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We develop a theory for decoherence dynamics of a single-electron spin interacting with a nuclear spin bath.
The approach yields a simple diagrammatic representation and analytical expressions of different nuclear spin
excitation processes contributing to electron spin decoherence and dynamical phase fluctuations. It accounts for
nuclear spin dynamics beyond the recently developed pair correlation models. As an illustration of the theory,
we evaluated the coherence dynamics of a P donor electron spin in a Si crystal.
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I. INTRODUCTION

An electron-nuclear spin coupling substantially affects
electron spin dynamics in solids. This phenomenon is widely
utilized in EPR probing of material structures.1 However, for
quantum technology applications of the electron spins2,3 the
coupling to nuclear spins as a source of relaxation and
decoherence4–8 has become a key issue. Entanglement of an
electron spin with a nuclear spin bath results in an irrevers-
ible loss of coherence. Unlike spin relaxation,7 the decoher-
ence process is not suppressed even in strong magnetic
fields. There are several methods to reduce the effects of spin
bath, such as isotope purification,9 dynamical polarization of
nuclear spins, or dynamical decoupling of an electron spin
evolution.10 However, it is not clear if experimentally achiev-
able values of isotope purification, nuclear polarization or
precision of electron spin control are sufficient to suppress
the effects of spin bath above the required threshold limit.11

Moreover, for some technologically important materials
these methods may be inapplicable. For example, isotope
purification cannot be used in GaAs nanostructures, because
all the stable isotopes �69Ga, 71Ga, 75As� have nonzero
nuclear spins. In this context theoretical models of electron-
nuclear spin dynamics can provide a better understanding of
electron spin decoherence processes and, hence, help in es-
timating and enhancing the effectiveness of coherence con-
trol schemes.

In this work we investigate the dynamics of a localized
electron spin interacting with a nuclear spin bath in the low-
temperature–high-field regime where the thermal energy is
smaller than the electron Zeeman splitting. In this case the
electron spin relaxation and decoherence due to phonon
absorption12 is suppressed. We also assume that the external
field is high enough to prevent electron spin relaxation due to
direct electron-nuclear spin flip-flop processes without pho-
non assistance.13 Such a system possesses a long spin relax-
ation time that is crucial to quantum computing. Until re-
cently, this problem has been studied using stochastic models
of spectral diffusion.14–16 Results of these works were veri-
fied by numerous experiments carried out on macroscopic
samples. Recently, emphasis of experimental and theoretical
studies has been shifted to the dynamics of single quantum
systems, where stochastic models are inappropriate. Several
analytical and numerical approaches based on quantum dy-
namics have been developed and used to investigate different
aspects of the problem.13,17–30 Among the issues addressed in

these studies are spin relaxation at low external fields,18,19

effects of nuclear spin polarization on electron spin
dynamics,30 dynamical control for spin decoherence,29 con-
tributions of high order nuclear spin correlations into an elec-
tron spin echo,28 etc. However, many questions are still open.
How do stochastic and dynamical models relate to each
other? How does one characterize short time qubit
evolution?31 What are the reversible and irreversible parts of
spin dynamics?32 What are the relative contributions of cor-
related nuclear spin clusters of different sizes in electron spin
dynamics? How do nuclear spin correlations grow in time?33

Here, we demonstrate that diagram techniques developed
previously in studies of Heisenberg ferromagnets34–42 can be
applied to evaluate the effects of a nuclear spin bath on a
single-electron spin in the high field regime. Our theoretical
approach provides a transparent representation of different
nuclear spin dynamical processes contributing to the electron
spin evolution. It naturally accounts for nuclear spin excita-
tions beyond the pair correlation models. We show that the
transverse evolution of an electron spin can be factorized to a
precession in a nuclear Overhauser field and more complex
dynamics due to electron-nuclear spin entanglement.26 A
conventional Hahn echo experiment cancels the phase due to
precession in the nuclear field and also suppresses entangle-
ment with the nuclear bath. As an illustration, we consider
the dynamics of an electron spin localized at a phosphorous
donor impurity in a Si crystal. We estimate the contributions
of two, three, and four nuclear spin excitations to the elec-
tron spin decoherence and discuss the effects of Hahn echo
on the spin decoherence.

The structure of the paper is as follows. In the next sec-
tion we describe the starting Hamiltonian and discuss the
assumptions used. Section III is devoted to diagrammatic
representation of the decoherence process. In Sec. IV we
discuss the approach and consider an example of the P donor
electron spin in a Si crystal. Section V gives the conclusion.
Appendix A contains the spin diagrammatic rules, Appendix
B some specific properties of the linked cluster expansion for
spin systems, and Appendix C explicit analytical expressions
of some high order nuclear spin contributions to the electron
spin dynamics.

II. MODEL

We consider the spin of a single electron localized in a
quantum dot or bounded by a donor impurity. We assume
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that only one type of nuclear spins with I=1/2 is present,
though this assumption can be relaxed with the approach
used. In a strong external magnetic field the effective Hamil-
tonian for a single-electron spin coupled by the contact hy-
perfine interaction45 with a system of nuclei is derived from
the first principles Hamiltonian by eliminating the electron
spin-flip terms

H = �eS
z − �I�

i

Ii
z + Sz�

i

Ai
hfIi

z + 2Sz�
i�j

Bij
hfIi

+Ij
−

+ �
i�j

�Aij
ddIi

zIj
z + Bij

ddIi
+Ij

−� . �1�

A similar Hamiltonian has been used in previous studies of
the spectral diffusion problem.24,26 The first two terms in Eq.
�1� account for the electron and nuclear Zeeman energy level
splittings in an external field H with the respective Larmor
frequencies �e=g*�H /� and �I=�H. The z axis is chosen
along the magnetic field. The third and fourth terms originate
from the contact hyperfine interaction. In a strong magnetic
field direct electron-nuclear flip-flop transitions �S+Ii

