained the LDOS N�r ,E�=− 1
� Im��i,j
i�r�G�i ,

j ,E�
 j
†�r�
 in the presence of impurities as a function of

position and energy, where 
i�r�= ��i
c�r� ,�i

d�r�
 with �i
c,d�r�

being carbon pz orbitals located in the unit cell i at sublat-
tices A and B, respectively. This LDOS of impurity reso-

FIG. 1. �Color online� The energy Eimp of the impurity reso-
nance as a function of the potential strength U0 is shown for single
impurities and double impurities with U1=0. For the single scat-
terer, Eimp obtained from our tight-binding calculation is compared
to the result obtained from the fully linearized band structure �Eq.
�1�
 with fitted bandwidth W=6.06 eV.
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nances at Eimp=−0.1 eV for single and scalar impurities are
shown in Fig. 2.32 The formation of virtual bound states
�VBSs� due to impurity scattering is clearly visible.

These VBSs are a general feature of localized states hy-
bridizing with a continuum of delocalized states. They have
been observed in many systems ranging from elementary
metals33 to d-wave superconductors.31 Details of the real-
space image are, however, system specific. Here, the three-
fold �D3h� symmetry of the VBS for a single impurity and
twofold �D2h� symmetry for a double impurity are direct con-
sequences of the lattice symmetry. The �D3h� symmetric
single impurity state results in sixfold symmetric Fourier-
transformed scanning tunneling spectra.34 Furthermore, the
peculiarities of the band structure of graphene manifest
themselves in the near-field characteristics of impurities: A
single impurity in sublattice A induces an impurity state
mostly localized in sublattice B and vice versa due to the fact
that G11

0 �i ,E��G12
0 �i ,E� ,G21

0 �i ,E� for E→0, which can be
attributed to the existence of two nonequivalent Dirac points
as explained above.

The site projected DOS N�i ,E� can be obtained from the
full Green’s function N�i ,E�=−1/� Im G�i , i ,E�, where each
of the diagonal matrix elements corresponds to one sublat-
tice. For the single impurity and U0 from 10 to 40 eV, the
LDOS at the impurity, nearest-neighbor �NN�, and next-NN
sites are shown in Fig. 3. One sees that for vacancies with
10�U0�20 eV,8 but not for weaker potentials, an impurity
resonance should be clearly observable within 1 eV around
the Dirac point.

It further illustrates the localization of the impurity state
on sublattice B, when the impurity is in sublattice A, as well
as the reduction of LDOS at the impurity site for strong
repulsive potential. The LDOS at the impurity site in Fig. 3
�left� is in agreement with Ref. 11, where a similar model has
been applied. The double impurity respects pseudospin sym-
metry and is much more sensitive to weaker potentials, as
obvious from Fig. 4. Clearly, Ut=U0−U1 is the most impor-
tant parameter determining the shape of LDOS in the case of
a double impurity: The results for �U0=4 eV and U1
=−2 eV� and �U0=6 eV and U1=0 eV� are virtually indis-
tinguishable at the impurity resonance but differ slightly be-
low it. For large distances r
�v f /Eimp from the impurity
site, we obtain for the changes in LDOS �N�r ,Eimp��1/r in
agreement with Refs. 34 and 35 for all considered types of
impurities. Note the contrast to a single hard-wall impurity,
i.e., U0→�, with 1/r2 asymptotics of �N�r ,Eimp�.7

IV. MAGNETIC IMPURITIES

If the impurities have a magnetic moment, exchange scat-
tering of the graphene pz electrons and the spin S localized at
the impurity site will occur. As long as the exchange cou-
pling J does not exceed a critical value, Kondo screening of
the spin S by the band electrons can be neglected and the
impurity spin acts as local magnetic field: The effective scat-
tering potential is renormalized to U0±J. The resulting
change in spin-polarized �SP� LDOS in the vicinity of a
single impurity is shown in Fig. 5 for U0=12 eV and J

FIG. 2. �Color online� r-dependent LDOS at E=Eimp=−0.1 eV for a single impurity with U0=45 eV �left� and for a scalar double
impurity with U0=6.9 eV �right� encoded corresponding to color bar. The impurity sites are marked as big dots in the center of the images.

