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Consider a multichannel closed ring with disorder. In the semiclassical treatment its conductance is given by
the Drude formula. Quantum mechanics challenges this result both in the limit of strong disorder �eigenstates
are not quantum-ergodic in real space� and in the limit of weak disorder �eigenstates are not quantum ergodic
in momentum space�. Consequently the analysis of conductance requires going beyond linear response theory,
leading to a resistor network picture of transitions between energy levels. We demonstrate that our semilinear
response theory provides a firm unified framework from which the “hopping” phenomenology of Mott can be
derived.
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I. INTRODUCTION

The theory of the conductance of closed mesoscopic rings
has attracted a lot of interest.1–12 In a typical experiment13 a
collection of mesoscopic rings are driven by a time-
dependent magnetic flux ��t� which creates an electromotive

force �EMF� −�̇ in each ring. Assuming that Ohm’s law

applies, the induced current is I=−G�̇ and consequently
Joule’s law gives

Ẇ = G�̇2 = rate of energy absorption, �1�

where G in this context is called the conductance. For diffu-
sive rings the Kubo formula leads to the Drude formula for
G. A major challenge in past studies was to calculate the
weak-localization corrections to the Drude result, taking into
account the level statistics and the type of occupation.10–12 It
should be clear that these corrections do not challenge the
leading-order Kubo-Drude result.

One wonders what happens to the Drude result if the dis-
order becomes weak �ballistic case� or strong �Anderson lo-
calization case�. In both cases the individual eigenfunctions
become nonergodic: a typical eigenfunction does not fill the
whole accessible phase space. In the ballistic case a typical
eigenfunction is not ergodic over the open modes in momen-
tum space, while in the strong-localization case it is not er-
godic over the ring in real space.

A lack of quantum ergodicity implies that the perturbation
matrix is very structured and/or sparse. Consequently the cal-
culation of G requires a nontrivial extension of linear re-
sponse theory �LRT�. Such an extension has been proposed
in Ref. 14 and later termed “semilinear response theory”
�SLRT�.15 Within SLRT it is still assumed that the transitions
between levels are given by Fermi’s golden rule, but a resis-
tor network analogy is used in order to calculate the overall
absorption. In order to have nonzero absorption we must
have connected sequences of transitions. Thus the calcula-
tion of the energy absorption in Eq. �1� is somewhat similar
to solving a percolation problem. The “percolation” is in
energy space rather than in real space.

In a previous work we have worked out results for G in
the case of a ballistic ring.16 In this work we would like to
explore the other extreme case of strong disorder. If we go to

the literature we find a strange twist. For the ac conductance
Mott17 �see also Ref. 18� has used the Kubo formula in order
to predict a ��2� ln����d+1 dependence of the conductivity,
where d=1,2 ,3 is the dimensionality of the sample. On the
other hand, for the dc calculation Mott has abandoned the
Kubo formalism and has adopted a phenomenological
variable-range hopping �VRH� picture,19 which can be re-
garded as an approximation for a more elaborate �but still
phenomenological� resister network picture.20–22 The ad hoc
approach to hopping is obviously bothering. For example, it
is not clear whether the effect of low-frequency noisy driving
should treated like “low temperature” or like “small
frequency.”23 The main purpose of this paper is to explain
that the hopping picture is a natural outcome of SLRT and
hence can be regarded as a natural extension of LRT. This
automatically resolves such conceptual problems and opens
the way for further refinements of the theory.

The outline of this paper is as follows: We summarize the
LRT and SLRT recipes for the calculation of the conduc-
tance. Then we demonstrate that all known results for the
conductance can be derived from the same theoretical frame-
work, without any extra assumptions.

II. MODEL PARAMETERS

We consider a ring of length L and mean free path �. The
particles are noninteracting “spinless” electrons with charge
e. The Fermi energy and the Fermi velocity are EF and vF,
respectively. The one-particle density of states at the Fermi
energy is

�F = geometric factor � M L

��vF

. �2�

The number of open modes, M, reflects the cross section of
the ring. The geometric factor depends on the dimensionality
d=1,2 ,3 and equals unity for d=1 network systems. In what
follows, for the sake of presentation and without loss of gen-
erality, we set in all expressions the d=1 geometric factor
and use units such that �=1.

