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A simple electronic circuit consisting of a single symmetric or asymmetric loop with dangling resonators is
designed to obtain possibly large stop bands �where the propagation of electrons is forbidden�. Contrary to all
known systems of this kind, a spectral transmission gap of nonzero width occurs here even with a single loop.
This is obtained by combining appropriately the zeros of transmission of the loop and of the dangling reso-
nators. Sharp resonant electronic states inside the gaps can be achieved without introducing any defects in the
structure. This results from an internal resonance of the structure when such a resonance is situated in the
vicinity of a zero of transmission or squeezed between two zeros of transmission, the so-called Fano reso-
nances. A general expression for the transmission coefficient is given for various systems of this kind within
the framework of the interface response theory. The amplitude and the phase of the transmission are discussed
as a function of the wave vector or energy and it is shown that the width of the stop bands is very sensitive to
the number of grafted resonators, while the magnitude of the resonant states in the transmission coefficient is
very sensitive to the lengths of the different arms constituting the loop and the dangling resonators. These
structures may have potential applications in microelectronic devices.
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I. INTRODUCTION

Electronic transport in low-dimensional systems, i.e., me-
soscopic structures with a dimensionality less than 3 has at-
tracted enthusiastic attention in the past few years.1 This is
related to the impressive development of nanoscience, which
places the detailed understanding of quantum transport in
mesoscopic systems. A rich variety of quantum devices and
structures, including simple metallic wires, as well as com-
plex molecules, where electrons are driven by some external
force, are the subject of experimental and theoretical
investigations.2–7 Progress in nanofabrication8 has achieved
devices of the size of the order of the various coherence
lengths of the conduction electrons. Therefore, different
quantum mechanical effects such as Fano resonances,9,10

Aharonov-Bohm oscillations,11,12 persistent currents,13 and
current magnification14 are observed and analyzed. These de-
vices can be used in the probe of phase coherency for elec-
trons in transport15 and the design of mesoscopic spin
filters.16

The motivation behind the work presented in this paper is
to introduce a design of a simple electronic circuit consisting
of a loop with dangling resonators connected to two leads
�Fig. 1�. This system has the same configuration as that of
the commonly studied Aharonov-Bohm system with one9,10

or two17 coupled quantum dots on one arm �the other being
considered as a reference� or with one quantum dot on both
arms.18 Mainly, the subject of these studies was to use this
interferometric system to show the conditions for the exis-
tence and the collapse of Fano resonances as function of the
applied current voltage and magnetic flux. These studies are
also related to the investigation of the electronic states of

quantum dots incorporated into the arms9,10 as well as to the
understanding19 of the transmission phase jumps by � be-
tween two adjacent resonances in relation with the experi-
ments of Yacoby et al.12 The aim of this work is different
from those cited above. Indeed, we show that a simple loop
with dangling resonators may produce a large stop band in
the electronic band spectrum as well as sharp resonances
inside the gaps, which have been established through an
analysis of the transmission function �amplitude and phase�
obtained within the framework of the Green’s function
method.20 We show that this simple structure may exhibit
large gaps without repeating it periodically, as it is usually
the case with such structures.21 also, one can obtain strong
and sharp resonances by tailoring the lengths of the different
wires constituting this structure. This could be of potential
interest for developing nanocircuits that may play the role of
reflectors or filters for electrons.

FIG. 1. Schematic illustration of the one-dimensional loop struc-
ture with dangling resonators on both sides; the whole structure is
inserted between two semi-infinite leads. The lengths of the two
arms of the loop are d2 and d3, whereas the lengths of the dangling
resonators are d1 and d4 and their numbers are N and N�, respec-
tively �here, N=N�=2�.
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In previous publications,22,23 we proposed a model of one-
dimensional �1D� monomode waveguide exhibiting pass-
bands separated by large forbidden bands. The geometry of
the model presented in Ref. 22 �called a comblike structure
�CLS�� is composed of an infinite 1D monomode waveguide
�the backbone� along which N� dangling side branches
�which play the role of resonators� are grafted at N equidis-
tant sites, N and N� being integers. The one-dimensional na-
ture of the model requires that the cross sections of the two
characteristic lengths be much less than the de Broglie wave-
length, so as to neglect the quantum-size effects �or the sub-
band structure�. The stop bands originate both from the pe-
riodicity of the system and the states of the grafted branches.
The width of the band gaps strongly depends on the contrast
between the two characteristic lengths as well as on the num-
bers N and N�. On the other hand, the structure presented in
Ref. 23 �called asymmetric serial loop structure �ASLS�� was
made of asymmetric loops pasted together with segments of
finite length, the loops playing the role of resonators. Such
structure exhibits new features, in comparison with the CLS
�Ref. 21� waveguide, for example, the existence of larger
gaps, the avoidance of the constraint on the boundary condi-
tion at the end of the side branches, and the appearance of
quasiquantized bands without inserting a defect.

