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We describe an interaction mechanism between electron spins in a vertically stacked double quantum dot
that can be used for controlled two-qubit operations. This interaction is mediated by excitons confined within,
and delocalized over, the double dot. We show that gates equivalent to the �SWAP gate can be obtained in times
much less than the exciton relaxation time and that the negative effects of hole mixing and spontaneous
emission do not seriously affect these results.
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INTRODUCTION

The spin of an electron confined in a quantum dot �QD� is
one of the leading candidates for the realization of a practical
qubit. Since the work of Loss and DiVincenzo,1 there have
been a number of proposals on how best to achieve the pre-
cise manipulations of such spins required for the operation of
quantum logic. See, for example, Refs. 2–5.

While interest in electrostatic gating remains strong, the
use of lasers has several advantages in this role, most notably
speed and control. Despite significant theoretical advances in
this direction, there has, as yet, been no experimental dem-
onstration of optically controlled gating between electron
spins in QDs.

In this paper, we describe an interaction mechanism to
achieve just this. This qubit-qubit interaction is mediated by
interdot tunneling of photoexcited carriers—an area which
has been the subject of significant recent experimental
advances.6,7 Our results are of explicit relevance to the cur-
rent generation of vertically stacked self-assembled InAs
QDs, but are also easily adaptable to the other dots, includ-
ing horizontally coupled ones.

The interaction we describe has its origin in the so-called
optical-Ruderman-Kittel-Kasuya-Yosida �ORKKY� effect, in
which two electron spins are coupled via their exchange in-
teractions with optically generated excitons in the semicon-
ductor bulk.8 The coupling effect of these bulk excitons be-
tween two electron spins in a double QD was examined in
Ref. 9. Here we consider an interaction mediated not by bulk
excitons but by a single exciton confined in the same double
QD structure. We describe a situation in which the excitonic
electron is able to tunnel between the dots and form delocal-
ized “molecular” states. It is the exchange interaction be-
tween this electron and the resident qubit electrons that leads
to an optically controlled gating. This gate, although not one
of the standard quantum computation �QC� gates, can be
used to form a controlled-Z operation when used twice in
conjunction with single-qubit rotations and is, in this way,
similar to the �SWAP gate.

The main factor limiting the speed with which operations
can be performed in this setup comes from the “kinetic ex-
change” between qubit spins, which arises from the virtual
tunneling of the qubit electrons between dots. This is an
important consideration in vertically stacked dots, and we
show here that by choosing appropriate dot parameters, we
can make this effect small and still obtain fast two-qubit
operations.

Our proposal therefore offers an accessible path to the
demonstration of quantum logic in the solid state. Further-
more, it offers insight into the dynamics of interacting few-
body systems in confined nanostructures—a topic of increas-
ing experimental relevance.

Figure 1 illustrates the basic principle at work here. The
two-qubit electrons reside, one a piece, in the ground-state
levels of a vertical double-dot structure. The dots have
slightly different diameters, and a static gate voltage Vg is
applied in the growth direction. The distance between the
dots is small enough that tunneling can occur between the
dots, but large enough to suppress the direct exchange inter-
action between the two-qubit electrons. The tunneling of the
qubit electrons into each other’s dot is strongly suppressed
by the energy required to doubly charge one of the dots.

A circularly polarized laser pulse is used to generate an
exciton into the lowest excited orbitals of dot A as shown in
Fig. 1�b�. The gate voltage is tuned such that the energy of
this three-electron-and-one-hole configuration is resonant

FIG. 1. �Color online� �a� Sketch of the two vertically stacked
quantum dots. Growth direction is the z direction, and the two dots
are positioned symmetrically at z= ±d. The dots have heights 2a
and the width of the barrier between them is b�2�d−a�. The lower
�A� and upper �B� dots have Darwin radii of LA and LB, respec-
tively. �b� Two electronic and two hole levels in each dot take part
in gate operation. The lowest electron levels in each dot �labeled 1
and 2� are the two-qubit levels and an electron permanently resides
in each of them. Laser illumination is tuned such that it creates an
exciton in the excited levels of dot A only �levels 3�. �c� Due to a
tunnel coupling �34 between the dots and a resonance condition met
through the tuning of the gate voltage Vg, the excitonic electron can
tunnel back and forth. The exchange interaction between this elec-
tron and the qubits gives rise to the optically induced interaction
between the qubits that can be used to perform a quantum gate.
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with that shown in Fig. 1�c�, where the excited electron is in
dot B.

The resonant tunneling of the electron between these con-
figurations creates a set of hybridized states in which the
excitonic electron is delocalized over both dots. The qubit
electrons experience a strong intradot exchange interaction
with this delocalized electron, and this mediates an effective
interaction between the two qubits. By controlling the laser
parameters, this interaction can be harnessed to perform
quantum logic operations.

We begin our detailed treatment by describing the single-
particle states of the double dot. This includes a calculation
of the size of the interdot tunneling elements. For reasonable
dot separations, we describe a situation where the qubits in
the ground states are effectively isolated from one another,
but where the exciton electron is free to tunnel. We then
detail the spectrum of the four-body system resulting from
the interplay of confinement, tunneling, and Coulomb inter-
action. From this follows the quantum logic properties of the
system. Analytically, we derive an effective gate operator for
the system under adiabatic conditions. We also use numerics
to explore the nonadiabatic capabilities. We show that gates
equivalent to the �SWAP gate can be obtained in times much
less than the exciton relaxation time and that the negative
effects of hole mixing and spontaneous emission do not se-
riously affect these results.

