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With the miniaturization of a solid down to nanometer scale, the elasticity, extensibility, Debye temperature,
and specific heat capacity of the solid are no longer constant but change with variation of size. These quantities
also change with the temperature of the measurement and the nature of the chemical bond involved. The
mechanism behind the intriguing tunability and the interdependence of these quantities remain yet a high
challenge. A set of analytical solutions is presented herewith showing that the observed trends could be
reproduced by taking the fact of bond order deficiency into consideration. Agreement between predictions and
observations clarifies that the shortened and strengthened surface bonds dictate intrinsically the observed
tunability, yet atoms in the core interior remain as they are in the bulk. The thermally softening of a specimen
arises from bond expansion and bond vibration due to the internal energy increases.
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I. INTRODUCTION

Young’s modulus �Y� is one of the key elemental param-
eters in materials science, which is related to the perfor-
mance of a material such as the elasticity, extensibility,
acoustic transmission velocity, Debye temperature, specific
heat capacity, and thermal conductivity of the specimen. Tra-
ditionally, the Young’s modulus in a bulk material is deemed
as constant at a given temperature1 and the value of the
modulus is proportional to the melting point �Tm� of the bulk.
However, upon structural miniaturization to the nanometer
regime, the Young’s modulus is no longer constant but
changes with the shape and size of the solid. Measurements
have revealed surprisingly that the Y value changes in three
different ways: elevation, depression, or retention as the solid
size is reduced. For inorganic nanomaterials with higher Tm,
the modulus is often measured to increase at the ambient
temperature when the solid size is decreased, such as ob-
served from Si nanospheres,2 Ag nanowires,3 quartz crystal
oscillators,4 Si3N4 nanobelts,5 TiCrN and TiAlN surfaces,6 Al
and Si nanobelts,7 ZnO nanowires,8 and nanobelts.9 How-
ever, an opposite trend is presented in �0001�-oriented ZnO
nanobelts and wires showing lower modulus varying from
29±8 �Ref. 10� to 38–100 GPa �Refs. 11 and 12� compared
with that of the bulk ZnO obtainel at 140 GPa. An atomic
force acoustic microscopy �AFAM� measurement13 has re-
vealed that the modulus of nanocrystallined Ni films of
50–800 nm thick is lower than the bulk value. An atomic
force microscopy �AFM� room temperature measurement14

has revealed that the local Young’s modulus of organic thin
films that can evaporate at�450 K decreases with sizes. The
moduli of Cr �Ref. 15� and Sr �Ref. 16� nanocantilevers and
ZnS �Ref. 17� nanobelts are also measured to decrease
sharply with decreasing diameters. In contrast, amorphous Si
nanowires,18 Au �Ref. 19� and Ag �Ref. 20� nanowires show
no apparent change with size despite the scattered error bars
in the measurement. Therefore, it appears quite confusing

that even for the same materials such as Ni, Ag, ZnO, and Si,
the Y value changes in different ways, depending on the
experimental techniques and operation conditions.

On the other hand, the modulus or strength, being corre-
lated linearly, of a solid generally drops associated with en-
hancement of extensibility when the testing temperatures are
raised,21 such as the cases of nanograined Al �Ref. 22� and
diamond films.23 At higher temperatures the bending stiff-
ness and the apparent Young’s modulus of the diamond
beams are drastically reduced to one-third of the initial value
before fracture. The flexural strength and modulus of hy-
drosilylation and condensation reaction curable silicone res-
ins also decrease when the testing temperatures are raised.24

The elastic response of nanostructures has been theoreti-
cally attributed to nonlinear effects,25 surface reconstruc-
tion,26 surface stress,27,28 and surface strain.6,8,29 However, an
atomistic understanding of the size, temperature, and bond
nature dependence of the modulus of a solid and its deriva-
tives on the extensibility, Debye temperature, and heat capac-
ity is yet lacking though a recent molecular dynamics
simulation30 suggests that surface atoms play an important
yet unclear role in the mechanical behaviors of nanostruc-
tures. An analytical expression for the size, temperature, and
bond nature dependence of the intrinsic mechanical proper-
ties of nanomaterials is therefore highly desirable. Here we
show that an extension of the recently developed bond-order-
length-strength �BOLS� correlation mechanism31–33 to tem-
perature domain could reproduce the observed trends and
hence clarify for the first time the long-standing discrepancy
in observations.