The quasi-one-dimensional geometry presented in this pa-
per is composed of a loop with dangling resonators; the
whole structure is inserted between two semi-infinite leads
�see Fig. 1�. The two arms of the loop have different lengths
d2 and d3. This results in symmetric or asymmetric loop
depending on whether d2=d3 or d2�d3, respectively. The
dangling resonators of lengths d1 and d4 are connected on
both sides of the loop at the connection points of the two
arms of the loop with the leads �see Fig. 1�. Such a geometry
combines the effects of the loop and of the dangling resona-
tors and, consequently, may exhibit interesting features, in
comparison with the CLS and ASLS waveguides, for ex-
ample, the achievement of a large transmission stop band for
a single loop and the appearance of sharp resonant electronic
states inside the transmission gaps without introducing any
defects in the structure. These features �which could be of
potential interest in waveguide structures� are essentially due
to the existence of the resonators connected with the loop
�which is quite different from the case of CLS or ASLS�.
Indeed, in the case of an asymmetric loop, the occurrence of
large stop bands in the transmission is related to the combi-
nations of the zeros of transmission originating from the loop
and from the dangling resonators. Also, the possibility of
sharp resonant electronic states results from the internal reso-
nances of the loop when such a resonance is located in the
vicinity of a zero of transmission or squeezed between two
zeros. On the other hand, in the case of a symmetric loop
which does not display any zero in the transmission spec-
trum, the rate of transmission can only be depressed around
the zeros associated with the dangling resonators by increas-
ing their number. Also, a sharp resonant peak can be intro-
duced in the transmission dips by appropriately tailoring the
lengths of the dangling resonators.

This paper is organized as follows. In Sec. II, we give a
brief review of the theoretical model used in this work as
well as the elementary results of a single resonator and a

single loop. These results are necessary for the understanding
of the different structure proposed here, namely, a loop
coupled to dangling resonators. Sections III and IV are de-
voted to numerical results of symmetric and asymmetric
loops with dangling resonators, respectively. The conclusions
are summarized in Sec. V.

II. THEORETICAL MODEL

To illustrate these original effects in a simple way, we
describe the electronic propagation in the frame of free-
particle model in which E= ��2ki

2 /2mi�+Vi, where mi, Vi, and
ki refer respectively to the effective mass, a constant poten-
tial, and a wave vector for medium with index i. We report
on the results of the calculated transmission coefficients and
phase or phase time as a function of the wave vector or
energy. In this paper, we focus on homogeneous structures
where media 1, 2, 3, and 4 and the medium of the semi-
infinite leads �see Fig. 1� are made of the same material,
namely, GaAs. The material parameters are then Vi=V
=0.0 meV and mi=m=0.067m0, where m0 is the free elec-
tron mass.

Using the Green’s function method,20 the expression giv-
ing the transmission function through the structure given in
Fig. 1 can be obtained in the same way as in our previous
works,21 namely,

t =
2S1S4�S2 + S3�

�1 − j�2
, �1�

where

�1 = 2S1S4�S2C3 + S3C2� + S2S3�NC1S4 + N�C4S1� �2�

and

�2 = S1S4�3S2S3 − 2C2C3 + 2� − �C3S2 + C2S3�

��NC1S4 + N�C4S1� − NN�C1C4S2S3. �3�

N and N� are the numbers of dangling resonators on both
sides of the loop, Ci=cos�kdi�, Si=sin�kdi��i=1,2 ,3 ,4�, and
k= 1

�
�2mE.

From the expression of t �Eq. �1��, one can deduce the
transmission coefficient

T =
4S1

2S4
2�S2 + S3�2

�1
2 + �2

2 �4�

as well as the phase

� = arctan��2/�1� + ���S1S4�S2 + S3�� , �5�

where � means the Heaviside function. From Eqs. �4� and
�5�, one can notice that the transmission zeros are induced by
the dangling resonators �i.e., S1=0 or S4=0� as well as the
loop structure �i.e., S2+S3=0�. When the expression
S1S4�S2+S3� changes sign at some energies denoted by En,
then the phase �Eq. �5�� exhibits a jump of �.

