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The structure of Mn clusters in �Ga,Mn�N and the interactions of the magnetic Mn ions and clusters are
studied using first-principles calculations. Curie temperatures are calculated using mean-field and Monte Carlo
methods. It is found that joining substitutional Mn ions to clusters is energetically favorable and especially the
structures of two to four Mn ions formed around a single N ion are most stable. These clusters are always
found to have a ferromagnetic ground state, and ferromagnetic intercluster interactions are also present even at
relatively long distances. For randomly distributed Mn impurities, high Curie temperatures are obtained at high
Mn concentrations �above room temperature for x�0.14�.
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I. INTRODUCTION

Diluted magnetic semiconductors �DMS’s� have attracted
much interest since ferromagnetism was discovered in
�In,Mn�As.1 DMS materials with high Curie temperatures
�TC’s� could be valuable in spintronics technology,2 but the
realization of room-temperature ferromagnetism in DMS’s
has been difficult. Using a Zener model, Dietl et al.3 pre-
dicted the TC of �Ga,Mn�N to be among the highest obtain-
able in DMS’s. As a result, much research has been devoted
to studying �Ga,Mn�N, but still many properties of this ma-
terial are poorly understood. The experimental results for the
TC in �Ga,Mn�N vary from 0 to 900 K,4–9 and the critical
temperature seems to depend not only on the Mn concentra-
tion x in Ga1−xMnxN but also on the growth conditions and
the resulting microstructure in a complex way. It has been
suggested that the observed high values of TC are caused by
the formation of ferromagnetic Mn precipitates or Mn clus-
ters with large magnetic moments.10–12 Indeed, at any ad-
equately high x, a considerable number of small Mn clusters
are present in the system even if the substitutional Mn ions
are distributed completely randomly.13 First-principles calcu-
lations have also indicated that it is energetically favorable
for substitutional Mn ions to cluster around the N ions,10,14

and therefore, in a real system the Mn ions should show a
strong tendency to form more clusters.13 However, the for-
mation of Mn clusters is often also reported to decrease the
theoretically calculated TC’s.13,15–19 Thus, it is of interest to
systematically investigate the structural properties of Mn
clusters in �Ga,Mn�N as well as the magnetic interactions
between different clusters. We focus on substitutional Mn
ions, as Mn is experimentally found to occupy Ga sites,9 and
denote the substitutional Mn ions simply by Mn. In this pa-
per, we distinguish two types of clusters �denoted by Mnn,
n=1,2 , . . .�: When discussing structural properties, we con-
sider in general groups of Mn ions where the ions are linked
to each other by Mn–N–Mn bonds. We call these groups Mn
complexes. In our Monte Carlo approach, we limit ourselves
to groups of Mn ions where all the ions share a common
nearest neighbor N �n�4�. These are called clusters in the
text. In this paper, we do not consider Mn complexes which
involve, e.g., vacancies or interstitials.

In order to predict the Curie temperature of �Ga,Mn�N
and how the microstructure influences it, we study the struc-

tural and magnetic properties of clusters of up to four Mn
ions using first-principles methods. Based on the results, we
identify the stable Mn configurations and study the energet-
ics involved in cluster formation. The magnetic properties of
the clusters are examined by comparing the total energies of
various spin configurations to determine the strength of ex-
change interactions both between Mn ions inside the clusters
and between the entire clusters �intracluster and intercluster
exchanges, respectively�. We map the calculated spin-flip en-
ergies onto a modified Heisenberg Hamiltonian which is then
used in Monte Carlo simulation to extract the TC’s at various
Mn concentrations and cluster configurations. As a compari-
son, we also apply the simple mean-field approximation.
Some of the results in this paper have appeared in short
papers �Refs. 12 and 13�.

II. METHODS

A. Electronic structure calculations

We perform spin-polarized total-energy supercell calcula-
tions for �Ga,Mn�N in the wurtzite structure using the
density-functional theory �DFT� and applying the all-
electron projector augmented-wave �PAW� method as imple-
mented in the VASP plane-wave code.20 We treat exchange
correlation in the generalized gradient approximation �GGA-
PW91� as well as in the on-site corrected local-spin-density
approximation21 �LSDA+U�. We compare the two methods
since in the ordinary LSDA or GGA, self-interaction effects
are present for the localized Mn d states and may therefore
strongly affect the results.22,23 The on-site correction is only
applied to Mn d states for which the parameter U is chosen
to be 3 eV �Refs. 22 and 23� except when explicitly stated
otherwise.