−+S−Ii
+�

are forbidden by the energy conservation law. Therefore, be-
side a small visibility loss,25 this part of the contact interac-
tion contributes in second order to the effective coupling
between nuclear spins �fourth term in Eq. �1�� only.26 The
coupling coefficients are Ai

hf= �8/3��ge�����Ri��2 and Bij
hf

=Ai
hfAj

hf /2�e, where ge=2 and g* are the free and effective
electron g factors, � is the Bohr magneton, � is the nuclear
gyromagnetic ratio, and ��Ri� is the electron wave function
at the position of ith nuclear spin. The last term in Eq. �1�
represents the secular part of the nuclear spin dipole-dipole
interaction. For the electron nuclear spin interaction, we con-
sider only the isotropic contact part. This is justified in cases
where the dipolar e-n spin coupling is much weaker than the
Fermi contact term, for example, for most of the Si sites
around a shallow donor in silicon.43 For the hyperfine inter-
action in the semiconductor quantum dots there are no avail-
able experimental data, but numerical estimates within the
tight-binding model44 confirm our assumption. In general, in
a high field regime the dipolar e-n spin interaction contribute
to the third and fourth terms in Eq. �1�. It also results in spin
echo envelope modulation,46–49 through the SzI± terms. The
latter effect has been discussed elsewhere.50 The effective
Hamiltonian �1� is diagonal in the electron spin. Therefore,
the nuclear spin bath affects the transverse electron spin dy-
namics only.

The initial state of the electron spin plus the system of
nuclear spins is described by the density matrix ��0� at the
time moment, t=0, when the electron spin state has been
prepared. Two assumptions are applied to ��0�. First, we use
the standard approximation of a factorized system and bath51

��0�=�s
0

� �n
0. The electron spin is initially prepared in the

pure state �1/	2���+ 
+ �−
�, e.g., by a � /2 pulse. The second
assumption is that the nuclear spin system is in a pure state
that is an eigenstate of �iIi

z operator. With the latter statement
we neglect the nuclear spin-spin correlations at t	0. Influ-
ence of different initial states of the nuclear bath on the elec-
tron spin evolution has been discussed in Refs. 20 and 23
though the lack of the nuclear spin-spin interaction in these

papers may affect their conclusions. It has been argued that
the pure spin state utilized here can be useful for quantum
computation purposes because it does not destroy the elec-
tron spin coherence at short time scales. After statistical av-
eraging over possible initial configurations the nuclear spin
density matrix is �n

0=�pn�n
�n�, where pn is the statistical
weight of a given nuclear configuration �n
= �↑ ↑ ↓ ↑ ↓ ↓ . . . 
.

The evolution of the up-down component �
�� of an
electron spin density matrix can be written as26

�+−�t� = �+−
0 e−i�etTrn�e−i�H0+V+�t�n

0ei�−H0+V−�t� , �2�

where

H0 = �1/2��
i

Ai
hfIi

z,

V± = Vdd ± Vhf,

Vdd = �
i�j

�Aij
ddIi

zIj
z + Bij

ddIi
+Ij

−� ,

Vhf = �
i�j

Bij
hfIi

+Ij
−. �3�

Here, we used the fact that the Hamiltonian �1� commutes
with Sz and projected it to the electron spin-up �
� and spin-
down ��� subspaces. The projected operators are written as
two terms, H0, which is a sum of single spin operators, and
V±, which describes spin-spin interactions. A contribution of
the nuclear Zeeman splitting, the second term in Eq. �1�, is
cancelled, because it commutes with the rest of the Hamil-
tonian. If the nuclear Larmor frequency �I varies from site to
site due to the inhomogeneity of the external field or other
factors, then its fluctuating part should be included in H0.
Below, we will keep the superscript indexes �hf� and �dd� in
the coupling constants only if it is not clear from the context
what type of interaction is used.

By the relations

e−i�H0+V+�t = T�e−i�0
t V+�t�−t�dt��e−iH0t,

e−i�H0−V−�t = e−iH0tT�ei�0
t V−�t��dt�� , �4�

where T�¯� is a time ordering operator, and our assumption
on the initial nuclear spin density matrix, Eq. �2� is trans-
formed to

�+−�t� = �+−
0 e−i�et

��
n

pne−i�nt�n�T�ei�0
t V−�t��dt��T�e−i�0

t V+�t�−t�dt���n
 ,

�5�

where �n= �n�2H0�n
 is a contribution of the nuclear Over-
hauser field to the electron spin precession frequency and
V±�t� is V± in the interaction picture defined by H0. For a
single shot measurement of the single-electron spin, the
nuclear bath contributes to the shift of the electron preces-
sion frequency �n determined by the initial configuration,
and to the complicated dynamics due to coupling between
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nuclear spins that is described by the bracket �n�¯ �n
. The
weight factor pn corresponds to a statistical averaging over
an ensemble of electron spins or repeated measurements. For
an ensemble measurement, Eq. �5� describes a free induction
decay45 �FID�, where the transverse magnetic moment
decays due to an inhomogeneous distribution of spin pre-
cession frequencies and also due to the spectral diffusion
in the presence of the nuclear spin environment. Equation �5�
can be viewed as an exact formal solution for the electron
spin dynamics. In the following sections we will evaluate
the term in it between the angular brackets using the
linked-cluster expansion �LCE� formalism.52,53

In Eq. �5� the product of two exponential operators can be

transformed to a single exponential form T�e−i�−t
t Ṽ�t��dt�� by

shifting the time variable t�− t→ t� in the second exponent.

One can see that in this case the potential Ṽ�t�� is continuous
for the hyperfine-mediated interaction given by Eq. �3�,
while for the dipole-dipole nuclear spin-spin interactions it
changes sign at t�=0. To avoid operations with discontinuous
potentials we will use the two-exponential form between the
brackets in Eq. �5� keeping in mind that it can be trans-
formed to a single exponent.