I. SINGLE-PARTICLE STATES

The potential experienced by a conduction-band �CB�
electron in the double-dot structure may be approximated as
follows. In the growth direction z, we have a double square-
well potential with wells of width 2a and depth V0 centered
at ±d:

Vz�z� = � 0 �z ± d� � a

V0 otherwise.
� �1�

The width of the barrier between the dots �the parameter
often quoted in experiments� is given by b�2�d−a�. Con-
finement in the x-y plane is assumed harmonic with different
confinement energies above and below the z=0 plane corre-
sponding to dots A and B:

V��r� = �1/2me�A
2�2, z � 0

1/2me�B
2�2, z � 0.

� �2�

Here, �=�x2+y2 is the radial coordinate, me is the effective
mass of the CB electron, and ��X=�2 / �meLX

2� is the confine-
ment energy of dot X=A ,B. The Hamiltonian of the electron
is then

HCB =
1

2me
p2 + Vz�z� + V��r� + Eg, �3�

where Eg is the band gap.
We will consider the two dots to be separated such that a

variational treatment in terms of wave functions localized in
each of the individual dots is appropriate. Let us label with 1
and 3 the lowest two levels in dot A, and with 2 and 4 those

in dot B. Our starting point, then, is the set of four single-
particle wave functions

�1�r� = 	�z + d�
s��A;�,�� ,

�2�r� = 	�z − d�
s��B;�,�� ,

�3�r� = 	�z + d�
p��A;�,�� ,

�4�r� = 	�z − d�
p��B;�,�� . �4�

In the growth direction, 	�z�d� are square-well eigenfunc-
tions centered at z= ±d. In the xy plane, the functions

s��X ;� ,�� and 
p��X ;� ,�� describe the ground- and first-
excited Fock-Darwin wave functions for confinement energy
�X. These wave functions are given explicitly in the Appen-
dix. This set of wave functions is not orthogonal since, al-
though the overlaps S12= ��1 ��2	 and S34= ��3 ��4	 are
small, they are finite. We thus use their orthogonalized coun-
terparts 
i�r� as outlined in the Appendix.

The evaluation of the Hamiltonian of Eq. �3� in this or-
thogonal basis gives us our approximate single CB-electron
Hamiltonian. Correct to first order in the overlaps S12
S34,
we have

HCB =�
E1 − �12 0 0

− �12 E2 + Vg 0 0

0 0 E3 − �34

0 0 − �34 E4 + Vg

� . �5�

The diagonal energies are given by

E1 = Ez + Eg + ��A, E2 = Ez + Eg + ��B,

E3 = Ez + Eg + 2��A, E4 = Ez + Eg + 2��B, �6�

where Ez is the energy resulting from the z confinement and
is the same for both dots.

The quantities �12 and �34 are ground- and excited-state
tunneling amplitudes. They may be approximated as

�12 
 �34 
 4aV0BC
LALB

LA
2 + LB

2 e−2�d, �7�

where �, B, and C are functions of V0 determined by the
continuity of the z-direction wave function �see the Appen-
dix�. The dependence of �34 on the interdot distance is illus-
trated in Fig. 2 for typical parameters. Current experiments
have largely operated at small interdot spacings where the
tunneling is large. For example, Ortner et al.6 measured a
value of �12
13 meV for d
3.5 nm, which is in good
agreement with the results plotted in Fig. 2. For our pur-
poses, we require a much smaller tunneling such that local-
ized states are still well defined. We will consider separations
in the range of d
8 nm �b
14 nm�, where the tunneling
amplitude lies in the range of 10–100 �eV.

In Eq. �5� we have also taken into account the effects of
the gate voltage applied in the z direction by incorporating a
first-order shift in the energy levels of dot B by an amount
Vg.7
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In InAs dots, the valence-band states have a predomi-
nantly heavy-hole �HH� character. The single-particle Hamil-
tonian for such holes follows in exactly the same way as
above except that the parameters differ. In particular, the HH
mass in the growth direction, mhz, is different from that in the
xy plane mh�. The heavier mass of the HH in the z direction,
as compared with the electron, means that the HHs are more
localized than the electrons. This, in turn, means that the HH
tunneling amplitudes between the dots are approximately 1
order of magnitude smaller than those for the electrons, as
illustrated in Fig. 2.

II. LIGHT-MATTER INTERACTION

The multiparticle basis states for our problem are chosen
by filling the appropriate single-particle levels. Prior to the
application of the laser, there are two electrons in the system
and these reside in the ground-state levels of the dots. Inter-
action with the laser generates an additional electron-hole
pair in the excited levels of the double-dot system.

We consider here illumination with a �+ circularly polar-
ized laser propagating in the growth direction. Conservation
of angular momentum means that this excites an exciton con-
sisting of a spin-down electron and a spin-up heavy hole.
Here, we have neglected hole mixing and assumed that the
in-plane magnetic field is zero—points which we return to
later. The laser is tuned such that it creates the exciton in the
excited levels of the dots and not in the ground-state levels
where the qubit electrons reside. In principle, illumination
can create an exciton with a hole in either dot.

The block structure of the Hamiltonian for the interacting
system reads

Htotal =�
X�D� TX4

e TX3
e 0 ��D�

TX4
e†

X�4� Th ��4� 0

TX3
e†

Th†
X�3� ��3� 0

0 ��4�†
��3�†

G TG
e

��D�†
0 0 TG

e†
D

� . �8�

The two blocks in the bottom right-hand corner, G and D,
describe states consisting of the two resident electrons
only—in G, the electrons are separated, one in each dot; in
D, one of the dots is doubly occupied. These two blocks are
coupled via the electron-tunneling terms of block TG

e . The
blocks X�3� and X�4� describe states with two resident elec-
trons plus the exciton, with the superscript referring to the
dot level in which the hole is located. These two blocks are
coupled by the hole-tunneling terms of block Th. Block XD

describes states where an exciton is present and one of the
ground-state levels is doubly occupied. This block is coupled
to the other exciton-containing states through the electron-
tunneling blocks TX3,4

e . Finally, the blocks ��i�; i=3,4 ,D
contain the light-matter interaction terms and provide the
connection between the ground and excited sectors. It should
be noted that the effects of Coulomb interaction are incorpo-
rated into the diagonal blocks of Htotal, and that the exciton
blocks X�i� also contain single-electron tunneling terms.