II. PRINCIPLES

A. Broken bond and BOLS correlation

The core idea of the BOLS correlation31,32 is that broken
bonds of surface atoms make the remaining bonds �with
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length di and bond energy Ei� between the undercoordinated
atoms shorter, di=cid, and stronger, Ei=ci

−mEb with respect
to the bulk counterparts, where ci�zi�=2�1+exp��12
−zi� / �8zi���−1 is the coefficient of bond contraction with zi

being the effective coordination of the specific ith atomic
layer of concern �where i=1 for outermost layer�. The super-
script m is a bond nature indicator. The binding energy per
bond is given approximately as Eb=�1Tm+�2 with �1 the
specific heat per bond and �2 the 1/zb fold of latent heat for
atomization of the atom in molten state. The specific heat �1
follows the universal Debye relation of temperature depen-
dence. As a result of a bond broken, localized densification
of charge, mass, and energy occurs to the surface skin, which
perturbs the Hamiltonian, atomic coherency �the product of
single bond energy and the number of bond of a specific
atom�, and electroaffinity �separation between vacuum level
and the conduction band edge� and associated properties of a
specimen with considerable portion of the undercoordinated
atoms, in particular. The competition between the atomic co-
herency �determines the melting point� and energy densifica-
tion �mechanical strength� in the surface skin dictates the
elastic modulus, stress, and extensibility of the entire solid.
The bond-strengthening-induced depression of the potential
well of trapping will affect the transport dynamics of
phonons, electrons, and photons.

B. T-dependent Young’s modulus and extensibility

1. Temperature dependence

Taking temperature into consideration, the local stress Pi
and the Young’s modulus Yi at the specific ith atomic site at
a given temperature can be expressed as34

� Pi�zi,m,T� =	 −
�u�r,m,T�

�V
	

di

Yi�zi,m,T� =	 − V
�P�zi,m,T�

�V
	

di


 � Ei�z,T�/di
3�z,T� , �1�

where u�r ,m ,T� is the interatomic pairing potential and V
the volume. The d�zi ,T� and Ei�zi ,T� correspond to the
coordination- and temperature-dependent bond length and
the net bond energy:

di�zi,T� = d0ci�1 + �
0

T

�i�t�dt � d0ci�1 + �iT� �
�T�1

d0ci,

Ei�zi,T� = Ebci
−m − �

0

T

�1i�t�dt �
T��D

ci
−mEb − �1iT

= �2i + �1i�Tmi − T� , �2�

with �i�t� being the temperature-dependent thermal expan-
sion coefficient. Tmi is the local melting point. The �1i re-
mains constant at temperatures that are higher than the De-
bye temperature. Therefore, Eq. �1� can be expressed as

�Pi�zi,m,T�
Yi�zi,m,T� �

� �
�T

Tmi�1i�t�dt

di�1 + �iT�3 =
T��D �1i�Tmi − T�

di�1 + �iT�3 �Born� ,

�2i + �T
Tmi�1i�t�dt

di�1 + �iT�3 =
T��D �2i + �1i�Tmi − T�

di�1 + �iT�3 �BOLS� .

According to Born’s criterion35 of melting, the modulus dis-
appears when a solid is at melting. Measurements36,37 also
reveled that the tensile strength of alloys drops from the bulk
values to approximately zero when the temperature ap-
proaches Tm. If Born’s criterion holds in effect, the latent
heat of atomization makes no contribution to the mechanical
strength. However, an elastic modulus should present in liq-
uid and gases phases as the nonzero sound velocity in these
phases. Therefore, Born’s criterion may be taken as a crude
approximation in modeling consideration. For modeling con-
venience, we may define a cutoff temperature at which the
mechanical strength approaches zero. Precisely, the Y and P
are the derivatives of interatomic potential u�r ,m ,T�. How-
ever, there exists uncertainty in choosing the exact form of
the u�r ,m ,T� and what we are concerned with is the relative
change of Y and P to the bulk values. On the other hand,
from the analysis of dimension, the P and Y are both propor-
tional to the energy per unit volume. Therefore, it is reason-
able to take the above approximation in the analytical mod-
eling. It is unnecessary and impractical to consider the
differentiations at a point of distance away from the equilib-
rium atomic distance. An exact solution may be obtained in
the first-principles calculations but the outcome will also be
subject to the u�r ,m ,T� selected.