Another interesting quantity is the first derivative of �
with respect to the energy, which is related to the delay time
taken by the electrons to traverse the structure. This quantity,
called phase time, is defined by24,25
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�� =
�d�

dE
�6�

and can be written as

�� = �
d

dE
arctan��2/�1�

+ ��
n

sgn��
d

dE
�S1S4�S2 + S3��E=En

�	�E − En� , �7�

where sgn means the sign function. Furthermore, the density
of states �DOS� of the present composite system from which
we have subtracted the DOS of the semi-infinite leads is
given by25


n�E� =
�

�

d

dE
arctan��2/�1� . �8�

Because of the second term in the right-hand side of Eq.
�7�, one can deduce that ����
n�E� as �� �Eq. �7�� may
exhibit 	 functions at the transmission zeros that do not exist
in the variation of the DOS �Eq. �8��. However, if the system
does not exhibit transmission zeros or the expression
S1S4�S2+S3� does not change sign at some energies, then
��S1S4�S2+S3��=0 and ��=�
n�E�. All these cases will be
illustrated below in symmetric and asymmetric structures.

III. CASE OF A SINGLE STUB AND A SINGLE LOOP: AN
OVERVIEW

Before addressing the problem of the whole structure
cited above, let us first briefly recall the results of two par-
ticular cases necessary for the understanding of wave propa-
gation in the structure shown in Fig. 1:

�i� If d2=d3=0, N=1, and N�=0, we obtain the transmis-
sion function of a simple structure consisting of one resona-
tor grafted on an infinite guide �see the inset of Fig. 2�a��:

FIG. 2. Left panel: �a� Trans-
mission coefficient vs the reduced
wave vector kd1 /� for a structure
�depicted in the inset� consisting
of an infinite line with one grafted
segment of length d1. The one-
dimensional media constituting
the infinite line and the finite seg-
ment are assumed to be of the
same material�GaAs�. �c� Trans-
mission coefficient vs the reduced
wave vector kd2 /2� for a single
asymmetric loop without resona-
tors �depicted in the inset� with
d2=2d3. �e� The same as in �c� but
for a single symmetric loop �de-
picted in the inset� with d2=d3.
Right panel: ��b�, �d�, and �f�� The
same as in the left panel but for
the variation of the phase.
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t=S1 / �S1+ jC1 /2�. This expression enables us to deduce the
transmission coefficient T=4S1

2 / �4S1
2+C1

2� and the phase �
=���S1�−arctan�C1 /2S1�.

We can see that the transmission coefficient equals zero
when kd1= l��, where l� is a positive integer. The variation
of T versus the reduced wave vector kd1 /� is reported in Fig.
2�a�. T is equal to zero for kd1 being a multiple of � and
reaches its maximum value of 1 for kd1 being an odd mul-
tiple of � /2. The energies of the transmission zeros given by
Eg such as Eg= ��2 /2m��l�� /d1�2 correspond to the eigen-
modes of the grafted finite segment. This grafted segment
behaves as a resonator and this simple composite system
filters out the energies Eg. This phenomenon is related to the
resonances associated with the finite additional path offered
to the electronic wave propagation. The variation of the
phase versus kd1 /� �Fig. 2�b�� shows an abrupt change of �
at the transmission zeros, and therefore the corresponding
phase time is different from the DOS as mentioned above.

�ii� If N=N�=0, we obtain the transmission function of a
single loop inserted between two leads �see the inset of Fig.
2�c��,

t =
2�S2 + S3�

2�C2S3 + C3S2� − j�3S2S3 − 2C2C3 + 2�
, �9�

which gives the transmission coefficient

T =
4�S2 + S3�2

8 + 5S2
2S3

2 − 4S2S3C2C3 − 8C2C3 + 12S2S3
�10�

and the phase

� = ���S2 + S3� + arctan��3S2S3 − 2C2C3 + 2�/2�S2C3

+ S3C2�� . �11�

In this case, the transmission zeros are given by S2+S3
=0 or, equivalently,

k�d2 + d3� = 2n� �12�

and

k�d2 − d3� = �2n� + 1�� , �13�

where n and n� are integers. One can notice that as far as
d2�d3, the transmission vanishes and changes sign at differ-
ent values of kd2 /2�, as illustrated in Fig. 2�c� for d2=2d3.
The two transmission zeros at kd2 /2�=2/3 and 4/3 are ob-
tained from Eq. �12� for n=1 and n=2, whereas the trans-
mission zero at kd2 /2�=1 is obtained from Eq. �13� for n�
=0. The associated phase curve �Fig. 2�d�� exhibits, as pre-
dicted, a phase jump at the transmission zeros, and therefore
the phase time is different from the DOS as explained before.

In the particular case of a symmetric loop �i.e., d2=d3, see
the inset of Fig. 2�e��, the transmission coefficient and the
phase become respectively T=16/ �25−9C2

2� and �
=arctan�3S2 /4C2�. One can notice that in this case, the trans-
mission �Fig. 2�e�� does not present any zeros, and therefore
the phase increases monotonically, as illustrated in Fig. 2�f�.
In this case, the phase time is equivalent to the DOS as
explained above.