Schematically, the brackets in Eq. �5� can be shown as a
two branch propagation, see Fig. 1. The system propagates
on the first branch with the Hamiltonian V+�t�− t� and after
that on the second branch with −V−�t��. This is similar to the

nonequilibrium Green’s function approach.54,55

The factorization of the nuclear spin induced dynamics to
the phase factor acquired in the nuclear Overhauser field and
the complex dynamics due to entanglement between bath
modes is consistent with EPR experiments. For example, see
Ref. 56, where an electron spin resonance line broadening
can be resolved to inhomogeneous and homogeneous parts.

The above procedure also can be applied to evaluate elec-
tron spin dynamics in experiments where the electron spin is
flipped by magnetic pulses. For example, for a Hahn spin
echo �� /2− t−�− t−echo� the evolution equation can be
written as

�+−�2t� = − �−+
0 �

n

pn�n�T�ei�0
t V+�t−t��dt��T�ei�0

t V−�t��dt��T�e−i�0
t V+�t�−t�dt��T�e−i�0

t V−�−t��dt���n
 . �6�

We emphasize that the phase factor due to precession in the
external field plus the nuclear field that appears in Eq. �5� is
cancelled in the echo. Moreover, the bracket �n�¯ �n
 de-
scribing the electron-nuclear spin entanglement is different
from the one in Eq. �5�. These features correspond respec-
tively to elimination of inhomogeneous broadening and sup-
pression of spectral diffusion in ensemble measurements.45

III. LCE AND DECOHERENCE

Using LCE, we can write the expectation value of the
time ordered exponent as52,53

�n�T�e�0
t V�t��dt���n
 = e�V1
+�V2
+�V3
+¯, �7�

where V�t�� is an interaction and �Vk
 is a contribution of
linked diagrams53 only to the integral



0

t

dt1

0

t

dt2 ¯ 

0

t

dtk�n�T�V�t1�V�t2� ¯ V�tk���n
 . �8�

The coefficient 1 /k that appears in LCE, is included in the
�Vk
 terms. This expansion provides a convenient exponen-
tial form to describe the dynamical processes. Moreover,
each perturbation term �Vk
 in it corresponds to an infinite

sum of terms in the conventional perturbation theory.
The expectation value in the expression �8� can be evalu-

ated by a diagrammatic technique. The term �Vk
 in Eq. �7� is
of the kth order in the interaction. It describes the correlated
dynamics of a cluster containing up to k spins. Because the
proof of LCE can be given based on combinatorics,53 the
expansion procedure should be applicable to potentials, dis-
continuous in time, or to products of several evolution op-
erators given in Eqs. �5� and �6�.

Diagrammatic rules for spins are not so transparent as for
fermions or bosons, because commutation brackets of spin
operators do not yield c numbers. Many papers addressed
this issue.35–42 In our derivations we use the technique de-
scribed in Refs. 38, 39, and 42 with modifications adapted
for the specifics of the problem. A brief summary of this
technique and the used diagrammatic representations are
given in Appendix A.

The LCE expansion of the scattering matrix �7� can be
described by the same series of diagrams as a free energy in
Matsubara formalism given in Ref. 39. The two-exponential
representation of the scattering matrix in Eq. �5� does not
change the structure of the diagram series, but affects the
spin propagators only. In Figs. 2–4 we show the sets
of diagrams corresponding to the bracketed expression in

FIG. 1. A schematic representation of the two-branch
evolution.
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Eqs. �5� and �6� up to the fourth order in the nuclear spin-
spin interaction.

We first discuss the scenario where the nuclear dynamics
starts from a pure initial states. Ensemble results are obtained
by taking statistical average of all possible initial configura-
tions. Dynamics of each distinct configuration of spins in a
cluster, in general, should be depicted by a different diagram
specifying an initial spin configuration and the time arrow as
shown in Fig. 2. However, in many cases analytical expres-
sions for these configurations can be transformed to one an-
other as is discussed in Appendix A. To reduce the number of
diagrams in the figures, we omit the configuration depen-
dence, taking one diagram to represent all possible configu-
rations. In both analytical and numerical evaluations we cal-
culate contributions of all distinct spin clusters. We also drop
the time arrow for simplicity.

To evaluate diagrams given in Figs. 2–4 we use a 2�2
matrix �matrix elements indexing the branches shown in Fig.
1� Green’s function at an ith site

Ki��� = ei�i��
i↓��− �� − 
i↑���� 
i↓e
−i�it

− 
i↑e
i�it 
i↓��− �� − 
i↑����

� ,

�9�

where �i=Ai
hf /2 and �= t1− t2. The total evolution time t ap-

pears in the off-diagonal elements of Ki���. Matrix elements
of the Green’s function �9� have a simple physical meaning.
The propagator starts at time t1 on a branch denoted by a row
index and ends at time t2 on a branch denoted by a column
index. To account for the two-branch propagation the spin-
spin coupling coefficients Aij

dd,Bij
dd should be multiplied by a

�z Pauli matrix �Aij
dd=Aij

dd�z ,Bij
dd=Bij

dd�z� and Bij
hf should be

multiplied by a 2�2 unit matrix �Bij
hf=Bij

hf1�. In the analyti-
cal expressions for the diagrams one has to sum over re-
peated matrix indices in addition to integration over the time
variables.