An analytical solution for thermal depression of the
Young’s modulus has long been a challenge in particular in
terms of atomic bonding.38 Wachtman et al.39,40 proposed a
empirical expression for T-dependent Young’s modulus and
later Anderson41 proposed an expression for the T depen-
dence from the perspective of anharmonic lattice vibration,
which are compared with the current proposal for large
chunks �ci=1� as follows:

	Y�T�
Y0

= �
− AT exp�− T0/T� � A�T0 − T� �Wachtman� ,

− BT 
 F�T/�D� = − BU�T� �Anderson� ,

1

�1 + �iT�3�1 −
�0

T�1�t�dt

Eb�0�
 − 1 �

Eb�0� − �1T

�1 + �iT�3Eb�0�
− 1 �

�T�1

− �Eb�0��−1U�T� �BOLS� , 


GU et al. PHYSICAL REVIEW B 75, 125403 �2007�

125403-2



where A, B, and T0 are adjustable. �1�t� is the Debye specific
heat, and

U�T� = TF�T/�D� = 3�D� T

�D
4�

0

�D/T x3 dx

ex − 1

= �
0

�D/T

�1�t�dt � �1T

is the internal energy, being the integration of �1�t�.

2. Size dependence

Considering the fact that the Tmi is proportional to atomic
cohesive energy,31 Tmi�ziEi, we have the relation Tmi /Tm

=ziEi /zbEb=zibci
−m=1+	i with 	i being the perturbation to

the atomic coherency. zib=zi /zb is the normalized atomic co-
ordination with zb=12 being the standard value in fully co-
ordinated system.42 With the relation of Ei=ci

−mEb=�1iTmi

+�2i=ci
−m ��1Tm+�2� and Tmi=zibci

−mTm= �1+	i�Tm, we
have �1i=zbi�1 and �2i=ci

−m�2 The relative change of the
local Y and its inverse, or the extensibility �, of a solid
measured at T��D can be simplified,

�Y�m,zi,T� =
Y�m,zi,T�

Y�m,zb,T0�
− 1

= ci
−�3+m�+m�1i�Tmi − T� + �2i

�1�Tm − T0� + �2
− 1

= ci
−�3+m��Tm − T/�1 + 	i� + �21

Tm − T0 + �21
 − 1

= ci
−�3+m��1 +

T0 − T/�1 + 	i�
Tm − T0 + �21

 − 1,

���m,zi,T� =
��m,zi,T�

��m,zb,T0�
− 1

= ci
�3+m� Tm − T0 + �21

Tmi − T/�1 + 	i� + �21
− 1

= ci
�3+m��1 −

T0 − T/�1 + 	i�
Tm − T/�1 + 	i� + �21

 − 1.

Taking the core-shell configuration of a nanosolid into
consideration, the bond nature �m�, shape and size � ,Kj�,
and temperature �T� dependence of the relative change of the
Y can be obtained by summing contribution over the outer-
most three atomic layers:

	Y�m,Kj,T�
Y�m,�,T0�

= �
i�3

�ij�Y�m,zi,T�

�Y�m,zi,T�

=�
ci

−�3+m��1 +
T0 − T/�1 + 	i�
Tm − T0 + �21

 − 1 �T � T0;Kj � �� ,

T0 − T

Tm − T0 + �21
�T � T0;Kj = �� ,

ci
−�3+m��1 +

T0	i/�1 + 	i�
Tm − T0 + �21

 − 1 �T = T0;Kj � �� ,

0 �T = T0;Kj = �� ,



�ij = Ni/Nj = ci/Kj � 1. �3�

The same approach applies to the extensibility. The �ij is
the volume or number ratio between the ith surface atomic
layer of thickness di and the entire nanostructure of size Kj,
Kj being the dimensionless form of size is the number of
atoms lined along the radius of a spherical dot or cross the
thickness of a thin slab. Equation �3� represents that the un-
dercoordinated atoms in the surface skin dictates the relative
change of mechanical properties, yet atoms in the interior
remain their bulk features. Compared with the analytical ex-
pression for the inverse Hall-Petch relationship,43 the current
form in Eq. �3� represents the intrinsic change of modulus or
strength excluding the effect of dislocation accumulation and
the artifacts due to indentation tip shapes, strain rates, load-
ing scales, etc., involved in the indentation test.44