FIG. 3. �Color online� LDOSs at the impurity site �left�, NN site
�middle�, and NNN site �right� are shown for a single impurity with
potentials U0= �a� 10 eV, �b� 20 eV, and �c� 40 eV.

FIG. 4. �Color online� As in Fig. 3 but for scalar double impu-
rity with U0= �a� 4 eV and �c� 6 eV as well as for double impurity
with U0=4 eV and U1= �b� −2 eV.
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=2 eV. The exchange splitting of the resonances in the two
spin channels is approximately 0.15 eV. This type of ex-
change scattering also affects decay lengths and oscillation
periods of the induced spin-density variations and therefore
provides a possible mechanism for long-range exchange in-
teractions.

For double impurities, the effect of exchange splitting is
much more pronounced within a realistic parameter range:
As Fig. 6 shows, exchange scattering can produce strongly
spin-polarized impurity states. The impurity resonances of
one spin channel can be pushed close to the Dirac point, or
the impurity levels are split even below and above it.

Depending on the type of impurities, the spin polarization
of the impurity states can strongly depend on doping: In the
example with J=2 eV, the VBS above the Dirac point can be
occupied by spin-down electrons due to n doping.

It was demonstrated recently36 that ferromagnetism of sp
electrons in narrow impurity bands can be characterized by
much higher Curie temperatures than those typical for tradi-
tional dilute magnetic semiconductors. Hence, the impurity
band associated with the magnetic impurities considered in
this paper can be a promising candidate for facilitating high-
temperature ferromagnetic order in graphene.

V. CONCLUSIONS AND OUTLOOK

We have calculated the LDOS of impurity resonances in
graphene from the near field to the regime of asymptotic 1 /r
decay. The near-field LDOSs are directly observable by STM
and comparison of upcoming experiments with our predic-
tions will elucidate the nature of impurities in graphene. We
also find that impurity resonances in graphene are very dif-
ferent from the impurity states observed in graphite because
of the two sublattice structure in graphene.

We showed further how spin-polarized impurity states can
result from exchange scattering at magnetic impurities and
their sensitivity to doping. The resulting formation of spin
polarized impurity bands may give rise to long-range ex-
change interactions and magnetic order that can be directly
studied by spin-polarized STM.

ACKNOWLEDGMENTS

We are grateful to M. Bode, A. Castro Neto, J. Fransson,
A. Geim, A. Kubetzka, K. Novoselov, and J. X. Zhu for
useful discussions. This work has been supported by LDRD
and DOE BES at Los Alamos, FOM �Netherlands�, and SFB
668. A.V.B. is grateful to U. Hamburg and Wiesendanger
group for hospitality during the visit, when the ideas pre-
sented in this work were conceived.

*Electronic address: avb@lanl.gov; URL: http://theory.lanl.gov
1 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang,

S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306,
666 �2004�.

2 K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khot-
kevich, S. V. Morozov, and A. K. Geim, Proc. Natl. Acad. Sci.
U.S.A. 102, 10451 �2005�.

3 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I.
Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov,
Nature �London� 438, 197 �2005�.

4 Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, Nature �London�
438, 201 �2005�.

5 M. A. H. Vozmediano, M. P. Lopez-Sancho, T. Stauber, and F.
Guinea, Phys. Rev. B 72, 155121 �2005�.

6 N. M. R. Peres, F. Guinea, and A. H. Castro Neto, Phys. Rev. B
72, 174406 �2005�.

7 V. M. Pereira, F. Guinea, J. M. B. Lopes dos Santos, N. M. R.
Peres, and A. H. Castro Neto, Phys. Rev. Lett. 96, 036801
�2006�.

8 See Y. G. Pogorelov, cond-mat/0603327 �unpublished�. Using
density functional theory we obtain similar estimations, e.g.,
U0�18 eV for vacancies.

9 N. M. R. Peres, F. Guinea, and A. H. Castro Neto, Phys. Rev. B
73, 125411 �2006�.

10 H. Kumazaki and D. S. Hirashima, J. Phys. Soc. Jpn. 75, 053707
�2006�.

11 Y. V. Skrypnyk and V. M. Loktev, Phys. Rev. B 73, 241402�R�
�2006�.

12 M. I. Katsnelson, Eur. Phys. J. B 51, 157 �2006�.
13 S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, L.

A. Ponomarenko, D. Jiang, and A. K. Geim, Phys. Rev. Lett. 97,
016801 �2006�.

FIG. 5. �Color online� SP-LDOSs at the impurity site �left� and
a NN site �right� are shown for a single magnetic impurity with
U0=12 eV and J=2 eV.