Let us now discuss the geometry of a loop with dangling
resonators. We shall address the problem of the effect of
dangling resonators respectively on a symmetric loop and on
an asymmetric loop.

IV. EFFECT OF DANGLING RESONATORS ON
SYMMETRIC LOOP

In the case of a symmetric loop �i.e., d2=d3� with dan-
gling resonators �see the inset of Fig. 3�a��, the expression of
the transmission function �Eq. �1�� becomes

t =
4S1S4

4S1S4C2 + S2�NC1S4 + N�C4S1� + j�− 5S2S1S4 + 2C2�NC1S4 + N�C4S1� + NN�C1C4S2�
. �14�

Equation �14� clearly shows that the transmission zeros
are due only to the dangling resonators �i.e., when S1=0 or
S4=0�. Figure 3�a� gives the transmission coefficient for a
symmetric loop in the presence of two identical dangling
resonators �i.e., N=N�=1 and d1=d4=0.5d2�. One can notice
that the transmission coefficient presents well defined dips
induced by the grafted resonators. These dips transform into
large transmission gaps when the number of resonators in-
creases as illustrated in Figs. 3�c� and 3�e� for N=N�=2 and
N=N�=3, respectively. It is worth mentioning that because
of the existence of two resonators, one can expect two phase
drops of � �i.e., 2�� at the transmission zeros given by S1
=S4=0 �i.e., kd2 /2�=1�. However, one can see in Figs. 3�b�,
3�d�, and 3�f� that the phase presents only a phase drop of �.
This is due to the existence of a resonant state with zero

width at this value of kd2 /2�, which induces a phase jump of
+�; this resonance collapses when d1=d4 is taken exactly
equal to 0.5d2. To enlarge this resonance, we have to take d1
and d4 slightly different from 0.5d2. Indeed, at kd2 /2�=1,
the expression of the transmission function �Eq. �14�� be-
comes

t =
S1S4

S1S4 + j sin�k�d1 + d4��
. �15�

So, if k�d1+d4�=m� but kd1�m1� and kd2�m2� �m,
m1, and m2 are integers�, one obtains a resonance that
reaches unity �i.e., t=1�. An example corresponding to this
situation is given in Fig. 4�a�, where d1=0.46d2 and d4
=0.54d2 �with d1+d4=d2�. One can notice that the resonance

AL-WAHSH et al. PHYSICAL REVIEW B 75, 125313 �2007�

125313-4



at kd2 /2�=1 is squeezed between two zeros �indicated by
solid circles on the abscissa of Fig. 4�a�� induced by the
surrounding resonators, as also illustrated in the curve of the
variation of the phase �Fig. 4�b��. The width of this reso-
nance increases as far as d1 and d4 deviate from 0.5d2 �see
below�. In the particular case where kd1=m1� and kd2
=m2�, the numerator and denominator of t �Eq. �15�� vanish
altogether. In this case, the resonance as well as the two
zeros induced by the resonators fall at the same position,
then the resonance collapses, the transmission coefficient
vanishes, and the phase drops by �, as shown in Figs. 3�b�,
3�d�, and 3�f�.

The resonance in Fig. 4�a� shows the same characteristics
as a Fano resonance but with two zeros of transmission
around the resonance instead of one, as is usually the case.9

Indeed, one can obtain an approximate analytical expression
for the transmission function �Eq. �14�� in the vicinity of the
resonance. A Taylor expansion around kd2=2� �i.e., kd2
=2�+� with � /2��1� enables us to obtain

t =
�

�2 + � + j��3 − ��
, �16�

where =2
+��1+
 /��, �=−2
+��1−
 /��, and 
 is the
detuning of d1 and d4 from 0.5d2 �i.e., 
=2��0.5−d1 /d2�
=2��−0.5+d4 /d2��.

From Eq. �16�, one can show that the transmission coef-
ficient T can be written �following the Fano line shape9� in
the form

T = A
�� + q��2�� − q��2

�2 + �2 , �17�

where A= �1−
2 /�2�2 / �3+4
�2. �=4
2 / �3+4
2� charac-
terizes the width of the resonance falling at �=0. q= �3
+4
2� /2
�1+
 /�� is the coupling parameter, which gives
qualitatively the interference between the bound states and
the propagating continuum states.9,10 One can notice that
when increasing 
, � increases and q decreases. The results
of the approximate expression �Eq. �17�� are given in the
inset of Fig. 4�a� by the open circles. These results are in
accordance with the exact ones �solid lines� and clearly show
that the resonance is of Fano type with q	7 and width 2�
	0.15. The commonly studied Fano resonances are asym-
metric because of the presence of only one transmission zero
near the resonance; in addition, an impurity is often intro-
duced in one of the two arms of the loop in order to create
the resonance state. The above calculation shows that with-
out introducing any perturbation in the arms of the loop, one
can find a well defined symmetric Fano resonance with a
width 2� and a coupling parameter q that can be adjusted by