We can make several approximations that would reduce
the complexity of Htotal significantly. Firstly, whereas in prin-
ciple the laser can excite an electron-hole pair in either of the
dots, we assume that the two dots are sufficiently distinct in
size that, in fact, they are only generated in dot A. We will
later choose the difference in confinement energies of the
two dots to be 
5 meV, so this is certainly valid. We can
also neglect the generation of the indirect excitons such as
e3↓

† h4⇑
† , as these have very small transition matrix elements.

This means that the light-matter interaction is well approxi-
mated as

Hint = ��t�e−i�te3↓
† h3⇑

† + H.c., �9�

where ��t� is the time-dependent Rabi frequency of the ex-
citon transition. The block ��4�, corresponding to the genera-
tion of excitons in dot B, is therefore zero. Furthermore, hole
tunneling is very effectively suppressed in this system—not
only are the hole-tunneling matrix elements much smaller
than their electronic counterparts �see previous section�, but
under the operating conditions of our device, to be described
below, these transitions are far off resonant. We therefore
treat the block X�4�, with a hole in dot B, as being effectively
decoupled from the dynamics that we are interested in.

Finally, transitions to states in which the dot levels are
doubly occupied are suppressed by the enhanced Coulomb
interaction of such states. That this is still the case even with
different dot sizes and in the presence of applied field is
justified in the next section. This means that the blocks D
and XD are decoupled from the rest of the system over the
relevant time scales. Taken together, these approximations
mean that the system can be described with just the portion
of the Hamiltonian Htotal consisting of the blocks G, X�3�, and

FIG. 2. Logarithm of �34, the tunneling amplitude between ex-
cited states in different dots as a function of the interdot distance d.
The solid black line shows the approximate result of Eq. �7� and the
black points show a numerical evaluation of full single-particle ma-
trix element. The dashed line and gray boxes show the analogous
quantities for heavy-hole tunneling. The dot height is 2a=2 nm
and the radial confinement energies are ��A

e =35 meV and
��B

e =30 meV for all carriers. The vertical confinement depth is
V0

e =680 meV for electrons and V0
h=100 meV for holes. We took the

electron mass to be 0.04m0 in InAs and 0.067m0 in the surrounding
GaAs matrix. Heavy holes have masses mhz=0.34m0 and mh�

=0.04m0 for both InAs and GaAs.
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��3�. Since these blocks have significant internal structure
themselves, the solution of this problem is still, by no means,
trivial.

III. GROUND-STATE SECTOR: ISOLATED QUBITS

We continue our treatment by temporarily reinstating
block D and considering all states in which there are only
two electrons in the system. This is the “ground-state sector”
and is described by blocks G, D, and TG

e above. It is clear
that only states with one electron in each dot represent good
two-qubit states and that double occupancy of either dot, as
in block D, is a source of error. It is therefore the purpose of
this section to describe this sector and to show the extent to
which block D can be neglected and the qubits thought of as
isolated.

We can decompose the proper qubit sector as G
=diag
G−1 ,G0 ,G+1�, where the subblocks are labeled by the
z projection of the total electron spin. Block G−1 corresponds
to the energy of the two-qubit state e1↓

† e2↓
† �0	, G+1 corre-

sponds to e1↑
† e2↑

† �0	, and G0 consists of the two-qubit states
with the electrons having opposite spins: e1↓

† e2↑
† �0	 and

e1↑
† e2↓

† �0	.

The exclusion principle determines that there are only two
states in block D, namely, e1↓

† e1↑
† �0	 and e2↓

† e2↑
† �0	. Conserva-

tion of electron-spin angular momentum means that only
block G0 couples to the block D. We can therefore consider
the effects of double occupation by concentrating on the fol-
lowing Hamiltonian:

HGD = �G0 TG
e

TG
e D

� , �10�

each block of which is a 2�2 matrix.
To assess the effects of double occupancy, it is necessary

to consider the Coulomb interaction between the confined
carriers, in this case electrons. The electron-electron matrix
elements between single-particle orbitals are given by

Vijkl
eeee = EC� d3r1d3r2


i
e�r1�
 j

e�r2�
k
e�r2�
l

e�r1�
�r1 − r2�

, �11�

with EC=e2 / �4��0�R�. We define similar quantities Vijkl
ehhe for

electron-hole interactions and will only consider electron-
hole direct interaction as e-h exchange effects are negligible.

Including both Coulomb interactions and single-particle
terms, the Hamiltonian of the ground-state sector in question
is

HGD =�
EG + Vg J12 − �12

e − �12
e

J12 EG + Vg �12
e �12

e

− �12
e �12

e EG − V1221
eeee + V1111

eeee − �E 0

− �12
e �12

e 0 EG − V1221
eeee + V2222

eeee + �E + 2Vg

� , �12�

where we have defined EG=E1
e +E2

e +V1221
eeee , �E=E2

e −E1
e, and

J12=V1212
eeee is the magnitude of ground-state exchange inter-

action. This exchange term can be approximated as

J12 

8EC

��C4

LA
2LB

2�LA
−2 + LB

−2�3/2 �d − a�2e−4�d. �13�

For the dot separations in which we are interested here �d

8 nm�, this exchange energy is of the order of 10−5 meV
and can thus be neglected.