The first order linked cluster diagram corresponds to
�n�Aij

ddIi
zIj

z�n
 �not shown in Figs. 2–4�. However, its contri-
bution vanishes because the sum over the branches is equal

to Tr�Aij
dd�=0. The first non-zero contribution to the decoher-

ence process is given by the second order diagrams which
represent nuclear pair-spin flips, Fig. 2. The corresponding
analytical expressions are

�V2
hf
 = − �

i=↑,j=↓
�Bij

hf�2� 2it

�ij
+

1 − e2i�ijt

�ij
2 � , �10�

for the hyperfine-mediated interaction only, and

�V2
dd
 = − �

i=↑,j=↓
�Bij

dd�2� 2it

�ij
+ 4

1 − ei�ijt

�ij
2 −

1 − e2i�ijt

�ij
2 � ,

�11�

for the dipole-dipole interaction only, where we define �ij
=�i−� j. This result is consistent with Ref. 26. The real parts
of Eqs. �10� and �11� contribute to the electron spin decoher-
ence while the imaginary parts renormalize the electron spin
precession frequency and, hence, produce phase fluctuations.
The �V2
 diagram with a cross-term BhfBdd contribution of
the dipole-dipole and hyperfine-mediated interactions is zero
because the spin propagators over different branches cancel
each other. Therefore, to the second order in the nuclear spin-
spin interaction the contributions of these two mechanisms to
electron spin dynamics are completely separable.

We emphasize that in comparison with the conventional
perturbation expansion LCE converges faster. Each order in
LCE corresponds to the sum of an infinite subseries. For
example, the second order correction in LCE is a partial sum
shown in Fig. 5. It includes a series of even orders of a
perturbation expansion.

FIG. 2. A second order diagram corresponding to the nuclear
spin pair flip-flop processes.

FIG. 3. A set of third order diagrams.

FIG. 4. Some fourth order diagrams.

FIG. 5. The second order contribution to decoherence in LCE
which includes a series of even orders of a conventional perturba-
tion expansion.
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The third order diagrams in Fig. 3 can be divided into two
groups. The first group includes diagrams 3�a�, 3�b� and cor-
responds to �V2
 diagram with attached Ii

zIj
z interaction lines.

Diagrams of this type can be accounted for by the renormal-
ization of Green’s functions given by the Dyson equation,
Fig. 6, where the renormalized Green’s function �bold line� is

Ki�t1,t2� = ei�i��ei��i��
i↓��− �� − 
i↑����� 
i↓e
−i�i�tei��i�

− 
i↑e
i�i�te−i��i� e−i��i��
i↓��− �� − 
i↑�����

� , �12�

�= t1− t2, �= t1+ t2, �i�=�i+��i and ��i=� jAji�Ij
z
. This

modifies the dipole-dipole pair flip-flop term �11� as

�V2
ren
 = − �

i=↑,j=↓
�Bij

dd�2� it

�11
+

it

�22
+

1 − ei�11t

�11
2 +

1 − ei�22t

�22
2

+
�1 − ei�11t��1 − ei�22t�

�11�22
� , �13�

where �11=�ij +��i−�� j and �22=�ij −��i+�� j. If we
assume that ��i is independent of the site, then Eq. �13�
transforms back to Eq. �11�. Therefore, the contribution of
these renormalization terms is reduced if the initial polariza-
tion of the nuclear spin bath is homogeneous. A similar
modification of the pair flip-flop term can be due to an inho-
mogeneous distribution of the nuclear Larmor frequencies �I
in Eq. �1�. The diagram 3�a� contributes to the renormaliza-
tion of a pair dynamics by IzIz interaction. By direct evalua-
tion one can show that for the dipole-dipole interaction it is
also zero.

The second group of diagrams, 3�c� represents three-spin
flip-flop processes. It corresponds to a ring propagation of a
spin excitation. For the dipole-dipole interaction only, due to
the symmetry of interaction terms, the clockwise propagating
excitation cancels the counterclockwise excitation. It is an
analog of Furry’s theorem.57 An analytical form of the
hyperfine-mediated contribution can be written as

�V3
hf
 = − �

↑↓↓
BijBjkBki� 4it

�ij�ik
− 2

1 − ei�ikt

�ik
2 � jk

+ 2
1 − ei�ijt

�ij
2 � jk

� ,

�14�

for clusters �i= ↑ , j= ↓ ,k= ↓ �, where permutations of j and k
spins are accounted for already. For �i= ↓ , j= ↑ ,k= ↑ � clus-
ters, one should change signs of all the frequencies �ij, �ik,
and � jk.

In the third order linked diagrams the cross-terms of the
hyperfine-mediated and dipole-dipole interactions appears.
For example, the ring diagram, 3�c� and the diagram shown
in Fig. 3�a� with two dipole-dipole interaction lines and one
hyperfine-mediated line have non-zero contributions. Be-
cause most of the third order diagrams give zero contribution
to spin decoherence, the fourth order corrections need to be
evaluated.

The set of the fourth order diagrams is given in Fig. 4.
The only restriction on the vertices in this diagrams is that
two spins i and j coupled by an interaction line should be
different �i� j�. Therefore, the same diagram in Fig. 4 can
correspond to different number of spins in a cluster. For ex-
ample, the ring diagram, 4�f� can describe excitations of two,
three, and four spins. We call them two-, three-, and four-
spin ring diagrams, respectively.

In the fourth order in addition to different types of renor-
malization of lower order diagrams 4�a�–4�e�, and a ring
diagram 4�f� we have contribution from the locked
diagrams40 4�g� and 4�h�. The locked diagrams contain ver-
tices with two incoming propagators. This group compen-
sates the time overlap of the spin pair excitations and also
restricts excitations to the spin space Iz= ±1/2. The three-
spin diagram 4�g� modifies a double excitation with one
common spin, that appears in the expansion of the exponent
V2 term, and also correct the fourth order ring diagram with
repeating indices, see Fig. 7. The two-spin diagrams 4�g� and
4�h� play a similar role for pairs with two common spins,
Fig. 8. We discuss the locked diagrams in more details in
Appendix B.