The mean level spacing is �=�F
−1. This is the “small”

energy scale. We also have the “Thouless energy” or its
equivalent which we denote as �b. For a ballistic ring �b
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=M� is associated with the time scale L /vF, while in the
diffusive regime �b= �� /L�M� is associated with the er-
godic time. In the strong-disorder regime we shall see that
the relevant time scale for our analysis is the break time t*

which is related to the localization length ��.
Within the framework of both LRT and SLRT it is essen-

tial to realize that the combined effect of the driving and the
environment is to broaden the energy levels and to induce
relaxation. Accordingly we distinguish between 	 which can
be interpreted as the dephasing or decoherence rate �analo-
gous to 1/T2 in NMR studies� and 
rlx which is the relax-
ation rate �analogous to 1/T1 in NMR studies�. We assume
that 	 is much larger than � but much smaller compared
with �b. We also assume that the driving source is “essen-
tially dc driving.” This means that the driving frequency is
much smaller compared with �b. LRT applies whenever the
driven transitions are much slower compared with the relax-
ation rate. SLRT is an extension of LRT, which applies in the
opposite circumstances—namely, if the relaxation process
can be neglected during the time that the absorption rate gets
stabilized. This is explained at length in Ref. 14 and will be
emphasized again in a later paragraph.

III. SEMICLASSICAL LRT CALCULATION

The semiclassical Kubo formula once expressed with the
velocity-velocity correlation function is

G = �F �
1

2
� e

L
�2�

−�

�

�v�t�v�0�	dt , �3�

where v is the velocity of the particle along the ring. For the
purpose of later reference we note that Eq. �1� 
with Eq. �3�
substituted� is easily generalized to the case where the driv-

ing is noisy. Instead of a multiplication by �̇2, we have in
general an integration over all the Fourier components of the
driving: namely,

Ẇ = �F �
1

2
� e

L
�2�

−�

�

d�F̃���C̃��� , �4�

where C̃��� is the Fourier transform of the velocity-velocity

correlation function and F̃��� is the power spectrum of �̇�t�.
The Kubo formula parallels the expression for the spatial

diffusion coefficient, which is the integral over the velocity-
velocity correlation function:

D =
1

2
�

−�

�

�v�t�v�0�	dt . �5�

In the case of pure dc driving 
F���=�̇2����� one obtains
the Einstein relation

G = �F� e

L
�2

D . �6�

If the driving is noisy, then in general G
�F�e /L�2D. This
reflects the simple observation that an insulator �D�0� may

have a finite ac conductance �finite Ẇ�.

IV. QUANTUM LRT CALCULATION

Equation �4� is formally valid also in the quantum me-
chanical case and can be regarded as the outcome of the
Fermi-golden-rule picture. However, one should use the

proper expression for C̃���, taking into account the levels
statistics and the level broadening:

C̃qm��� = R���C̃cl��� �7�

C̃��� � �	����C̃qm��� , �8�

where R��� takes care for the level statistics, �	��� is the
line shape of the level broadening, and � indicates a convo-
lution. It should be clear that with pure dc driving Eq. �4�
gives zero due to the discreteness of the energy spectrum,
unless there is some mechanism that “broadens the levels” so
as to have effectively a continuum. It is customary to express
the quantum version of the Kubo formula using the matrix
elements of the velocity operator:

G = ��� e

L
�2



n�m

�vmn�2�T�En − EF��	�Em − En� . �9�

The T-broadened � function should be interpreted as the de-
rivative of the Fermi occupation function, while the func-
tional shape of the 	-broadened � function will be discussed
later.

V. QUANTUM SLRT CALCULATION

A loose way to write the last expression is

G = ��� e

L
�2

�F
2���vnm�2		 . �10�

The interpretation of ��¯		 within the framework of the tra-
dition LRT is implied by Eq. �9�. It involves the specification
of the level-broadening parameter 	 and of the occupation
temperature T.

The implicit assumption in LRT is that the driving-
induced transitions are much slower compared with the en-
vironmentally induced relaxation. In other words, it is as-
sumed that the relaxation is very effective in “killing” any
quantum effect that goes beyond first-order perturbation
theory. SLRT, unlike LRT, is aimed at taking account also the
opposite circumstances in which the possibility to make con-
nected sequences of transitions becomes essential in order to
get absorption.14 Following Refs. 15 and 16 we regard the
energy levels as the nodes of a resistor network. We define

gnm = 2�F
−3 �vnm�2

�En − Em�2�	�Em − En� . �11�

Then it is argued that ���vnm�2		−1 is the resistivity of the
network. It is a simple exercise to verify that if all the matrix
elements are the same—say, �vnm�2=�2—then ���vnm�2		=�2

too. But if the matrix is structured or sparse, then ���vnm�2		 is
in general much smaller compared with the rms value of the
matrix elements.
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VI. LEVEL BROADENING

Neither LRT nor SLRT is self-contained without specifi-
cation of the level broadening. For the purpose of analysis
we can regard the environmental fluctuations as a noisy driv-
ing source. This driving source induces decoherence: It can
be argued �see, for example, Ref. 24� that the effect of deco-
herence is to multiply the velocity-velocity correlation func-
tion by an exponential factor exp�−	�t��. This means that

�	��� �
1

�

	

�2 + 	2 . �12�

It can be further argued24 that an estimate of the rate 	 can
be obtained using Fermi’s golden rule �FGR�:

	 = �
−�

�

d�F̃���C̃qm��� , �13�

where F̃��� is the power spectrum of the environmentally
induced noise. At low temperatures �see later� the noise
power spectrum is effectively very narrow. Schematically we

can write F̃���=�2�T���, where � is the noise amplitude and
T is the temperature.