The tunneling amplitude �12 means that double occupancy
of the qubit levels can, in principle, occur, and this would
clearly be deleterious. However, if the doubly occupied
states are much higher in energy than the singly occupied
ones, double occupancy will be suppressed. This requires
that the energy differences satisfy

Q1 � V1111
eeee − V1221

eeee − �E − Vg � �12
e ,

Q2 � V2222
eeee − V1221

eeee + �E + Vg � �12
e . �14�

With these inequalities satisfied, the effect of double occu-
pancy is reduced to imparting a small residual kinetic ex-
change interaction on the fixed qubits. To second order in

�12, this kinetic exchange energy may be approximated as
�12

2 /Q, with Q−1=Q1
−1+Q2

−1. The important time scale,

TQ = �Q/�12
2 , �15�

follows accordingly such that, for times t�TQ, the qubits are
effectively isolated from one another.

We will see later that device operation requires that the
offset Vg should be set as

Vg = E3
e − E4

e + V1331
eeee − V2442

eeee + V2332
eeee − V1441

eeee + V4334
ehhe − V3333

ehhe

+ J24 − J13. �16�

As the Coulomb elements are approximately symmetric be-
tween the dots, we can approximate Qi as

Q1 
 V1111
eeee − V1221

eeee + V3333
ehhe − V4334

ehhe + �E ,

Q2 
 V2222
eeee − V1221

eeee − V3333
ehhe + V4334

ehhe − �E . �17�
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In order to obtain as long a time TQ as possible, we need to
maximize Q, and this is achieved when Q1=Q2. This, in turn,
means that the optimal difference between the confinement
energies of the two dots should be �E
−V3333

ehhe +V4334
ehhe, in

which case Q=Q1 /2
1/2�V1111
eeee −V1221

eeee �. Typical parameters
give �E
Q
5 meV, and thus TQ=1.3 ns for a tunneling
amplitude of �12=0.05 meV and TQ=82 ps for �12
=0.2 meV. Provided then that the operation of our gate is
much faster than TQ, we can neglect the effects of double
occupancy in the ground-state sector. A similar analysis
shows that tunneling of ground-state electrons is suppressed
to a similar degree also in the presence of the exciton. This
means that, with the above proviso, we are justified in ne-
glecting blocks D and XD from Htotal.

The other important time scale for this system is the re-
laxation rate of the exciton. Experiments have shown that

this quantity is of the order of Trel
1 ns or greater.10,11 This,
therefore, is of the same order of magnitude as TQ for �12
=0.05 meV.

IV. EXCITON STATES

We now consider states with the exciton, and since the
hole is always localized in state 3, we consider only block
X�3�. We can decompose this block into subsectors based
on the z projection of the total electron spin: X�3�

=diag
X3/2
�3� ,X1/2

�3� ,X−1/2
�3� ,X−3/2

�3� �. Since there are no spin-flip
processes effective over the time scale of a typical gate op-
eration, these sectors are independent and each excitonic sec-
tor couples exclusively to one of the subblocks of G. This
means that the total Hamiltonian for the system can be
written as

Htotal =�
X−3/2

�3� �−3/2
�3� 0 0 0 0 0

�−3/2
�3�†

G−1 0 0 0 0 0

0 0 X−1/2
�3� �−1/2

�3� 0 0 0

0 0 �−1/2
�3�† G0 0 0 0

0 0 0 0 X1/2
�3� �1/2

�3� 0

0 0 0 0 �1/2
�3�†

G+1 0

0 0 0 0 0 0 X+3/2
�3�

� . �18�

Let us label each of these interacting subblocks with the
electron-spin projection of the exciton state. We therefore
have Htotal=diag
H�−3/2� ,H�−1/2� ,H�1/2� ,H�3/2��. Block H�3/2� is
clearly decoupled from the dynamics of the system and can
be ignored.

Let us consider the sector described by H�−3/2�, in which
both qubits are spin down and thus parallel to the electronic
spin of the exciton. Only three states then make up this sec-
tor: the photoexcited state �I	=e1↓

† e2↓
† e3↓

† h3⇑
† �0	, the same

configuration but with the electron tunneled �II	
=e1↓

† e2↓
† e4↓

† h3⇑
† �0	, and the qubit ground-state �III	=e1↓

† e2↓
† �0	.

The diagonal elements of the Hamiltonian for the first two
states are

HI,I
�−3/2� = CI + Vg − J13,

HII,II
�−3/2� = CII + 2Vg − J24, �19�

where CI is the sum of all single-particle energies and direct
Coulomb interactions for state �I	:

CI = E1
e + E2

e + E3
e + E3

h + V1221
eeee + V1331

eeee + V2332
eeee − V1331

ehhe − V2332
ehhe

− V3333
ehhe , �20�

and similarly for CII. The energies J13=V1313
eeee and J24=V2424

eeee

are the intradot exchange interaction strengths, and all other
exchange interactions are negligible.

In order that the excess electron can tunnel between the
two configurations I and II, we set the voltage Vg across the
device such that we align HI,I

↓↓=HII,II
↓↓ �EX. This requires

Vg = CI − CII − J13 + J24 = E3
e − E4

e + V1331
eeee − V2442

eeee + V2332
eeee

− V1441
eeee + V4334

ehhe − V3333
ehhe + J24 − J13, �21�

which yields Vg
5 meV for our parameters.
With this condition, the Hamiltonian for this sector reads

H�−3/2� = � EX − �34 �e−i�t

− �34 EX 0

�ei�t 0 EG � . �22�

Moving to a basis of tunneling eigenstates for the exciton
levels, 2−1/2��I	± �II	�, we have

H�−3/2� = � EX − �34 0 �e−i�t/�2

0 EX + �34 �e−i�t/�2

�ei�t/�2 �ei�t/�2 EG � . �23�

We tune the laser frequency such that, apart from a small
detuning �, it is on resonance with the transition from the
ground state and the lowest tunnel coupled exciton state with
energy EX−�34:
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� + � = EX − �34 − EG. �24�

Finally, we move to a rotating frame

H�m� → HR
�m� = RH�m�R† + iṘR†, �25�

with, in this case, R=diag
ei��+EG�t ,ei��+EG�t ,eiEGt� to obtain

HR
�−3/2� = � � 0 �/�2

0 � + 2�34 �/�2

�*/�2 �*/�2 0
� . �26�

We now consider the Hamiltonian, H�−1/2�, for the sector
in which the qubit spins have opposite directions. This is the
important sector as it is here that the exchange between ex-
citon and qubit electrons is manifest. Taking into account
both electron tunneling and electron exchange, there are six
exciton states in this sector. With intradot exchanges J13 and
J24 diagonal, these are

�I	 = e1↓
† e2↑

† e3↓
† h3⇑

† �0	 ,

�II	 = 2−1/2�e1↑
† e2↓

† e3↓
† + e1↓

† e2↓
† e3↑

† �h3⇑
† �0	 ,

�III	 = e1↑
† e2↓

† e4↓
† h3⇑

† �0	 ,

�IV	 = 2−1/2�e1↓
† e2↑

† e4↓
† + e1↓

† e2↓
† e4↑

† �h3⇑
† �0	 ,

�V	 = 2−1/2�e1↑
† e2↓

† e3↓
† − e1↓

† e2↓
† e3↑

† �h3⇑
† �0	 ,

�VI	 = 2−1/2�e1↓
† e2↑

† e4↓
† − e1↓

† e2↓
† e4↑

† �h3⇑
† �0	 . �27�

The first four states are degenerate under the intradot ex-
changes, and states 5 and 6 are split from the rest by an
energy of 2J13
2J24
6.5 meV. This means that they are
effectively decoupled and can be neglected henceforth.

We can then proceed to the basis of tunneling eigenbasis
defined by

�I�	 = 1/�6�I	 + 1/�3�II	 + 1/�6�III	 + 1/�3�IV	 ,

�II�	 = 1/�3�I	 − 1/�6�II	 − 1/�3�III	 + 1/�6�IV	 ,

�III�	 = − 1/�3�I	 + 1/�6�II	 − 1/�3�III	 + 1/�6�IV	 ,

�IV�	 = − 1/�6�I	 − 1/�3�II	 + 1/�6�III	 + 1/�3�IV	 .

�28�

On the basis of these four states plus the two ground states
e1↓

† e2↑
† and e1↑

† e2↓
† , the Hamiltonian in the rotating frame reads

HR
�−1/2� =�

� 0 0 0 ��t�/�6 ��t�/�6

0 � + �34
e /2 0 0 ��t�/�3 − ��t�/�12

0 0 � + 3�34
e /2 0 − ��t�/�3 ��t�/�12

0 0 0 � + 2�34
e − ��t�/�6 − ��t�/�6

�*�t�/�6 �*�t�/�3 − �*�t�/�3 − �*�t�/�6 0 0

�*�t�/�6 − �*�t�/�12 �*�t�/�12 − �*�t�/�6 0 0

� , �29�

where the rotating frame is defined with frequency �+EG for
all excited states and EG for the two ground states.

Analysis of the final sector, in which both qubit spins
point up, proceeds exactly as for H�−1/2� above, except with
all electron spins flipped and only a single ground state
e1↑

† e2↑
† �0	. The resulting Hamiltonian, H�1/2�, is the same as

that of Eq. �29� but with the fifth state omitted.
Taking these results together, and ignoring for the mo-

ment the light-matter coupling, we see that the excitonic sec-
tor consists of four energy levels, of which the inside and
outside pairs are doubly and triply degenerate, respectively.
In each of these states the excitonic electron is delocalized
over the entire structure, and is thus capable of mediating an
exchange interaction between the qubits. Note that the opti-
cal coupling between these states and the qubit ground states
shows a variety of different coupling strengths, as deter-
mined by the forefactors of � in the preceding Hamiltonians.

V. QUANTUM GATES

Having derived these Hamiltonians, we now show how
the interactions they entail may be used to perform two-qubit
operations. We begin by considering the system in the adia-
batic limit in which the exciton levels are but virtually popu-
lated. This approach yields an effective gate operator Ueff
acting only on the qubit space. Due to the complexity of the
exciton structure, Ueff does not have the form of one of the
standard QC gates. However, we give the relationship be-
tween Ueff and the controlled-phase �C-PHASE� gate, which
makes clear the QC capacity of Ueff. We then consider nona-
diabatic operation of the system and show how this can im-
prove operation times.

Second-order Rayleigh-Schrödinger perturbation theory
of Raman processes can be used to derive an effective
Hamiltonian for the qubit sector through the elimination of
the exciton levels. In the basis 
�↓↓	,�↓↑	,�↑↓	,�↑↑	�, we obtain
the effective Hamiltonian
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Heff = −
���t��2

� �
x1 0 0 0

0 x2 y 0

0 y x3 0

0 0 0 x3

� = −
���t��2

�
M̂ , �30�

with elements

x1 =
�

2�1

�
+

1

� + 2�34
e � ,

x2 =
�

6�1

�
+

2

� + �34
e /2

+
2

� + 3�34
e /2

+
1

� + 2�34
e � ,

x3 =
�

12�2

�
+

1

� + �34
e /2

+
1

� + 3�34
e /2

+
2

� + 2�34
e � ,

y =
�

6�1

�
−

1

� + �34
e /2

−
1

� + 3�34
e /2

+
1

� + 2�34
e � . �31�

The validity of this Hamiltonian is conditioned on the stan-
dard adiabatic conditions of T� /��1, with T the operation
duration, to avoid populating the trion levels, and ���t�� /�
�1 such that perturbation theory is valid. Under these con-
ditions, the time-evolution operator of the qubit sector may

be approximated as Ueff�t�
e−i�M̂, with �=−�dt���t��2 /��.
We will use a Gaussian pulse shape, ��t�=A exp�−t2 /2T2�,
such that �=−A2��T /��. Evaluating the matrix exponen-
tial, we find that Ueff can be written as