To verify numerical convergence, we have carried out test
calculations for the plane-wave cutoff energy and the
Brillouin-zone sampling. We apply the linear tetrahedron
method with Bloechl corrections for calculating integrals
over the Brillouin zone, and the corresponding k meshes are
generated using the �-centered Monkhorst-Pack scheme.24

The required mesh density was studied in a hexagonal
Ga35N36Mn1 supercell. For this system, a 4�4�4 mesh was
found to be sufficient. When calculating cells of other sizes
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or shapes, we scale the k mesh accordingly to maintain an
approximately constant k-point density in the reciprocal
space. For the plane-wave cutoff, we use the energy of
425 eV. These parameters result in an accuracy of a few
meV for the total energy of the supercell. Local properties
such as projected densities of states �DOSs� are calculated by
projecting the wave functions to the corresponding spherical
harmonics.25 The Wigner-Seitz radii used in the projections
for Mn and N sites are 1.3 and 0.7 Å, respectively.

B. Curie temperature calculations

The Curie temperature is a thermodynamic phase transi-
tion point and therefore only relevant in macroscopic sys-
tems. The first-principles results are restricted to systems of
roughly 100 atoms �see Fig. 1�a�� and to calculate TC, we
must use either analytic expressions or numerical analysis of
mesoscopic systems combined with finite-size scaling. In
this paper, we apply both Monte Carlo �MC� analysis and the
simple mean-field approximation �MFA�. The MC calcula-
tions are carried out in supercells which are constructed of
L�L�L four-atom wurtzite unit cells where L=24, . . . ,36
�an example of a MC supercell is shown in Fig. 1�b��.

We use a modified Heisenberg Hamiltonian to describe
the system as a collection of Mn clusters; i.e., we separate
the intercluster and intracluster interactions in the Hamil-
tonian �Fig. 1�b��. Since Mn ions and clusters have large
spins, the use of a classical model is justified.26 The effective

spin of the ith cluster with ni Mn ions is defined as si

=�k
nieik /ni, where the unit vectors eik are the Mn spins. It is

assumed that the exchange coefficients for the intercluster
coupling depend only on cluster sizes and separations,
Jij =Jninj

�rij�. Furthermore, as we shall show, the intracluster
interactions are poorly described by the Heisenberg model
and therefore we write the internal energies using functions
Eni

�si� instead. Thus, our effective Hamiltonian is of the form

H = − �
�i,j�

Jninj
�rij�si · s j − �

i

Eni
�si� . �1�

A more detailed description of the model and the fitting of
the parameters are given in the Appendix.

The Monte Carlo simulations using the Hamiltonian �Eq.
�1�� are carried out using a combined Wolff-Metropolis algo-
rithm, where the cluster spins si are sampled using the Wolff
method27 and the ionic spins eik using the Metropolis
scheme.28 Ergodicity is maintained by frequently switching
between the two algorithms. The actual TC

MC values are found
using the cumulant crossing method29 in which the Curie
point is determined by the temperature where the cumulants
UL�T���M4� / �M2�2 �M being the magnetization� with dif-
ferent L cross. To account for geometric disorder, we ran-
domly position the required number of Mn clusters in the
cell and calculate the geometric average over 20–50 replica-
tions.

Simple estimates for the Curie temperature within the
MFA are given by30–32

TC
MFA =

1

3kB
�

j

J0j 	
2

3kB

�E

N
= TC

�E, �2�

where �E /N= �EAF−EFM� /N is the energy difference be-
tween ferromagnetic �FM� and antiferromagnetic �AF� spin
configurations per magnetic particle and kB is the Boltzmann
constant. The approximation allows us to roughly estimate
the Curie points of the periodic systems represented by the
supercells used in first-principles calculations by treating Mn
clusters as the primary magnetic entities.12 Thus, in Eq. �2�
N=2 �the number of Mn clusters in a DFT supercell� and �E
is the calculated energy needed to flip the spin of one of the
clusters.

To be accurate, �E in Eq. �2� should be the energy differ-
ence between a ferromagnetic and a magnetically disordered
�D� system with ED=0, since the energy of the FM state is
EFM/N=−1/N��i�jJij /2=−� jJ0j /2 if the clusters have
similar neighborhoods. The energy EAF of the AF state de-
pends on the interactions: for very-long-ranged coupling �as
assumed in MFA�, EAF/N	0 and �E /N	� jJ0j /2, but if the
nearest-neighbor interactions dominate, EAF/N	� jJ0j /2 and
�E /N	� jJ0j which leads to an error. To distinguish the
TC

MFA evaluated using the sum of J’s as opposed to �E, we
denote the latter by TC

�E.