For spin I=1/2, the two-spin diagram is compensated
completely by the locked diagrams, see Fig. 8�b�. The three-
spin rings describe the dynamics of i= ↑ j= ↓k=↓ or i= ↓ j
= ↑k=↑ clusters. After correction by the locked diagram
7�b� it corresponds to propagation of a spin excitation as

FIG. 6. Renormalization of a Green’s function by the Ii
zIj

z

interaction.
FIG. 7. Compensation of the spin excitations overlapping in

time by a locked diagram. The time overlap is in one site �j�.
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i→ j→k→ j→ i. An analytical form of this term together
with the locked diagrams 4�g� and 4�h� are given in Appen-
dix C. A four-spin ring diagram corresponds to the dynamics
of three distinct spin clusters ↑↓↓↓, ↑↓↑↓, and ↑↑↓↓.

As a result, we write equation for the electron spin coher-
ence up to the fourth order in nuclear spin-spin interactions
as

�+−�t� = �+−
0 e−i��e+�n�te�V2
n+�V3
n+�V4
n, �15�

where the index n denotes an initial configuration of the
nuclear bath, the �V2
n term �the diagram in Fig. 2� is given
by Eqs. �10� and �11�, the �V3
n term �diagram on Fig. 3�c��
with expression given by Eq. �14� and the fourth order con-
tribution of nuclear spin dynamics schematically shown in
Fig. 9. Analytical expressions for selected terms of �V4
n are
in Appendix C.

The diagram series can be extended to higher orders. At
each order there should be a group of diagrams renormaliz-
ing the lower orders with IzIz terms, a group of locked dia-
grams that compensate the time overlap of the spin excita-
tions in lower order clusters, as well as a group of ring
diagrams.

For systems with a high concentration of nuclear spins,
contributions of different diagrams to a �Vk
 term can be
estimated in terms of a 1/Z expansion,58 where Z is the ef-
fective number of interacting spins. For example, if the last
term in Fig. 9 is O�1�, then the first term is O�1/Z�, second
term is O�1/Z� or O�1/Z2� depending on whether the dia-
gram corresponds to a three or two-spin cluster, and the third
one is O�1/Z2�. This follows directly from the counting of a
number of summands �different spin configurations� in the
analytical expressions, Appendix C. If the effective number

of spins interacting with a given one is large then �V4
 term
can be approximated by the last diagram in Fig. 9 only.

IV. DISCUSSION AND EXAMPLE

The equation for the free evolution of a single-electron
spin coupled with a nuclear bath, Eq. �15�, contains two
terms. The first one is a phase factor due to the spin preces-
sion in the external field plus the Overhauser field. The sec-
ond term is due to the electron-nuclear spin entanglement. In
ensemble measurements, the inhomogeneous distribution of
the nuclear Overhauser fields typically leads to a fast en-
semble dephasing time T2

*. This prevents a direct observation
of spin decoherence in free induction decay. To remove the
undesired phase factor one can use, for example, a Hahn
spin-echo setup. However, it should be noted that the mag-
netic � pulse affects the entanglement term also.26 All the
terms evaluated in the previous section can be calculated for
the echo setup straightforwardly. For example, the second
order term with the dipole-dipole interaction, Fig. 2, is

�V2
dd
 = − �

i=↑,j=↓
�Bij

dd�2�12
1 − ei�ijt

�ij
2 + 4

1 − e−i�ijt

�ij
2

− 4
1 − e2i�ijt

�ij
2 � . �16�

All the diagrams with the hyperfine-mediated interaction are
cancelled in the echo.

As an example we apply the developed technique to a
model system, a phosphorous donor in a Si crystal that was
first studied long ago.56 Recently, interest in it has been re-
newed by the proposal for quantum computation.59 The im-
purity 31P is a shallow donor with the effective radius of the
electron wave function Reff�25 Å.60 Therefore, the bounded
electron covers many host lattice sites. The nuclear spin bath
is represented by a system of randomly distributed 29Si iso-
topes �I=1/2�. The natural 29Si isotope concentration is
c�29Si��4.7%. At temperatures �1 K and magnetic fields
�0.1−1 T the major mechanism of spin echo decay in this
system is the spectral diffusion due to the coupling to the
nuclear spins.9,15

We simulated numerically the processes shown in Figs. 2
and 9 for a single FID �� /2− t-measurement� and spin echo
setup �� /2− t /2−�− t /2-measurement�. For FID we fac-
tored out the shift due to the nuclear Overhauser field and
focused only on the decoherence induced by electron-nuclear
dynamical entanglement. Such a calculation becomes rel-
evant when the inhomogeneous broadening is filtered out,
e.g., by the method discussed in Ref. 61. The contact hyper-
fine constants for the system were approximated using the
effective mass theory envelope function.60 We also assumed
that the phosphorus nuclear spin contributes to the frequency
shift only, because of large difference in the gyromagnetic
ratios of the 31P and 29Si nuclei. In simulations of dipole-
dipole contributions we generated an initial nuclear spin con-
figuration in a Si lattice within a sphere of radius 5Reff about
the donor. The nuclear spin bath was assumed unpolarized.
Then we selected at random a spin-up site with its surround-

FIG. 8. Compensation of the spin excitations overlapping by a
locked diagram. The time overlap is in two sites ��i� and �j��.

FIG. 9. The total fourth order contribution of the nuclear spin
excitations to the electron spin decoherence. The first diagram cor-
responds to the ring propagation of the spin excitation in the three-
spin clusters ↑↓↓ and ↓↑↑. The second, single-site locked, diagram
corrects the overlapping of the excitations. It contributes to the spin
dynamics of three- and two-spin clusters as shown in Figs. 7 and 8.
The third, two-site locked, diagram corrects the overlapping of two
spin excitations, Fig. 8. The last diagram describes the four-spin
ring excitations in the spin clusters ↓↑↑↑, ↑↓↓↓, ↑↓↑↓, and ↑↑↓↓.
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ing within a sphere of a radius 5a, where a=5.43 Å is the Si
lattice constant. We calculated contributions of all possible
configurations of a given central spin with its surrounding.
This procedure was repeated for 103 times and results were
normalized to the total number of spin up within the whole
simulated volume. For the hyperfine-mediated interaction we
averaged over 106 randomly generated spin configurations
within the whole volume. The simulation was done for 100
different configurations of nuclear spins to account for initial
state dependence of the decoherence process. The results
were checked for convergence with changing parameters of
the model.