Ueff =�
ei�1 0 0 0

0 eiq− cos � − iei�q−+q+�/2 sin � 0

0 − iei�q−+q+�/2 sin � eiq+ cos � 0

0 0 0 ei�3
� ,

�32�

where �1=−�x1, �3=−�x3, sin �=sin � cos � with �
=� /2��x2−x3�2+4y2 and tan �= �x2−x3� /2y, and where q±

= ±	−��x2+x3� /2 with tan 	=sin � tan �.
As is evident, Ueff is not a standard QC gate. However, we

now make the connection between Ueff and the familiar
C-PHASE gate

C��� = diag�ei�,1,1,1� , �33�

where � is the controlled phase. Let us define the single-
qubit operation Si���=diag�ei� ,1� acting on qubit i and the
generalized SWAP gate

W��� =�
1 0 0 0

0 cos � − i sin � 0

0 − i sin � cos � 0

0 0 0 1
� . �34�

Setting �=� /2 in W��� yields a SWAP gate, and setting �
=� /4 gives a �SWAP entangling gate. In terms of these op-
erators, the physical gate Ueff can be written as

Ueff = ei�3S1�q− − �3

2
�S2�q+ − �3

2
�C��

2
�

�W���S1�q− − �3

2
�S2�q+ − �3

2
� , �35�

where

� = 2��1 + �3 − q− − q+� = − 4�y =
2

3

A2��T

�

��1

�
−

1

� + �34
e /2

−
1

� + 3�34
e /2

+
1

� + 2�34
e � . �36�

The gate Ueff therefore contains a product of two entangling
operations C�� /2� and W���.

We can isolate the C-PHASE gate from the product CW by
observing that the unitary transformation of W by the single-
qubit operation S2����=diag�1,e−i�� gives S2����WS2�

†���
=W†. Since S2� commutes with C, the concatenation of CW
and its transform yields

C��/2�W���S2����C��/2�W���S2���� = C��� . �37�

Note that the transformation is independent of � and can be
carried out without the knowledge of its value. From this, it
follows that the composite operation of two applications of
Ueff interspersed with appropriate single-qubit operations is
equal to a C-PHASE gate with the controlled phase � as de-
fined in Eq. �36�.

The entangling capability of Ueff can be assessed by cal-
culating the concurrence C of the states formed by acting
with Ueff on a separable state of qubits 1 and 2, and averag-

ing over all such inputs. This we find to be C̄=1/8�15
−8 cos�� /2�cos�2��−7 cos�4���1/2, which depends only on
the angles � and �. The average concurrence is thus

bounded by 1
2 �sin�� /4��� C̄��11/32
0.586, where the

lower bound comes from the �=0 case. In the example that
we will consider later �operation 1 of Table I�, the off-

diagonal angle is �=0.42 and the average concurrence is C̄
=0.50.

We will quantify the usefulness of gate Ueff for QC pur-
poses solely through the C-PHASE angle �, even though the
gate U really requires two angles � and � to specify its
entangling action completely. This one-parameter character-
ization is appropriate because, from the foregoing, we know
that knowledge of � sets a lower bound on the average en-
tanglement generated by the gate. Furthermore, via the con-
struction of Eq. �37�, we know explicitly how to form a full
C-PHASE gate independent of the value of �, and indeed in-
dependent of the knowledge of its value. Clearly, for Ueff to
be an efficient gate, we require � to be significant. A value
of �=� gives the composite operation as a controlled-Z op-
eration, and in which case, the constituent Ueff operator may
be said to be “as efficient” as a �SWAP gate, since two appli-
cations of �SWAP are also required to form the controlled-Z
operation.1 Experimental demonstration of Ueff with �=�
would, in this sense, be equivalent to the demonstration of a
�SWAP gate.
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The question then becomes whether we can obtain a gate
Ueff with a value of �=� within the time constraints set by
TQ and Trel. The answer is that if we insist that the evolution
of the system be strictly adiabatic, then for a typical tunnel-
ing of �34=0.05 meV, such a gate takes several hundred pi-
coseconds. At this coupling, we have TQ=1.3 ns, and so the
adiabatic pulse time T is a significant fraction of TQ, which is
undesirable. However, if we allow a degree of nonadiabatic-
ity in the time evolution, we can significantly reduce this
operation time, as we will now discuss.

If we populate the exciton levels, then we require that the
population is returned to the qubit sector at the end of the
operation. We quantify the degree to which this happens with
the average norm on the qubit space. Let us write as Utotal the
time-evolution operator of the total system. The correspond-
ing operator for the qubit space is U= PUtotalP, where P is
the projector onto the 4�4 space. We can then define the
average norm on the qubit space as N0= �1/4��i,j=1

4 �Uij�2. A
perfect return has N0=1, and in this case, U necessarily has
the same form as Eq. �32�, given the Hamiltonian of Eq.
�18�.

We then numerically search the space of operations pos-
sible within the system for valid gate operations. For a given
tunneling strength �34, pulse duration T, amplitude A, and
detuning �, we numerically integrate the time-dependent
Schrödinger equation for the Hamiltonian of Eq. �18� to ob-
tain the system’s evolution from the four initial qubit states
↓↓, ↓↑, ↑↓, and ↑↑. From these results we can construct U,
the evolution operator on the qubit space. We consider that
the time evolution can be construed as a valid gate if N0
�0.99.

For a fixed pulse duration T, we obtain a range of valid
gate operations with various values of A and �. From this set,
we are interested in the gate with the most significant gating
action which, in terms of the CPHASE angle described
above, is the gate for which ��� is closest to �. We denote
the C-PHASE angle of the gate which fullfills the criteria at a
given T as �opt.

In Fig. 3 we plot the optimal angle �opt as a function of
pulse duration T for several different tunnel amplitudes �34.
Let us consider the �34=0.05 meV case. The angle �opt
reaches a value of � at a value of T /TQ=0.064 and then
saturates. At this coupling, TQ=1.3 ns, and so the pulse du-
ration is T=84 ps, which is short compared with both TQ and
Trel. For the higher couplings shown in Fig. 3, we obtain
�opt=� only for ratios T /TQ�0.1.