FIG. 6. �Color online� SP-LDOSs at a NN site of a double
impurity with U0=5 eV, U1=−2 eV, and J=1 eV �left� and 2 eV
�right� are shown.

WEHLING et al. PHYSICAL REVIEW B 75, 125425 �2007�

125425-4



14 V. V. Cheianov and V. I. Fal’ko, Phys. Rev. B 74, 041403�R�
�2006�.

15 V. V. Cheianov and V. I. Fal’ko, Phys. Rev. Lett. 97, 226801
�2006�.

16 M. I. Katsnelson, K. S. Novoselov, and A. K. Geim, Nat. Phys. 2,
620 �2006�.

17 T. C. Li and S.-P. Lu, cond-mat/0609009 �unpublished�.
18 Zitterbewegung means the uncertainty of the position of relativ-

istic particles due to the creation of particle-antiparticle pairs,
when attempting to localize a particle.

19 Klein Paradox refers to the penetration of relativistic particles
through arbitrarily wide potential barriers, if the potential is suf-
ficiently high �see more in Ref. 16�.

20 S. H. Pan, E. W. Hudson, K. M. Lang, H. Eisaki, S. Uchida, and
J. C. Davis, Nature �London� 403, 746 �2000�.

21 E. W. Hudson, K. M. Lang, V. Madhavan, S. H. Pan, H. Eisaki, S.
Uchida, and J. C. Davis, Nature �London� 411, 920 �2001�.

22 T. Maltezopoulos, A. Bolz, C. Meyer, C. Heyn, W. Hansen, M.
Morgenstern, and R. Wiesendanger, Phys. Rev. Lett. 91, 196804
�2003�.

23 D. Kitchen, A. Richardella, J.-M. Tang, M. E. Flatte, and A.
Yazdani, Nature �London� 442, 436 �2006�.

24 K. von Bergmann, M. Bode, A. Kubetzka, M. Heide, S. Blügel,

and R. Wiesendanger, Phys. Rev. Lett. 92, 046801 �2004�.
25 H. A. Mizes and J. S. Foster, Science 244, 559 �1989�.
26 K. F. Kelly, D. Sarkar, G. D. Hale, S. J. Oldenburg, and N. J.

Halas, Science 273, 1371 �1996�.
27 K. F. Kelly, E. T. Mickelson, R. H. Hauge, J. L. Margrave, and N.

J. Halas, Proc. Natl. Acad. Sci. U.S.A. 97, 10318 �2000�.
28 T. Matsui, H. Kambara, Y. Niimi, K. Tagami, M. Tsukada, and H.

Fukuyama, Phys. Rev. Lett. 94, 226403 �2005�.
29 J.-M. Tang and M. E. Flatte, Phys. Rev. Lett. 92, 047201 �2004�.
30 G. W. Semenoff, Phys. Rev. Lett. 53, 2449 �1984�.
31 A. V. Balatsky, I. Vekhter, and J.-X. Zhu, Rev. Mod. Phys. 78,

373 �2006�.
32 Eimp=−0.1 eV requires U0=45 eV for a single impurity. Being a

fitting parameter for experiments, this choice of U0 is made to
illustrate the resonance near Dirac point.

33 V. A. Gubanov, A. I. Liechtenstein, and A. V. Postnikov, Magne-
tism and the Electronic Structure of Crystals �Springer, Berlin,
1992�.

34 C. Bena and S. A. Kivelson, Phys. Rev. B 72, 125432 �2005�.
35 D.-H. Lin, Phys. Rev. A 73, 044701 �2006�.
36 D. M. Edwards and M. I. Katsnelson, J. Phys.: Condens. Matter

18, 7209 �2006�.

LOCAL ELECTRONIC SIGNATURES OF IMPURITY… PHYSICAL REVIEW B 75, 125425 �2007�

125425-5