C. Debye temperature

The Debye temperature, which is defined as �D=��D /kB
in the Debye model of the specific heat, is a key parameter
that determines the thermal transport dynamics properties.
When the solid size is reduced or the temperature of mea-
surements is varied, �D is no longer constant but change
depending on the object size45–48 and testing tempera-
ture.49–52 Calculation results45 suggested that the size depen-
dence of �D results from the finite cutoff of frequency and
surface stresses �effectively form a size-dependent change of
surface pressure�, especially if the size is smaller than
20 nm. Using x-ray-absorption spectra measurements and
extended x-ray-absorption fine-structure spectroscopy, Bal-
erna and Mobilio46 confirmed the predicted trend.45 The
temperature-dependent �D was another interesting observa-
tion. Calculations of the temperature-dependent �D of some
fcc and bcc metals49 revealed that the �D decreased when the
temperature was increased due to the temperature depen-
dence of elastic constants and sound velocity of the solid.
However, a discrepancy remains regarding the Tm depen-
dence of the T-independent �D. One opinion is that the �D
varies linearly with the Tm �Ref. 49�, and the other suggests a
square-root dependence on Tm according to Lindemann’s53

criterion of melting.
The Debye temperature �D can be derived from the math-

ematical expression for the normalization of phonon density
states: �0

�Dg���d�=�NA, with NA being the total number of
vibration modes, giving rise to the relation �D�vs�n�1/�

�vs�d−��1/�=vs /d, where vs=�Y /���Yd3 is the sound ve-
locity in the medium and � is the fractal dimensions ��=1

SIZE, TEMPERATURE, AND BOND NATURE DEPENDENCE… PHYSICAL REVIEW B 75, 125403 �2007�

125403-3



for nanowires, �=2 for thin plates, and �=3 for bulk mate-
rial�. Because the Debye temperature is defined as �D
=��D /kB, the normalized expression for �D has the follow-
ing form:

�D�zi,m,T�
�D�zb,m,T0�

=
�D�zi,m,T�

�D�zb,m,T0�
=

vs�zi,m,T�
vs�zb,m,T0�

·
d0

di

= �ci
Y�zi,m,T�

Y�zb,m,T0�
1/2

. �4�

Combining Eqs �1� and �4� leads to immediate relation

	�D�Kj,m,T�
�D��,m,T0�

= �
i�3

ci

Kj
�ci

−�1+m/2��Tm − T/�1 + 	i�
Tm − T0 + �21

�1/2

− 1�
= �

i�3

ci

Kj
�ci

−�1+m/2��1 +
T0 − T/�1 + 	i�
Tm − T0 + �21

�1/2

− 1� .

�5�

Therefore, the current form �Eq. �5�� has a square-root de-
pendence on �Tm−T�1/2 for the bulk �	i=0, ci=1, if the sur-
face effect is ignored�, being different from the linear49 or
square-root dependence on Tm: �D�Tm

1/2 /d �Ref. 53�.

D. Specific heat capacity

The specific heat capacity is a measurable physical quan-
tity that characterizes the ability of a body to store the heat
when the sample temperature is changed. The effect of body
size on the specific heat capacity has recently attracted a lot
of attention.54–57 Novotny et al.54 measured the low-
temperature heat capacity of 2.2- and 3.7-nm-sized lead par-
ticles and observed the enhancement of heat capacity below
5 K. Lu58 demonstrated that the specific heat of metallic or
alloying nanosolids increases with the inverse of solid size.
An ac microcalorimeter measurement55 shown that the spe-
cific heat of Al thin films with film thickness varying from
13.5 to 370 nm reduces with the thickness of the Al film.
The decrease of specific heat was explained by the rise of the
absorption and the loss of thermal waves with specific wave
vectors in the small volumes. However, Lu et al.56 calculated
the size effects on the specific heat of Al thin film employing
the Prasher-Phetan59 approach and derived that the reduction
of phonon states was not the main reason causing the size
effect on specific heat, but a thin layer of Al oxide was re-
sponsible for it. In the measurement of Yu et al.,57 the heat
capacity decreased with the film thickness; however, the spe-
cific heat increased as the film become thinner, in disagree-
ment with the measured results of Song et al.55 Therefore,
the discrepancies in the role of the size and temperature de-
pendence of the heat capacity and Debye temperature for
metallic nanostructures remain unsolved.