In Table I, we give parameters and results for two ex-
ample �34=0.05 meV operations: the first corresponds to the

minimum pulse time T required to obtain �=�, and the
second is a longer duration pulse with higher norm N0. In the
course of the evolution with the first set of parameters, the
exciton states are occupied with a peak population of the
order of 40%. For initial conditions of three of the four basis
states, virtually no population is left in the trion levels at the
conclusion of this operation. However, evolution from ↓↑
does leave a small remnant and this reduces the qubit norm
to its value of N0=0.991. For longer pulse durations, as in
the second operation of Table I, this remnant can be elimi-
nated.

Permitting the system to evolve nonadiabatically thus im-
proves the performance of the gate by reducing the time
required to perform a useful rotation.

VI. HOLE MIXING AND SPONTANEOUS EMISSION

Other than the direct and kinetic exchanges between the
qubits discussed above, there are two further deleterious pro-
cesses that we now discuss: hole mixing and spontaneous
emission. As we know from the Luttinger-Kohn model of
semiconductor bands,12,13 hole mixing means that, rather
than the “bare” heavy-hole states � 3

2 , ± 3
2 	, the actual hole

states are better approximated by

TABLE I. Parameters and results for two example operations. �34 is the tunneling amplitude between dots,
and A, T, and � are the amplitude, duration, and detuning of the laser pulse. The units of �34, �, and A are
meV, and T is measured in ps. For both operations, �
�, as required. Without spontaneous emission, the
fidelity is equal to the norm on the qubit space F=N0, and this can be made very close to unity, as in the
second operation. In the presence of spontaneous emission, the fidelity Frel is slightly reduced.

�34 T T /TQ � A � N0 FRel

1 0.05 84 0.064 0.0729 0.10983 3.1415 0.991 0.970

2 0.05 125 0.095 0.084 0.078025 3.1415 0.99993 0.984

FIG. 3. �Color online� The absolute value of the optimal
C-PHASE angle �opt as a function of the pulse duration scaled by the
qubit isolation time. Results are shown for three different tunnel
strengths �34=0.05 meV �blue squares�, �34=0.1 meV �green tri-
angles�, and �34=0.2 meV �red diamonds�. As is evident, a phase of
�=� can be obtained at �34=0.05 meV with T /TQ�0.064. In real
time units, this equates to T
84 ps. This value of � can also be
achieved with higher tunneling amplitudes, but this requires longer
pulses.
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�H±	 = cos �� 3
2 , ± 3

2	 − sin �e�i�� 3
2 , �

1
2	 , �38�

where � 3
2 , �

1
2 	 are light-hole states, and �m, �m are mixing

angles. With this mixing, the light-matter interaction Hamil-
tonian becomes

Hint = ��t�e−i�t
cos �me3↓
† h3H+

† − �1/3ei�m sin �me3↑
† h3H−

† �

+ H.c., �39�

where the factor of �1/3 in the second term comes from the
different weights of in-plane components of the valence-
band wave functions.13,14

This interaction requires that we consider an extra
excited-state sector with �H−	 instead of �H+	. Taking both
sectors into account, we can readily derive an effective
Hamiltonian in the presence of hole mixing. We find

Hmix = cos2 �mHeff +
1

3
sin2 �mH−, �40�

where Heff is as in Eq. �30� and

H− = −
�2

� �
x3 0 0 0

0 x3 y 0

0 y x2 0

0 0 0 x1

� , �41�

with terms as in Eq. �31�. Note that the hole mixing does not
introduce any other matrix element interactions between qu-
bit states that were not already present in the non-hole-
mixing Hamiltonian. From this and the symmetry of Hmix, it
immediately follows that the C-PHASE angle is �mix

= 
cos2 �m+ 1
3sin2 �m��, where � is the original angle of Eq.

�36�. Thus, the effect of hole mixing is to slightly decrease
the C-PHASE angle �, and this can simply be compensated for
by a proportionate increase in Rabi frequency �.

We now consider spontaneous emission. Given our laser
excitation and the magnitudes of the indirect oscillator
strengths, the dominant spontaneous emission path is the di-
rect recombination of exciton pair e3↓

† h3⇑
† . As noted previ-

ously, the time scale of this process is of the order of Trel
=1 ns. We can assess the effects through the numerical inte-
gration of the master equation for the system in the Lindblad
form.

We judge the quality of the operation in the presence of
spontaneous emission through the fidelity,15,16 defined as

F = ��in�Ũ†�outŨ��in	 , �42�

where the overline represents an average over all input states

��in	, �out is the output density matrix given ��in	, and Ũ is

the ideal gate operation. We define Ũ by taking the gate
operator without spontaneous emission and renormalizing it
such that N0=1. Correspondingly, the fidelity of the opera-
tion U without spontaneous emission is simply given by F
=N0.

The results of these calculations can be appreciated by
again studying the two operations listed in Table I. In this
table, we give the fidelities in the presence of spontaneous
emission. For the first, shorter pulse, spontaneous emission

reduces the fidelity from 0.99 to 0.97. For the longer pulse,
fidelity is reduced from very close to unity to 0.984. This
final value is typical for operations with spontaneous emis-
sion, with the final fidelity lying in the 98%–99% range.

This reduction in fidelity arises largely from population
being left in the trion levels, as attested by the fact that the
norm on the qubit space is affected to a similar extent. This
residual population occurs because the spontaneous emission
removes the direct exciton e3h3 but leaves the indirect exci-
ton e4h3 untouched. Since, after the laser pulse has passed,
this indirect state has no route back to the ground state, it is
effectively trapped. This population eventually returns to the
ground state, through either interdot tunneling plus direct
spontaneous emission or, to a lesser extent, indirect emission,
but this occurs on a time scale greater than that considered
here. This trapping effect, although ever present, is small
enough that operations of sufficient quality can still be ob-
tained.