FIG. 3. Left panel: ��a�, �c�,
and �e�� The same as in Fig. 2�e�
but for a single symmetric loop in
the presence of resonators: �a� N
=N�=1, �b� N=N�=2, and �c� N
=N�=3. Right panel: The same as
in the left panel but for the varia-
tion of the phase.
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tailoring the lengths of the resonators �i.e., 
� surrounding
the loop. Equation �16� also enables us to deduce an approxi-
mate expression for the phase as

� = ���� + ����� − arctan���3 − ��/��2 + ��� .

�18�

This function is plotted by the open circles in the inset of
Fig. 4�b� and clearly show two abrupt phase changes of � at

=0 and �=0 �i.e., �= ±q��, in accordance with the exact
results �solid line�.

One can also create an asymmetric Fano resonance by
adjusting the transmission zeros on only one side of the reso-
nance; this can be obtained by considering a symmetric
structure where the resonators are supposed to be identical
with lengths slightly different from 0.5d2. This is shown in
Fig. 4�c� for d1=d4=0.46d2 and N=N�=1. Indeed, an ana-

FIG. 4. �a� The same as in Fig. 3�a� but the lengths of the resonators are taken such that d1=0.46d2 and d4=0.54d2 and N=N�=1. The
solid circles on the abscissa axis indicate the positions of the transmission zeros induced by the dangling resonators on both sides of the
resonance. The inset gives the approximate results �open circles� around the resonance. �b� The same as in �a� but for the variation of the
phase. �c� The same as in �a� but the resonators are taken to be of identical lengths d1=d4=0.46d2. �d� The same as in �c� but for the variation
of the phase. ��e� and �f�� The same as in �a� and �b� but the resonators are taken such that d1=0.48d2 and d4=0.45d2.
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lytical Taylor expansion around kd2=2� enables us to write
the transmission function �Eq. �14�� as

t =
4�2

�� + j��� + 4� − j���
, �19�

where �=
+��1+
 /�� /2 and 
 is the detuning of the
lengths of the two resonators from 0.5d2 �i.e., 
=2��d1 /d2

−0.5��.
From the expression of t �Eq. �19��, one can deduce the

following Fano line-shape transmission coefficient:

T = B
1

1 + �2

�� − �R + q��4

�� − �R�2 + �2 	 B
�� − �R + q��4

�� − �R�2 + �2 , �20�

where B= �1+
 /��4 /9�1+2
 /3��2.
�=4
2�1−2
 /3�� /27�1+2
 /3��2 and �R=−4
 /3�1

+2
 /3�� characterize the width and the position of the reso-
nance, respectively, whereas q=9�1+2
 /3�� /2
�1
−2
 /3�� is the Fano parameter. One can notice that the
resonance shifts slightly from kd2=2� and its width is small
as compared to the preceding case; this is in accordance with
the numerical results of Figs. 4�a� and 4�c�. Also, q increases
when 
 decreases and tends to infinity when 
 vanishes. In
this case, the resonance falls at �R=0 and its width 2� re-
duces to zero �Fig. 3�a��, as expected. The results of the
approximate expression �Eq. �19�� are sketched �open
circles� in the inset of Fig. 4�c� for 
=2��d1 /d2−0.5�
=−0.08� �i.e., d1 /d2=0.46�. These results are in accordance
with the exact ones �solid lines� and clearly show that the
resonance is of Fano type with q	16 and width 2�
	0.022. Concerning the evolution of the phase of the elec-
trons in this structure, one can notice from Eq. �14� that the
numerator of the transmission function t vanishes when S1
=S4=0 
or equivalently �=0 in the approximate result �Eq.
�19��� at kd2 /2�=d2 /2d1=1.086, indicated by a filled circle
on the abscissa axis of Fig. 4�c�. However, it does not change
sign, as it is composed of a square value of S1 
� in the
approximate result �Eq. �19���. This is clearly shown in Fig.
4�d�, where the phase does not display any abrupt change of
� even though the transmission coefficient vanishes �see also
the inset of Fig. 4�d�, where no phase drops appear in the
exact and approximate results�. This result has been pointed
out recently26 in two-dimensional quantum dots by different
theoretical models. It is worth mentioning that in this case
the derivative of the phase with respect to the energy �i.e.,
the phase time� is identical to the DOS, as explained in Sec.
II. To end this section, let us note that a small deviation of d1
and d4 from the values chosen above may considerably re-
duce the intensity of the resonance, as shown in Fig. 4�e� for
d1=0.48d2 and d4=0.45d2. This result shows the sensitivity
of the resonances to the lengths of the surrounding resona-
tors. The corresponding phase variation �Fig. 4�f�� increases
smoothly between two abrupt phase drops of � induced by
the two dangling resonators, showing a signature of the ex-
istence of a resonant state. The Taylor expansion of the trans-
mission coefficient giving the approximate results in the in-
set of Figs. 4�e� and 4�f� is more complicated and we avoid
presenting it here.