The heat capacity per unit volume is defined as the ratio
of an infinitely small amount of heat �E added to the body to
the corresponding small increase in its temperature �T when
the volume is kept unchanged. In the extended Debye model
the expression is given by

Cv = � �E

�T


V
= �2R� T

�D
��

0

�D/T x�+1 exp�x�
�exp�x� − 1�2dx , �6�

where x=�� /kBT. It can be shown that when �=3, Eq. �6� is
reduced to the standard expression in the three-dimensional
Debye model. In the case of T��D, the integration in Eq. �6�
gives �1/����D /T��. The heat capacity Cv is substituted by
�R, in agreement with the Dulong-Petit law in the case of
�=3. Cv approaches a constant value at high temperatures.
The low-temperature limit of the heat capacity is even more
interesting. If T��D, the upper limit of the integral of Eq.
�6� approaches infinity and the integration gives
�0

�x�+1ex / �ex−1�2dx�3.290, 7.212, and 25.976, for �=1, 2,
and 3. Therefore, the heat capacity in the low-temperature
limit becomes

Cv = A�2� T

�D
�

� �2�D
−�, �7�

where A is a fixed value for a given . From Eqs. �6� and �7�,
we can see that the Debye temperature �D has a strong effect
on the heat capacity. Using the same core-shell structure, we
can obtain the expression for heat capacity per unit volume
depending on the size, shape, and bond nature at very low
temperatures �T�0�:

	Cv�m,T,Kj�
Cv�m . T0,��

= �
i�3

ci

Kj
�ci

�1+m/2���1 − T/Tm�1 + 	i�
1 − T0/Tm

−�/2

− 1�
� �

i�3

ci

Kj
�ci

�1+m/2���1 − T0/Tm��/2 − 1� � 0 �T � 0� .

�8�

Since the coefficient of bond contraction ci is always smaller
than unity, the heat capacity is always lower than the bulk
value at the lower temperatures and the heat capacity de-
creases inversely with the solid size �Kj�. At temperature
close to the Debye temperature, the heat capacity should be
evaluated using Eq. �6�, where the Debye temperature is size,
temperature, and bond nature dependent according to Eq. �5�.

III. RESULTS AND DISCUSSION

Using Eq. �3�, we are able to predict the bond nature,
solid shape and size, and the xm�T /Tm� dependence of the
Young’s modulus and extensibility of a solid. For illustration
purposes, we selected m=1 �for metals�, 3 �carbon, 2.56�,
and 5 �Si, 4.88�, xm=0.25, 0.5, and 0.75, and the dimension-
ality =3 �for a sphere� to conduct the calculations. The T0
was set at 0 K and T, respectively. For temperature depen-
dence, we used Kj =10 and 50 sizes by fixing other param-
eters. �21 was taken as zero for illustration purposes; other-
wise, a small offset could hardly be identified in the
predicted relative changes.

Figure 1�a� shows that elevation or depression of the
Young’s modulus with decreasing sizes may happen depend-
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ing on the combination of �xm ,m� values. For example, Y
elevation occurs in the situations of �xm,m�= ��0.25, �3�. Y
retention may happen at critical �xm ,m� combinations such as
�xm ,m�= ��0.25, �3�. The critical combination of �xm ,m�
can be obtained by approaching Eq. �3� to zero. If we select
T=T0, Y elevation also occurs in the situations of �xm ,m�
= ��0.5, �5�. The Y may also remain constant at �xm ,m�
= �0.25, �2� and �0.5, �4�. It is not surprising therefore that
the modulus may rise, drop, or remain constant upon the
solid size being reduced, depending on the materials and
operating conditions, and techniques as well.