VII. SINGLE-QUBIT ROTATIONS

An important feature of the current setup is that it is com-
patible with single-qubit operations on the electron spins. As
described in Ref. 14 �see also Ref. 16�, single-qubit opera-
tions can be performed through the excitation of an exciton
in the ground-state levels of a single dot �e.g., the levels 1 in
dot A�. The addressability of the individual dots is assured
here by their different Darwin radii. To obtain arbitrary rota-
tions, a static magnetic field is required in the x direction
�perpendicular to the growth direction�, and it is important
that the two-qubit operations function correctly in the pres-
ence of this field.

In InAs dots, both the electron and hole g-factors are
finite,17,18 and this leads to a splitting of the single-dot trion
levels and the linear polarization of the optical
transitions.14,17 Assuming that both g-factors have the same
sign, we can perform our two-qubit operations with a
H-polarized laser �as defined in Refs. 14 and 17� rather than
a  + circularly polarized one. We then derive an effective
Hamiltonian for this situation and find

HB =
1

2

Heff + H−�� + !B�� , �43�

where the second term is the same as Eq. �41� but with the
detuning � replaced by �+!B throughout. Here !B= �gx

e

+gx
h��BBx, with gx

e and gx
h the electron and hole in-plane

g-factors, Bx the in-plane field, and �B the Bohr magneton.
As with the hole mixing, we see that the magnetic field does
not add any new matrix elements between qubit states, and
thus the operation has the same character as before. Now,
however, the C-PHASE angle is given by �B=1/2
�+���
+!B��, where the second term is the same as Eq. �36� but
with �+!B replacing � throughout. The contribution of this
term is expected to be small since, with g-factors �gx

e�=0.46
and �gx

h�=0.29,17,18 at B=8 T, we have �!B�
0.4 meV,
which is larger than typical values of �. In any case, these
changes to � can easily be compensated for by a trivial
change in amplitude of the laser.
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CONCLUSIONS

We have described a mechanism for obtaining optical-
controlled quantum gates in quantum dots. This may be
thought of as a confined ORKKY interaction, in which the
exchange between the two-qubit spins is mediated by a set of
exciton states delocalized over the double-dot structure.

For this gating to function, it is imperative that the two
dots be spaced an appropriate distance apart such that the
tunnel coupling between them is small enough that the ki-
netic exchange can be neglected over the course of a gate
operation, but large enough that laser pulses short enough
compared with exciton relaxation time can be used. Our cal-
culations show that a distance of d
8 nm would be ideal. In
this case, significant gates �equivalent to �SWAP� can be ob-
tained at high fidelities with pulse durations of the order of
100 ps.

The speed of this operation is essentially limited by the
occurrence of the kinetic exchange. Without this effect, the
dots could be closer together, the tunneling matrix elements
larger, and hence the strength of the gating interaction much
stronger. However, this exchange is unavoidable in vertically
stacked QDs, since such dots only grow in a stack when the
separation between the two dots is small.19 This problem,
therefore, is not unique to our gating mechanism, but rather a
feature of coupled QDs, and any proposal seeking to show
controlled quantum operations in such a structure must take
it into account.

In this respect, horizontally coupled quantum dots have an
advantage since, as such dots are coupled in the xy plane, the
overlap of the exited states is a factor of �2 greater than that
of the ground states. This means that the strength of the
kinetic exchange interaction is reduced by a factor of 1 /2
relative to exciton tunneling. This, in turn, means that pulse
durations half that described here can be used to obtain the
same results.

We have also demonstrated that our two-qubit operations
function equally as well with an in-plane magnetic field. This
is important because it shows that our setup is compatible
with the single-qubit rotations of Ref. 14. In combination,
this means that we have demonstrated that the laser excita-
tion of excitonic states provides a realistic, experimentally
accessible protocol for the fast performance of a universal set
of quantum operations on two electron-spin qubits in a
coupled double quantum dot.
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APPENDIX: SINGLE-PARTICLE WAVE FUNCTIONS

Our single-particle variational wave functions are sepa-
rable into z and xy components. In the z direction, the wave

functions are those of the ground state of a square well of
depth V0 and width 2a:

	�z� = �C exp��z� , z � − a

B cos��z� , �z� � a

C exp�− �z� , z � a ,
� �A1�

where

� =�2meEz

�2 , �A2�

� =�2me�V0 − Ez�
�2 . �A3�

The ground-state energy Ez may be found through solution of
the equation

� tan��a� = � . �A4�

In the xy plane, we have the ground-state and first-
excited-state Fock-Darwin orbitals


s��;�,�� =��

�
e−�1/2���2

, �A5�


p±��;�,�� =
�

��
�e−�1/2���2

e�i�, �A6�

with "=m� /�. Since the two p orbitals are degenerate, and
angular momentum is conserved, we only need to consider a
single orbital and choose 
p=
p+ for concreteness.

The four complete wave functions �i�r� are given in Eq.
�4�, but these are nonorthogonal. As our variational basis, we
therefore use


1�r� = #1
−1
�1�r� − g1�2�r�� ,


2�r� = #1
−1
�2�r� − g1�1�r�� ,


3�r� = #3
−1
�3�r� − g3�4�r�� ,


4�r� = #3
−1
�4�r� − g3�3�r�� , �A7�

which are all orthogonal. Here, the overlaps Sij are defined
Sij =�d3r�i�r�� j�r�, and the normalization coefficients are
given by

g1 = �1 − �1 − S12
2 �/S12,

g3 = �1 − �1 − S34
2 �/S34,

#1 = �1 − 2g1S12 + g1
2,

#3 = �1 − 2g3S34 + g3
2. �A8�
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