V. EFFECT OF DANGLING RESONATORS ON
ASYMMETRIC LOOP

We have chosen the same asymmetric loop as in Fig. 2�c�
�i.e., d3=0.5d2� in the presence of two identical dangling
resonators of lengths d1=d4=0.5d2. These results are plotted
in Fig. 5�a� by the dashed and dotted lines for N=N�=1 and
N=N�=3, respectively. The curve associated with the loop
without resonators �N=N�=0� is redrawn for the sake of
comparison �solid line�. One can notice that one obtains a
well defined gap around kd2 /2�=1; its width remains almost
constant but becomes deeper when increasing the number of
resonators. This transmission gap has no analog for a sym-
metric loop. This system could be useful in constructing a
reflector for electrons, in analogy to photons in photonic
band-gap crystals. The presence of resonators transforms the
resonance at kd2 /2�=2 for N=N�=0 into a dip, which can
be enlarged when the number of resonators increases in the
same way as for a symmetric loop �Fig. 3�. In Fig. 5�b�, we
have given the variation of the phase �or delay� time �Eq. �6��
for the same parameters as in Fig. 5�a�. This quantity gives
information on the time spent by the electron inside the

FIG. 5. �a� Variations of the transmission coefficient vs reduced
wave vector kd2 /2� through a single asymmetric loop with dan-
gling resonators for d2=2d3. The calculation is performed for
N=N�=0 �solid curve�, N=N�=1 �dashed curve�, and N=N�=3
�dotted curve�. �b� Variations of the phase time �in units of 2md2

2 /��
vs the reduced wave vector for the structure described in �a�.

TRANSMISSION GAPS AND SHARP RESONANT STATES… PHYSICAL REVIEW B 75, 125313 �2007�

125313-7



structure �cavity� before its transmission. One can notice that
the phase time is strongly reduced in the transmission gap
regions, in particular, when the number of dangling resona-
tors increases. It is worth noting that the transmission zeros
give rise to delta functions in the phase time �Eq. �7��. To
observe these delta peaks, the phase time should be enlarged
around the transmission zeros by taking into account the ab-
sorption in the system27 �see Fig. 7 discussed below�.

In order to introduce sharp resonances in the forbidden
bands, we have kept �Fig. 6� the same structure as in Fig. 5
but slightly changed the lengths of the arms constituting the
loop and the dangling resonators. In Fig. 6�a�, we have con-
sidered the asymmetric loop without resonators �i.e., N=N�
=0� and d3 /d2=0.49. In this case, a sharp zero of transmis-
sion �dip� appears at kd2 /2�	2 according to Eq. �12� for
n=3. Such a very narrow stop band could be useful in con-
structing a rejecting signal device. This dip disappears when
d3 /d2 is exactly equal to 0.5, as shown in Fig. 5�a� �solid
line�. Figure 6�b� shows the corresponding phase time as a
function of kd2 /2�. A strong peak occurs in association with
the sharp zero of transmission at kd2 /2�	2. These results
clearly show that the absence of dangling resonators on both
sides of the loop does not make it possible to create sharp
resonances inside the transmission gaps. This is also the case
when only one resonator is grafted on one side of the loop.
However, when one connects two identical resonators �N
=N�=2� �of lengths d1=d4=0.5d2� on both sides of the loop
at the points of connection of the two arms of the asymmetric
loop, leaving all the other parameters as in Fig. 6�a�, we
obtain Fig. 6�c�, which presents now an interesting sharp
mode inside each transmission gap. The creation of these
modes is related to the resonances associated with the finite

additional path offered to the electronic wave propagation.
This feature could be used as a transmission filter for an
electronic signal. In Fig. 6�d�, there are two distinct peaks in
the phase time calculation, one associated with the mode
created at kd2 /2�	1 and the other one with the mode that
occurs at kd2 /2�	2 �see Fig. 6�c��. These calculations show
an enhancement in the electron capture time inside the struc-
ture for certain values of energy. It is worth noting that the
sharp resonances in Fig. 6�c� are of Fano type as for sym-
metric loop. However, because of the complexity of the cal-
culations, we did not give here the approximate expressions
showing this phenomenon.