The FGR expression, Eq. �13�, parallels Eq. �4� and can
be expressed using the matrix elements of the perturbation as
in Eq. �9�, or it can be written loosely in the style of Eq. �10�:

	 = �2 � 2��� e

L
�2

�F���vnm�2		 . �14�

The latter version is common in elementary textbooks �the
FGR calculated decay rate is proportional to the squared ma-
trix element times the density of states�. It is implicit in this
expression that the FGR transitions ��Em−En� have a width
�broadening� which is determined by the normalized power
spectrum of the environmental fluctuations.

So far we have simply restated the standard textbook ver-
sion of FGR using our notations. But it should be clear that
naive application of the FGR recipe is as problematic as the
naive application of the Kubo formula:25 the first-order �tran-
sient� transitions to “neighboring” states are not enough in
order to get a nontransient decay. Rather, the possibility to
have connected sequences of transitions is essential in order
to have a long-time decay. Thus we conclude that an analo-
gous SLRT recipe, with gnm defined in a similar fashion as in
Eq. �11�, should be applied in order to determine the long-
time value of 	. We point out again that in the calculation of
	 the role of the broadened delta function is played by the
normalized power spectrum of the environmental fluctua-
tions. This means that at low temperatures �see further dis-
cussion in a later paragraph� we have in the 	-oriented ver-
sion of Eq. �11� a thermally broadened delta function
�T�Em−En�.

VII. MODERATE DISORDER

The effect of hard chaos or disorder is to randomize the
velocity. Within the framework of the semiclassical LRT cal-
culation we always get the Drude formula irrespective of the

strength of the disorder. Following Drude it is customary to
write

��v�t�v�0�	�cl = vF
2 exp�− 2�vF

�
��t�� �15�

or equivalently

C̃cl��� = vF
2 �2vF/��
�2 + �2vF/��2 . �16�

This leads to the Drude result

G =
e2

2��
M�

L
. �17�

Once we turn to the quantum calculation, we have to be
more careful. For moderate disorder the eigenfunctions are
ergodic, and therefore the distinction between the LRT recipe
and the SLRT recipe is not important. Furthermore, using a
random wave conjecture for the eigenstates, one recovers the

Drude expression C̃cl��� as an approximation for the quan-

tum C̃���. In order to do a better job, the spectral function
R��� is introduced. This function takes into account the level
statistics: for large � it equals unity, while for small � it
reflects the repulsion between levels. The “level-broadening”
effect is taken care of by the convolution with �	���, as
indicated in Eq. �8�. The standard LRT regime has ��	
��b. In this regime the introduction of R��� implies so-
called weak-localization corrections to the Drude result.
These are found to be of order � /	. See Refs. 10–12 and
also Ref. 26 for the “quantum chaos” point of view.

VIII. WEAK DISORDER

The SLRT recipe for the calculation of G can be regarded
as an extension of the LRT recipe. The results of SLRT be-
come very different from those of LRT once the perturbation
matrix vnm is either structured or sparse. The case of weak
disorder �ballistic case� has been analyzed in a previous
Letter.16 In the nontrivial ballistic regime �1�� /L�M�
each eigenfunction occupies a large but finite fraction of
open modes. One may say that the eigenfunctions are “local-
ized” in mode space. This lack of quantum ergodicity implies
sturctures and sparsity. Consequently the SLRT result is not
merely a small weak-localization correction: the leading-
order result is no longer Drude. In what follows we address
the other extreme case of strong disorder �Anderson localiza-
tion case�. Also here we are going to see that the leading-
order result is not Drude.

IX. STRONG DISORDER

The first step is to figure out how R��� look like for a
system with strong localization. The initial spread of a wave
packet is diffusive with �
x�t�−x�0��2	=2D0t where D0

=vF�. But for long time �
x�t�−x�0��2	=��
2, where �� is the
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localization length. This implies a break time at t*=��
2 /D0,

and therefore the velocity-velocity correlation function is
modified in the frequency range ���� �1/ t*�. Namely, the
above implies

�R����global �
1

1 + �t*��−2 . �18�

Further considerations which are based on Mott’s picture of
resonances imply an extra �ln ��d+1 factor at small frequen-
cies. We can argue in advance that this type of correction has
no importance in SLRT because it reflects a very sparse con-
tribution to the perturbation matrix, which cannot lead to
connected sequences of transitions.