For the electron spin FID the real parts of the different
diagrams, Figs. 2 and 9, averaged over spatial and spin con-
figurations of 29Si are shown in Fig. 10. At very short times
t	max�Ahf�−1 the second order terms26 are V2

hf� t2 and V2
dd

� t4. In Fig. 10�a� we show the crossover from the short-time
behavior to an intermediate regime with time dependencies
V2

hf� t1 ,V2
dd� t2.3. The dispersions in the exponent at the in-

termediate time scale is �5% depending on the spatial posi-
tions of 29Si near the P donor and the different initial con-
figurations of nuclear spins. It also contains errors due to a
finite simulated volume. In contrast to a study of the spin

decoherence in III-V semiconductor quantum dots,26 where
the decoherence time is sufficiently short to be entirely rep-
resented by the leading powers of time in the exponent of the
linked cluster expansion, the short-to-intermediate regime
crossover in Si:P appears because the higher nuclear spin
correlations have time to develop. For external magnetic
fields H	0.1−1T the hyperfine-mediated term determines
the short-time spin dynamics, see Fig. 10�a�. However, it can
be efficiently suppressed by increasing the field. Moreover, it
cancels completely in the spin echo. All the dipole-dipole
fourth order terms develop on the time scale of the order of
several milliseconds, Fig. 10�b�. However, on this time scale
the electron spin coherence is completely destroyed by the
�V2
 term. This slow development of high order spin corre-
lations is consistent with an experimental measurements.33

At a very short times the fourth order terms are �t6 �not
shown in the figures�. This dependence changes to V4

dd� t4.2

at a longer time scale. The contribution of the four-spin dia-
gram is about an order of magnitude larger than the other
fourth order terms. However, we abstain from attributing it to
the 1/Z expansion because the two- and three-spin fourth
order terms have powers of 1 /Z and 1/Z2 but similar mag-
nitudes. Probably, this is because the studied system of
nuclear spins is dilute and Z is of order of unity. In Fig. 11
we show the total second and fourth order contributions �see
inset� in the exponent for FID and spin echo setups. One can
see that a �-pulse reduces the pure electron spin decoher-
ence. This effect is an analog of suppression of the spectral
diffusion considered in phenomenological models.45,46

For the spin echo setup we obtain the time dependence of
V2

dd term comparable to that was calculated in Ref. 28. How-
ever, the fourth order terms in our model do not show the
nonmonotonic behavior.

We emphasize that in the Si:P system the noncontact hy-
perfine coupling between the electron and nuclear spins, not
considered here, produces noticeable effects on electron spin
dynamics.47–49 To suppress these effects a high external mag-
netic field is required.50 Moreover, in spin echo measure-
ments on macroscopic samples the dipole-dipole interaction
between electron spins causes an instantaneous diffusion.9,62

FIG. 10. Contributions of the linked clusters to the electron spin
decoherence: �a� Crossover from the short-time evolution to the
intermediate regime. �b� Development of the fourth order terms in
the intermediate time regime. V2 corresponds to the spin pair flip-
flop process in Fig. 2; V43, the three-spin excitation, the first term in
Fig. 9; V4l1, the single site spin locked diagram, the three-spin part
of the second term in Fig. 9; V4l2, correction of the overlapping of
the two-spin excitations given within the brackets in Fig. 8�a�, and
V4, the four-spin ring diagram, the last term in Fig. 9.

FIG. 11. Time dependence of the second and fourth �inset� order
terms in the exponent. FID vs spin echo decay.
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This effect is beyond the scope of this paper on a single-
electron spin. For comparison with the experimental results
given in Ref. 9, we account for the instantaneous diffusion
with a phenomenological exponential decay e−t/tID. In the
simulation we take the phenomenological relaxation time for
instantaneous diffusion to be tID=1.1 ms, obtained in Ref. 9.
The results are shown in Fig. 12. In addition to the echo
modulations due to non-contact dipole-dipole hyperfine in-
teraction observed in the experiments we still have a moder-
ate discrepancy. Because the magnetic field used in the ex-
periment was of the order of 0.3 T, the contribution of the
hyperfine-mediated terms should be small on the time scale
of the echo decay �0.1–0.5 ms�. We attribute this discrep-
ancy to the effective mass approximation for the electron
wave function. More detailed comparison should be done
after the echo modulation and instantaneous diffusion effects
are accounted for by the theory. We leave it to future studies.
The developed theory can be straightforwardly applied to
study decoherence in quantum dots because we treat donor
impurities and quantum dots in the same way. The only re-
quirement is that the system Hamiltonian has the form of
Eq. �1�.

V. CONCLUSION

We developed a field theoretic approach to evaluate the
dynamics of an electron spin interacting with a nuclear spin
bath in a high field regime. The approach provides a better
understanding of the difference between stochastic models of
an electron spin spectral diffusion and dynamic models of
spin decoherence in the presence of the nuclear spin bath. It

also throws light on the problem of reversibility of spin dy-
namics. The approach is based on a conventional diagram-
matic technique utilized in the study of Heisenberg ferro-
magnets. The scheme allows for an analytical evaluation of
different processes contributing to the electron spin evolu-
tion. We show that the electron spin dynamics in a nuclear
spin environment can be factorized into a free precession in
the Overhauser field and more complex dynamics due to an
electron-nuclear spin entanglement. The latter can be evalu-
ated using a linked-cluster expansion procedure. The exact
analytical expressions for second order and some high order
processes are given. We show that spin decoherence of a P
donor electron in a Si crystal is mostly controlled by the
nuclear spin pair excitations at sufficiently low temperature
and high magnetic field. Contributions of higher order pro-
cesses are small and can be neglected on a time scale up to
several milliseconds. A magnetic �-pulse flipping electron
spin slows down the pure decoherence process. The simu-
lated results are in fairly good agreement with experimental
measurements of spin echo in macroscopic samples.
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APPENDIX A