Now, if different characteristic lengths for d2, d3, and d1
=d4 are imposed on the structure, two very closed localized
states can be observed in the transmission gaps �without in-
troducing any defects in the structure�. This is illustrated in
Fig. 6�e�, where we have reported the transmission coeffi-
cient versus kd2 /2� for the same structure as in Fig. 6�c� but
with d3 /d2=0.49 and d1 /d2=0.47. The corresponding phase
time variation is reported in Fig. 6�f�, showing a strong lo-
calization of the modes falling inside the gaps. These results
show that by tailoring the lengths of the different wires con-
stituting the structure, one can create large gap reflectors
with or without defect modes that may play the role of filters.

An interesting quantity that may considerably affect the
amplitude and the phase of the transmission through such
structures is the absorption. This quantity often exists in ex-
periments as an effect of temperature, scatterers, or elec-
tronic correlations, as well as magnetic fields applied on the
quantum dot together with a plunger gate voltage.9 In this
case, the system becomes an open interferometer with no
conservation of current. Some theoretical models28 have used

FIG. 6. Top panel �a� Transmission spectrum vs reduced wave vector for a single asymmetric loop without dangling resonators
�N=N�=0�. The geometrical parameter is considered to be d3=0.49d2. �c� The same as in �a� but in the presence of two dangling resonators
on both sides of the loop �N=N�=2� with lengths d1=d4=0.5d2. �e� The same as in �c� but with d3=0.49d2 and d1=d4=0.47d2. Bottom
panel: ��b�, �d�, and �f�� The same as in the top panel but for the phase time.
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additional leads grafted at different positions on the structure
to model losses of electronic current, thus breaking unity. In
this work, we have introduced the dissipation in the system
by adding a small imaginary part � to the energy �i.e., E
+ j��. In Fig. 7, we give an illustrative example of a Fano
resonance in an asymmetric loop composed of different
wires such that d1=d4=50 nm, d2=100 nm, and d3=49 nm.
For �=0 �no dissipation�, the transmission coefficient versus
the energy exhibits a resonant peak around E=184.56 meV
�solid line� and a transmission zero around E
=182.145 meV �indicated by a solid circle on the abscissa
axis in Fig. 7�a��. The corresponding phase �solid line in Fig.
7�b�� increases smoothly by � around the resonance and pre-
sents an abrupt phase drop of � at the transmission zero. The
variation of the phase time �solid line in Fig. 7�c�� shows a
delay time of almost 2.24 ps around the resonance and a
delta peak at the transmission zero. In the presence of dissi-
pation �dashed and dotted lines in Fig. 7�, the intensity of the
resonance decreases significantly even for a small absorption
such as �=0.07 meV �dashed curves�. The corresponding
phase and phase time are considerably affected around the
energies of the resonance peak and the transmission zero. In
particular, the absorption diminishes the phase time but en-

ables the observation of negative delta phase times around
the transmission zero by widening it �Fig. 7�c��. Let us men-
tion that negative phase time corresponds to negative group
velocity vg, since the latter quantity is related to the phase
time � by vg=L /�, where L is the length of the structure.27

Negative phase time or equivalently negative group ve-
locity corresponds to the case in which the peak of tunneled
pulse exists before the peak of the incident pulse has entered
the sample. This occurs through the forbidden transmission
region where the dispersion is anomalous. Indeed, in dielec-
tric materials, it is well known that in the presence of absorp-
tion, the refraction index �or equivalently the phase of the
transmission� may take a steep drop,29 resulting in an anoma-
lous dispersion and, consequently, in a light pulse propaga-
tion at group velocity faster than c or even negative.27,30–34 In
all these works, it was clearly pointed out that such superlu-
minal behavior is not at odds with either causality or Einstein
theory of special relativity, but it exclusively results from
interference between the different frequency components of
the pulse in an anomalous dispersion region.35,36 However,
the formal analogy between the Schrödinger equation and
the Helmholtz equation for electromagnetic wave enables
one to correlate the results for optical experiments to that for
electrons. Therefore, negative electron travel time can be un-
derstood in the same manner as for electromagnetic waves.