Figure 2 shows the temperature-induced relative change
of �a� Y values and �b� the extensibility for Kj =10 and m
=1,3,5 samples. If T0=T, the Y drops nonlinearly with T
until Tm. The insertion shows the case of T0=0 in which the
Y drops linearly with T. The extensibility approaches infinity
at the corresponding Tm�Kj�. The inset manifests singularities
because of the shell-by-shell configuration. If we treat the
outermost two atomic layers as the skin with a mean zi= �4
+6� /2 and the singularity occurs at the melting point, the
extensibility drops with the characteristic dimension. On the
other hand, a smaller nanosolid with lower m value is more
easily extensible at elevated temperatures than the other
cases.

Figure 3 compares the prediction with observations of the
size dependence of the Y values for �a� ZnO and �b� poly-
mers measured at room temperature and temperature-
dependent Y value for �c� bulk Al2O3 and �d� bulk AlN.
Predictions agree exceedingly well with the measured data
for ZnO nanowires �m=4, =2�. For the polymer, predic-
tions agree with the general trend of measurement �m=4, 
=1 �film�� with accuracy subject to the precision of the size
determination. Numerical agreement of the temperature de-
pendence of the Y �Fig. 3�c�� at higher temperatures could be
made by the discussed models despite the physical mecha-
nisms. However, we found that the B= �Eb�0�
 �1+�T�3�−1

in Anderson’s and the T0 in Wachtman’s correspond to the
turning point T0 at which the T-Y curve transits from nonlin-
ear to linear, which is governed by the Debye temperature.
Besides, our approach covers the contribution from thermal
expansion. The overall performance of the BOLS prediction
may represent the true situation of thermally softened speci-
mens.

The predicted m, Kj, and xm dependence of the modulus
and extensibility covers all the possible trends as observed.
For example, the predicted Y depression in Fig. 1 agrees well
with the measured trends of Al �m=1, xm=300/650�0.5
�Ref. 22�� and polymers �Tg=300/450�2/3 �Ref. 24��. The
extensibility of nanoscaled Al-Cu alloys in the semisolid
state,36 and nanoscaled Al2O3 �Ref. 60� and PbS �Ref. 61� at

FIG. 1. �Color online� Prediction of size Kj dependence of
Young’s modulus with �a� T0=0 and �b� T0=T of different bond
nature and xm �T /Tm� values. Young’s modulus enhancement hap-
pens at the combinations of �xm ,m�= ��0.25, �3� for T0=0 and
�xm ,m�= ��0.5, �3� for T0=T. The Y retention may happen at
critical �T /Tm ,m� combinations.

FIG. 2. T /Tm dependence of �a� Young’s modulus and �b� ex-
tensibility of a spherical nanosolid with different m and T /Tm �xm�
ratios. The insertion shows the cases of T0=0. The Y values of
nanosolid of lower m values and smaller sizes drop faster when the
test temperature is raised. The extensibility approaches infinity at
the melting point. The singularities in the inset exhibit the shell-by-
shell melting features.
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room temperature increases generally with grain refinement.
The m values for compounds or alloys are around 4 or
higher, and their T /Tm ratios are relatively lower. The in-
crease of the compressibility and extensibility of Al2O3 and
PbS nanosolids renders Young’s modulus. The superplastic-
ity of materials such as Cu wires �m=1, xm�1/2 �Ref. 62��
with grain size less than tens of nanometers in the tempera-
ture range 0.5–0.6 Tm �Ref. 63� also agrees with the predic-
tions. The Y elevation of ZnO nanowire �m=4, xm�1/4
�Ref. 8�� and Si nanosphere �m=4.88, xm�1/6 �Ref. 2�� is
also within the prediction because of their high m values and
low xm ratios. However, the discrepancy of ZnO wires8–11

and Si spheres2 and belts16 may arise from different xm of
operation or different experimental conditions or methods. It
is anticipated that modulus enhancement as observed from
TiCrN and GaAlN surfaces6 may not be observable at room
temperature for the low-Tm metals such as Sn, Pb, Al, Zn,
Mg, and In.