We briefly summarize the spin diagrammatic rules. Unlike
Ref. 38 where the formalism was used for a statistically
mixed state, our brackets correspond to a pure state specified
by the initial conditions. Averaging over a thermal ensemble
in our case would mix the dynamical contributions of the
electron-nuclear spin entanglement with the effects of statis-
tical distribution of the Overhauser fields. For the sake of
simplicity here we assume the nuclear spin to be 1/2 but the
approach can be extended to higher spins.40

The matrix element in Eq. �8� can be written as a product
of brackets corresponding to single sites. At each nuclear
spin site j with a given initial state, �j
 �=�↑ 
 or �↓ 
�, an
expectation value of time ordered spin operators

�j�T�I��t1�I−�t2� ¯ I+�tk�I��tk+1� ¯ I��tm���j
 �A1�

is zero if numbers of I+ and I− operators are not equal. Oth-
erwise, we evaluate it with the Wick’s theorem.38 Using the
spin commutation relations �I− , I+�=−2Iz and �Iz , I+�= I+ the
bracket �A1� is transformed to the form where an operator I+

�I− would serve as well� is in the first position

�A2�

or in the last position

�A3�

FIG. 12. Calculated spin echo decay in comparison with the
experimental data.9 Orientation of the external magnetic field is
along the �100� direction.
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Depending on the initial state operator, I+ is moved to the
right if �j
= �↑ 
 or to the left if �j
= �↓ 
. After applying

I+�t��↑
 = 0,

�↓ �I+�t� = 0. �A4�

a product of m spin operators is expanded into a sum of
products of m−1 operators. This procedure is repeated until
only a product of Iz operators is left. The latter term is evalu-
ated directly. As a result, the bracket �A1� can be written in
terms of all possible contractors of I+ operator with I− and Iz

using

�I��t1�,I+�t�� = ei��t−t1��I�,I+�t1
, �A5�

where the latter commutator is taken at time t1. Unlike con-
tractions of bosons or fermions a commutator of I+ and either
I− or Iz is an operator that can be used in a next pairing. For
example, in

�A6�

the operator I+�t�, first, is paired with Iz�t1� with the resulting
I+�t1� operator paired with I−�t2�. Another specific example
of spin pairing is a locked term.38 In

�A7�

the operator I+�t� is paired with I−�t1�, then I+�t�� is paired
with the resulting operator Iz�t1� and finally with I−�t2�. By
the locked term here we mean a term that contains an opera-
tor I− with three contracting lines. The role of such terms in
LCE we discuss in Appendix B.

In diagrams we depict I+ vertices by points, I− and Iz

vertices by open circles and interaction terms by wavy lines.
The Green’s function, defined as

Kj�t1,t2� =
�j�T�I+�t1�I−�t2���j


�− 2��j�Ij
z�j


= ei�j�t1−t2��
 j↓��t2 − t1�

− 
 j↑��t1 − t2�� , �A8�

is shown as a line with an arrow propagating from I+ to I−.
An initial spin state determines the Green’s function time
evolution. One can see that the Green’s function propagates
back in time �arrow points opposite to the time arrow� if the
initial spin state is ↑, and forward in time, if the state is ↓.
Although the I− and Iz vertices are depicted by same symbols
there is a topological difference in their appearance in dia-
grams. Iz vertex can be either separated from any Green’s
function or connected to one incoming and one outgoing

Green function. I− vertex can have one incoming line or two
incoming and one outgoing lines. The I+ vertex always has
one outgoing Green function line. For interactions, a wavy
line connecting two circles corresponds to an IzIz term, while
a line connecting a point and a circle corresponds to an I+I−

term.
The diagram representation can be easily translated into

Green’s functions. For example, the second order flip-flop
term, Fig. 2 can be written as

�V2
 = A �
i=↑,j=↓

Bij
2


0

t

dt1

0

t

dt2Ki�t1,t2�Kj�t2,t1��− 2�2�i�Ii
z�i


��j�Ij
z�j
 . �A9�

The coefficient A in front of the sum accounts for the number
of equivalent diagrams. In the particular case it is equal one.
The coefficient �−2�2 appears from two contractions of I+I−

operators. Analytical expressions for diagrams are dependent
on the initial spin states. For example, pairs ↑↑ or ↓↓ give
zero contribution to �V2
 term, see Fig. 2, while the contri-
butions of ↑↓ and ↓↑ pairs are equal. We usually omit this
configuration dependence in graphic representation. For ex-
ample, three spin diagram, Fig. 3�c� corresponds to two pos-
sible spin clusters ↑↓↓ and ↓↑↑ �Fig. 13� that have different
analytical expressions. In general, one can distinguish be-
tween configurations that can be transformed to each other
by changing order in spin counting or by rotation or inver-
sion of the coordinate system and configurations that are
distinct. The first type of configurations are ↑↓↓ and ↓↑↓. If
we start counting the spins from the ↑ site these configura-
tions are the same, and they have equal analytical expres-
sions. In the case given in Fig. 13 the two spin configurations
are connected by the inversion operation. An analytical form
of the second diagram at the right hand side can be obtained
by changing signs at all frequencies � in an expression for
the first diagram. Distinct configurations are, for example,
↑↓↑↓ and ↑↑↓↓ contributing to the same forth order ring dia-
gram, Fig. 3�f�.

APPENDIX B

Here we consider in more details a physical origin of the
locked terms in LCE. For the sake of simplicity we assume
that the interaction is

V�t� = �
ij

BijIi
+�t�Ij

−�t� , �B1�

and we evaluate

�n�T�e−i�0
t V�t��dt���n


= �n�1 + �− i�

0

t

V�t��dt�

+ �− i�2/2!