VI. SUMMARY AND REMARKS

In conclusion, we have presented a 1D monomode struc-
ture exhibiting large electronic stop bands. A theoretical in-
vestigation of the electronic transmission power through a
1D single symmetric �or asymmetric� loop with dangling
resonators using a Green’s function method is presented.
Compared to other 1D networks such as CLS waveguides,
the observed stop bands in the single symmetric �or asym-
metric� loop with dangling resonators are significantly larger.
The existence of the stop bands in the spectrum is attributed
to the conjugation of the zero transmission associated with
the dangling resonators and the asymmetry of the loop. In
these systems, the stop band width is controlled by the geo-
metrical parameters. Numerical results on localized modes in
nonperturbed waveguide were also reported. These localized
states appear as Fano resonances of strong amplitude in the
transmission spectra. Asymmetric and symmetric Fano reso-
nances that may lie near the vicinity of a transmission zero or
be squeezed between two transmission zeros are obtained
and analyzed. By tailoring the lengths of the different wires
constituting the structure, one can introduce one or two reso-
nances inside the transmission gaps. The phase time calcula-
tions are, in general, different from the density of states,
except for particular structures where the numerator of the
transmission function does not vanish or vanishes but with-
out changing sign. In this case, the phase time and the DOS
are equivalent. The localized states give rise to well defined
peaks in the phase time. The effect of absorption on the
amplitude and the phase time of the transmission has been
reviewed.

Through our analysis, we use the one-channel transport
model for the quantum-wire network. The single-channel

FIG. 7. �a� Transmission vs energy �meV� for a single asymmet-
ric loop with dangling resonators �N=N�=1�. The geometrical pa-
rameters are d2=100 nm,d3=49 nm, and d1=d4=50 nm. The ab-
sorption is introduced in the system by adding an imaginary part �
to energy: �=0 meV �solid curve�, �=0.07 meV �dashed curve�s,
and �=0.2 meV �dotted curve�. The solid circle indicates the posi-
tion of the transmission zero. �b� The same as in �a� but for the
phase. �c� The same as in �a� but for the phase time.
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model system is an idealization of the real quantum wires
with finite width and provides a good approximation for the
network of the wires with a narrow width at low temperature.
In this case, only the lower subband is filled. If the cross
sections of the wires are of nonzero width and at higher
temperatures, the studies of the conductance of the quantum
waveguides should employ the two-dimensional model.37–40

In such a study, the multimode effect and the matching of the
transverse modes are necessarily considered. The lateral con-
finement in the wires gives rise to a quantization of the con-
ductance G in units of 2e2 /h, which reflects the number of
active channels in the transport measurement.37,38 In addition
to the Fabry-Pérot-like conductance oscillations within the
2e2 /h quantized plateaus, it was shown that the existence of
other geometries connected to the wires such as a single
stub40 may give rise to a complicated spectrum in the second
subband with an irregular pattern of maxima and minima in
comparison with the periodic feature in the first subband
�see, for example, Figs. 8 and 11 in Ref. 40�. The transmis-
sion zeros induced by the stub strongly depend on the width
of the waveguide along which the stub is attached.41 Also,
the existence of crosses42 and bends43 in the structure may
also result in bound states associated with the cross sections
of these contact points.

Another important effect that may influence the transmis-
sion spectrum in quantum wires is the electron-electron
interaction.44 Indeed, it was shown recently45 that a model
incorporating Coulomb interaction gives quite good fits of
the experimental conductance spectrum associated with Fano
resonances in a one lead quantum dot. Also, it was argued
theoretically,46 using a tight-binding model and a self-
consistent calculation, that Fano resonances shift as function
of the applied gate voltage when electron-electron interaction
is taken into account. These results are found in accordance
with the experimental work of Buks et al.47 However, it was
shown that electron interaction does not affect much persis-
tent current measurements in a single semiconductor loop.13

In addition, the spin-orbit interaction, the so-called Rashba
effect, in one-dimensional rings and stubs, has been consid-
ered recently48–50 by adding a spin-related term to the Hamil-
tonian. In particular, it was shown that the transmission spec-
trum splits into two spectra corresponding to outgoing
electrons similar as or opposite to that of the injected spin
polarized electrons. In particular, the spin-orbit interaction
may affect the zero-conductance resonances in asymmetri-
cally coupled one-dimensional rings.49 Also, because of the
importance of this interaction, quantum rings have been pro-
posed as electron-spin beam filters.50

It is worth noting that, in general, all the above effects
require numerical investigation. The advantage of the simple
waveguide electron model presented in this work consists in
finding simple analytical expressions that enable us to dis-
cuss the existence of Fano resonances as well as the effect of
the different wire lengths in tailoring these resonances with-
out incorporating a defect �a dot� in one of the two arms of
the ring, as it is usually the case in such mesoscopic
systems.51 Such a model can also give a qualitative good
description of the experimental Fano line shapes in one-
dimensional narrow wires at low temperature.52,53 We hope
that the effects reported in this paper about the electronic
scattering and transport in mesoscopic structures will stimu-
late further experimental and theoretical interest on similar
mesoscopic devices.
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