Even if we eliminate Mott’s resonances, still the low-

frequency behavior of C̃��� reflects a very sparse matrix
�vnm�2. Within the framework of SLRT the sparse component
of �vnm�2 does not contribute to the diffusion. Only the non-
sparse component allows connected sequences of transitions.
We argue that the nonsparse component is obtained by mul-

tiplying C̃cl��� by

�R����effective � exp�− � ��

����
1/d� . �19�

The reasoning is as follows: The matrix elements of states n
that are located within range �xn−xm��r from a given state m
constitute a connected grid with spacing �r= �L /r�d� and
typical value �vnm��exp�−r /���. From the equation �r=� we
deduce that the “volume” of states that contribute a con-
nected grid for � transitions has a radius r= �� /��1/dL.
Hence we deduce the above formula, where ��= �L /���d�.

X. HOPPING PICTURE

Assuming that the coherence time �
=1/	 is much
smaller compared with the break time t* we observe that the
d� integral of Eq. �4� with Eqs. �7� and �8� and the Lorent-
zian of Eq. �12� is dominated by the tail 
�
 �1/ t* ��, lead-
ing to the result

D � 	t*D0 =
����2

�


. �20�

This is as expected from heuristic considerations. It describes
a random-walk hopping process with steps of size �� and
time �
.

The issue is to obtain an explicit expression for 	. Ther-
mal noise is “white” at high temperatures �F����T�, with a
very large temperature-independent cutoff frequency. In such
a case Eq. �13� implies 	�T which is not very interesting.
Low-temperature noise, unlike white noise, has an exponen-
tially decaying emission tail, and consequently, it has effec-
tively a very narrow span of frequencies:

F��� � exp�−
���
T
� . �21�

In the above expression we have neglected �� term whose
exponent depends on the detailed spectral properties of the

bath. The calculation of 	 with Eq. �13� involves a d� inte-
gral over

exp�−
���
T
�exp�− � ��

����
1/d� . �22�

This is mathematically equivalent to the VRH integral.19

There the optimization is over the range of hopping, r, while
here it is over the associated frequency �. The optimal fre-
quency is ��Td/�d+1�, leading to the VRH estimate D
�exp
�−T0 /T�1/�1+d�� where T0 is a constant. It should be
clear that the VRH estimate is an approximation of the resis-
tor network calculation with Eq. �11�. The VRH estimate
works quite well for d
1, but gives the wrong exponent
�T−1/2� for d=1. The correct exponent �T−1� in the latter case
is implied by the absence of percolation.

XI. CONCLUSIONS

We have established that SLRT provides a firm unified
framework for the calculation of the conductance. Ad hoc
phenomenology is not required in order to establish the re-
sistor network “hopping” picture, from which Mott’s VRH
approximation is derived. It should be clear that the general-
ized resistor network picture of SLRT is not limited to the
strong-disorder regime: it allows on equal footing the calcu-
lation of the conductance in the other extreme case of ballis-
tic motion. The importance of this approach is also in its
potential capabilities: being a natural extension of LRT it
also allows, in principle, the incorporation of many-body ef-
fects. In the latter case the calculation of conductance is re-
duced, as in LRT, to the analysis of the matrix elements of
the current operator, whatever are the interactions involved.

The long-standing puzzle regarding “ac conductance” ver-
sus “dc conductance” that was discussed in the Introduction
is automatically resolved by our theoretical framework. We
claim that there is no crossover from ac conductance to dc
conductance as a function of frequency. Rather, we argue
that there is a crossover from ac conductance to dc conduc-
tance as a function of the driving intensity. Using the termi-
nology of Ref. 14, the crossover is from the “spectroscopic”
to the “mesoscopic” result for the conductance: The Kubo
formula of LRT applies to a spectroscopic measurement of
the conductance, where the driving is assumed to be very
weak compared with the relaxation processes. The hopping
picture that emerges from SLRT applies to the mesoscopic
regime where the relaxation is assumed to be slow compared
with the driving-induced transitions.

Note added. The apparent inconsistency between the hop-
ping and VRH pictures and the Kubo ac and dc formalisms,
and the question how to reconcile between them, was
pointed out by Michael Wilkinson �M.W.� in the late 1990s.
The issue was raised again in his 2005 visit in BGU, while
discussing the extension of the Kubo formalism that has been
presented in Ref. 14. This discussion has initiated further
refinement of the theory15 in collaboration with him and with
Bernhard Mehlig �B.M.�. The belief that the theory can give
hopping and VRH estimates has been shared by all of us and
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was implicitly expressed in Ref. 15. Recently, I was notified
that during the last year M.W. and B.M. have made indepen-
dently further progress on SLRT in general and possibly on
this issue in particular �undocumented�.
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