0

t 

0

t

T�V�t��V�t���dt�dt� + ¯ �n
 ,

�B2�
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where n denotes a spin configuration. The locked diagrams
appear in the fourth order contribution and correspond to
two-spin and three-spin excitations. A two-spin-fourth-order
correction can be written as

3�− i�4/4!�
ij

Bij
4


0

t 

0

t 

0

t 

0

t

T��i�Ii
+�t1�Ii

−�t2�Ii
+�t3�Ii

−�t4��i


��j�Ij
−�t1�Ij

+�t2�Ij
−�t3�Ij

+�t4��j
�dt1dt2dt3dt4, �B3�

where we have separated operators corresponding to differ-
ent spins. The coefficient 3 in front of Eq. �B3� accounts for
possible choices of i and j. Equation �B3� is nonzero only if
i=↑, j=↓ �for i=↓, j=↑ we just change order in counting of
spins and get the same configuration�. The only possible time
ordering in this case is t1� t2� t3� t4 or t1� t4� t3� t2. The
integrand for both sets of time ordering is the same and equal
ei�ij�t1−t2+t3−t4�. The same result we can obtain with the spin
diagram technique and diagram equations given in Fig. 8.
Firstly, we expand the time ordered product of the spin op-
erators in Eq. �B3� in terms of all possible contractors as
discussed in Appendix A. There are two unlinked terms of
the form

�B4�

two linked terms corresponding to the ring diagram, given in
Fig. 4�f�

�B5�

eight single-site locked terms, Fig. 4�g�, of the form

�B6�

and four two-sites locked terms, Fig. 4�h�

�B7�

Equation �B4� corresponds to the series expansion of the
second order contribution. However, it allows some non-
physical states, because the contractions in it specify time
ordering t1� t2 and t3� t4 only. By direct evaluation, one can
show that the locked terms, �B6� and �B7�, modify it accord-
ing to the diagram equation given in Fig. 8�a� to get a correct
time ordering t1� t2� t3� t4. It is a correction of overlapping

of spin excitations discussed in Refs. 26 and 28. The locked
diagram is the price we pay to obtain LCE for spins. This
shows that the procedure to get an exponential form of a
qubit decoherence is not as simple as it was suggested in
Ref. 28.

APPENDEX C

Here we provide explicit analytical expressions for two
and three spin diagrams given in Fig. 9. The first term is
denoted as V43, the three-spin part of the second term is V41l
and the two-spin part of the second term plus the third term
is V42l. The coefficients 1 /2 indicated in Fig. 9 are under-
stood. The analytical expression for the last, four-spin, dia-
gram is lengthy though its evaluation is not complicated. We
give terms for the hyperfine-mediated and dipole-dipole in-
teractions separately.

Contributions of the hyperfine-mediated interaction are as
follows.

�a� The three spin ring with the overlap corrected,

�V43
hf 
 = − �

↑↓↓
Bij

2 Bjk
2 �2it� 1

�ij
2 �ik

+
e2i�ijt

�ij
2 � jk

� + 2
1 − e2i�ijt

�ij
3 � jk

+
1 − e2i�ikt

�ik
2 � jk

2 −
1 − e2i�ijt

�ij
2 � jk

2 � . �C1�

�b� The diagram compensating a single site overlap

�V4l1
hf 
 = 2�

↑↓↓
Bij

2 Bik
2�2it

1 + e2i�ijt

�ij
2 �ik

+
�2�ik

2 − �ij�ik + �ij
2 ��1 − e2i�ijt�

�ij
3 �ik

2 � jk

−
1 − e2i��ik+�ij�t

2�ik
2 �ij

2 �
+ �j ↔ k� . �C2�

�c� The compensation of a double site time overlap �two
diagrams�,

�V4l2
hf 
 = − �

↑↓
Bij

4�− 2it
1 + e2i�ijt

�ij
3 +

e4i�ijt + 2e2i�ijt − 5

2�ij
4 � .

�C3�

The same diagrams for the dipole-dipole interaction only
have the following expression.

FIG. 13. Representation of a third order diagram using the clus-
ter configurations.
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�a� The three spin ring with the overlap corrected

�V43
dd
 = − �

↑↓↓
Bij

2 Bjk
2 �2it�2�ik − �ij

�ij
2 �ik� jk

−
�1 − ei�ijt�2

�ij
2 � jk

� + 4
��ij

2 − 2� jk
2 �ei�ijt

�ij
3 �ik� jk

2 −
e2i�ikt

�ik
2 � jk

2 − 4
ei�ikt

�ij�ik� jk
2 −

�3�ij − 2� jk�e2i�ijt

�ij
3 � jk

2

+ 4
ei��ik+�ij�t

�ij�ik� jk
2 +

�ij + 6�ik

�ik
2 �ij

3 � . �C4�

�b� The diagram compensating a single site overlap

�V4l1
dd 
 = 2�

↑↓↓
Bij

2 Bik
2�2it

2 − �1 − ei�ijt�2

�ij
2 �ik

−
12ei��ij+�ik�t + e2i��ij+�ik�t − 8ei��ik+2�ij�

2�ij
2 �ik

2

+
8��ij

2 + �ik
2 − �ij�ik�ei�ijt − �2�ik

2 + 3�ij
2 − 3�ij�ik�e2i�ijt

�ij
3 �ik

2 ��ij − �ik�
+

6�ij
2 + �ij�ik + 6�ik

2

2�ij
3 aik

3 � + �j ↔ k� . �C5�

�c� The compensation of a double site time overlap

�V4l2
dd 
 = − �

↑↓
Bij

4�2it
2�1 − ei�ijt�2 − 3

�ij
3 +

e4i�ijt − 8e3i�ijt + 12e2i�ijt + 8ei�ijt − 13

2�ij
4 � . �C6�

In the equations, �j↔k� means the same expression with interchanged j and k indexes.
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