Predictions also agree with the temperature dependence of
Young’s modulus of chemical vapor deposition �CVD� nano-
diamond films,23 the silicone resins,24 and the yield stress
�linearly proportional to modulus� of Mg nanosolid64 of a
given size. The ductility increases exponentially with tem-
perature until infinity at Tm that drops with solid size. An
atomic-scale simulation65 also suggests that the material be-
comes softer in both the plastic and elastic regimes as the
operating temperature is raised. When measuring at 200 °C,
the strength of 300-nm-sized Cu nanograins is lowered by
15% and the ductility increases substantially.66 When the op-
eration temperature is increased from room temperature to
400 °C the ductility of ultrafine-grained FeCo2V samples of
100–290 nm sizes increases from 3–13% to 22% rendering
with strength attenuation.67 The biaxial Young’s modulus of
Si �111� and Si �100� drops linearly when the T is
increased.68,69 A 280% superplasticity of single-walled car-
bon nanotube �m=2.56,xm�2/3� has been realized at high
temperature.70

It is true that the Young’s modulus and tensile stress and
strength are indeed different quantities despite the similarity
in the trends of change with external stimulus as widely ob-
served from specimens such as polymers71 and Al oxide4 on
the size and temperature dependence. From an atomistic
point of view, these quantities are intrinsically related to the
bonding energy and bond length and thus we can explain
why they perform with similar trends. Artifacts in the mea-
surement, in particular in the plastic deformation regime,
may dominate as extrinsic contributions to modulate the
slope of measured data. The consistency between observa-
tions and predictions of the linear dependence of mechanical
properties may provide evidence for the BOLS consider-
ation.

Using Eq. �5�, we are able to predict the dependence of �D
on the size �Kj�, temperature �T�, and bond nature �m�. Fig-
ure 4 shows the relative change of �D for nanowires �
=2,�=1� with m=1,3,5 and xm=0, 0.25, and 0.50. When the
temperature of the measurement is much lower than the
melting point �xm�1�, �D increases with the decrease of ma-
terial dimension Kj, while �D increases faster at larger m. On
the other hand, �D decreases with increasing operation tem-

FIG. 3. �Color online� Matching predictions to the measurement
of Y value �a� enhancement of ZnO nanowires �Ref. 8�, �b� suppres-
sion of polymer �Ref. 14� and the temperature dependence of the Y
values for �a� AlN �Tm=3273 K, �D=1150 K, EB=5.19 eV� �Ref.
21� and �b� Al2O3 �Tm=2303 K, �D=1045 K, EB=3.9 eV� �Ref.
39�, with Tm and �D as input and EB �the atomic cohesive energy in
the bulk at 0 K� as output.
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perature and the relative change of �D is greater for smaller
m values. A close examination of Fig. 4�a� and Eq. �5� could
lead to a conclusion that for a certain �xm ,m� combination,
the Debye temperature may vary insignificantly with particle
size, being the same as Young’s modulus retention. Figure
4�b� shows the temperature-induced relative change of �D for
nanowires �=2,�=1� of size Kj =10 and 50. If we set T0

=T, the �D decreases nonlinearly with temperature T until T
approaches Tmi �local melting temperature of the ith atomic
site�. The two transition points for each of the �m ,Kj� com-
binations arise from the loss of bond that happens only to the
outermost two discrete atomic layers. Moreover, the varia-
tion of �D with the temperature and size is more pronounced
for larger m and smaller Kj values.

Figure 5 compares the predictions with various theoretical
or experimental data �a� for Au particles and �b� Debye tem-
perature from Debye-Waller parameter measurements for Se
nanoclusters. Couchman and Karasz’s approach45 shows that
the change of Debye temperature involves the particle size R
and cutoff acoustic wave vectors K0 : 	�D /�0�−3� /8RK0,
without temperature being involved. By applying Eq. �5�,
with T0=0.245Tm and T=0.16Tm, agreement between the
BOLS prediction and Couchman and Karasz’s estimation has
been reached. If we set T0=0.224Tm and T=0.204Tm, our

model fits Balerna and Mobilio’s measurement results quite
well, which is also shown in Fig. 5�a�. In Fig. 5�b�, the pre-
diction shows the general trend of the Debye temperature
with respect to size; agreement is not satisfied. However, the
measurement was conducted at T=293 K, which is higher
than the local melting temperature of the first two layers,
about 0.6Tm �for Se Tm=494 K�, and hence the giving fea-
ture is dominated by a core interior with less temperature
dependence.

As indicated in Eq. �6�, the specific heat capacity depends
unambiguously on the �D and hence on the size, temperature,
and bond nature. Figure 6�a� shows the reduced Cv �in units
of R, where R is a gas constant� versus temperature �T /�D0�
for Si nanowires �m=4.88� and Al nanowires �m=1� of dif-
ferent diameters �Kj =5, 10, and 20�. The shape of the Cv
curve is similar to that of the bulk Cv curve of the Debye
model, but with the size-induced depression over the whole
temperature range. For the same Kj at the given T /�D0, the
reduction of heat capacity is larger for larger m. Figure 6�b�
plots Cv /Cv0 �where Cv0 is the bulk heat capacity at a given
temperature� vs Kj at T=100 and 300 K for Al nanowires
and Si nanowires. The heat capacity decreases with the size
at fixed temperature �except for Al nanowires measured at
room temperature, such that the heat capacity is very close to
the bulk Cv value obtained when Kj �15 and increases
slightly with decreasing size�. For a given size, the reduction
of the heat capacity is more significant at lower temperatures
or larger m value. In this analysis, we set T0=T. If T0 is
assumed to be 0, the general trend of the heat capacity is
preserved, but the reduction of the heat capacity is greater.

FIG. 4. �Color online� Prediction of �a� size �Kj� and �b� tem-
perature xm �T /Tm� dependence of �D for different bond nature �m�.
The �D increases with the decreasing of size for very low T and
decreases with decreasing the size for high temperature. The �D of
nanowires with higher m values and smaller size drops faster when
the temperature is raised. The transition points correspond to local
melting temperature of the outermost two atomic layers.

FIG. 5. Comparison of the BOLS predictions with the observa-
tions based on �a� Couchman and Karasz’s model �with T0

=0.245Tm, T=0.16Tm, Tm=1337 K� �Ref. 45� and measurement
�with T0=0.224Tm, T=0.204Tm� �Ref. 46� for Au particles and �b�
Se particles �with T0=T=0.6Tm, Tm=494 K� �Ref. 47�.
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IV. CONCLUSION

A set of analytical expressions for the size, temperature,
and bond nature dependence of the elastic modulus and its
derivatives on the extensibility, Debye temperature, and spe-

cific heat of nanostructures has been established in terms of
bonding identities and their coordination and temperature de-
pendence, which covers the essential parameters and their
interdependence. Understanding clarifies why the Y values
for some materials are elevated and why those of others are
not upon size reduction and how the mechanical strength
drops when the measuring temperature is increased. Conclu-
sions can be drawn as follows.

�a� The Young’s modulus of a nanosolid may depress,
increase, or remain unchanged, depending on the size, tem-
perature of operation, and the nature of bond involved, as
well as experimental conditions. It is therefore not surprising
to observe the elastic modulus change in different trends of
different materials measured under different conditions. It is
suggested that one could not consider a certain parameter at
a time without addressing the rest when discussing the me-
chanical and thermal properties of a material, especially a
small object.

�b� The similarity of the size and temperature dependence
of the mechanical properties such as Young’s modulus, ten-
sile stress and strength, and surface energy arises intrinsi-
cally from the same origin of bonding energy and bond
length. Artifacts in measurements, in particular in the plastic
regime, may dominate as extrinsic contributions to modulate
the observations extrinsically.

�c� Agreement between observations and predictions of
the T-dependent Young’s modulus has allowed us to derive
information about the bonding energy of an atom in the bulk,
which goes beyond conventional theoretical and experimen-
tal approaches.

�d� The �D has a square-root dependence on �Tm−T�,
rather than a linear or square-root dependence on the Tm. The
currently derived solution may provide complementary infor-
mation for the T-independent form of �D given by Linde-
mann.

�e� The specific heat capacity generally decreases when
the solid size is reduced. The reduction of the specific heat
capacity is more pronounced for larger m values at lower
temperatures.

�f� Further exploration of the temperature dependence of
Y, �, �D, and Cv at extremely low temperature would be
even more interesting and an investigation is in progress.

*Electronic address: ecqsun@ntu.edu.sg; URL: http://
www.ntu.edu.sg/home/ecqsun/
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