III. STRUCTURAL PROPERTIES

A. Configurations of Mn clusters

In order to study the structural properties of Mn com-
plexes, we first geometrically optimize the GaN wurtzite lat-

FIG. 1. A schematic illustration of the used scales. �a� Accurate
first-principles calculations are restricted to small supercells, �b�
while Monte Carlo simulation enables analysis of mesoscopic be-
havior using large cells �with only Mn clusters visible�. In �b�, the
shades of gray denote cluster sizes �the size grows from one to four
Mn as the color changes from white to black�.
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tice �see Fig. 2� by minimizing the total energy using GGA.
As a result, we find the lattice constants a=3.217 Å and
c :a=1.631 in reasonable agreement with experimental val-
ues of 3.189 Å and 1.626, respectively.33 The corresponding
calculated nearest-neighbor Ga-Ga and Ga-N bond lengths
are 3.22 and 1.97 Å, respectively. We adopt these optimized
values for the calculations presented in this paper. We also
introduce the convention of calling the crystallographic plane
�0001� the a plane �since it is spanned by the symmetric
vectors a1 and a2 with length a, see Fig. 2� and the perpen-
dicular direction the c axis. The actual structural optimiza-
tion of different complexes up to four Mn ions is carried out
in a 72 atom supercell and the resulting structures for the
energetically most favorable complexes are shown in Fig. 3.
All these structures are found to have a ferromagnetic ground
state. We discuss the magnetic properties in more detail in
Sec. IV.

A dimer �Mn2� consists of two Mn ions either in the same
a plane or tilted in the c direction �see Fig. 3�a��. We find the
a-plane dimer to be the energetically favorable configuration
although the energy difference between the two dimers is
only 27 meV. For trimers �Mn3�, there are several possible
configurations, but we only consider the most compact cases
where the Mn ions either surround one N ion in a star-shaped
pattern or form a ring with three N ions �referring to the
labeling in Fig. 2, the sites �1,2,3� or �1,2,4� form a star and
sites �1,3,6� or �1,4,5� form a ring�. As with the dimers, tri-
mers may lie completely in the a plane or they can also be
tilted in the c direction. We find the star-shaped �N-centered�
configuration in the a plane to have the lowest total energy of
these trimers although the energy of the tilted star-shaped
trimer is only 39 meV higher �Fig. 3�b��. On the other hand,
energies of the a plane and tilted ring trimers are 220 and
181 meV higher, respectively. For tetramers �Mn4�, we con-
sider tetrahedron and planar shapes �sites �1,2,3,4� and
�1,2,3,6�, respectively�. In this case, we find the total energy
of the tetrahedron �Fig. 3�c�� to be as much as 337 meV
lower than the energy of the planar tetramer, showing again
that a N-centered cluster is the preferred structure.

Bond lengths obtained by structural optimization are also
shown in Fig. 3 for the most stable complexes. The simplest
Mn structure is the monomer �Mn1�, i.e., a single substitu-
tional Mn ion with no other Mn neighbors �not shown�. Op-

timizing the structure using the GGA functional we find the
elongated Mn–N bond lengths of 1.98 and 2.02 Å for the
three symmetric bonds and the one asymmetric bond �along
the c axis�, respectively. Similar to Mn1, we find that the
optimized Mn–N bond lengths around the clusters,
1.97, . . . ,2.01 Å �see Fig. 3�, are longer than the bulk Ga–N
bonds of 1.97 Å. On the other hand, we find that whenever a
N ion is located between two Mn ions, i.e., when the bond is
inside a Mn complex, the Mn–N bonds, 1.91, . . . ,1.94 Å
�Fig. 3�, are somewhat shorter than the bulk Ga–N bonds.
Similarly, the Mn-Mn distances of 3.10, . . . ,3.17 Å �Fig. 3�
are shorter compared to the corresponding bulk Ga-Ga sepa-
rations of 3.22 Å.

The shortening of the intracluster Mn–N bonds and the
elongation of the Mn–N bonds surrounding complexes may
be qualitatively understood by comparing to the fully relaxed
MnN wurtzite crystal lattice where the Mn substitution is
complete. We obtain for the theoretical antiferromagnetic
wurtzite MnN the Mn–Mn bond length of 3.06 and the

FIG. 2. Wurtzite structure from isometric and top-down
perspectives.

FIG. 3. �Color online� �a�–�c� Structurally optimized geometries
for the energetically most stable complexes �clusters� of two to four
Mn ions. The Mn sites are numbered according to Fig. 2. Bond
lengths are shown both as numbers �in Å� and using different col-
ors, black corresponds to bonds in GaN. In �a� and �b�, the first
structure is lowest in energy and the �E’s give the energies with
respect to them.
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Mn–N bond length of 1.87 Å. In Ref. 34, the lattice param-
eters for the wurtzite MnN, calculated using similar methods
as in this paper, are reported to be a=2.97, . . . ,3.03 Å and
c=4.95, . . . ,5.22 Å depending on the magnetic phase. These
correspond to Mn–Mn bonds of 3.0, . . . ,3.1 Å and Mn–N
bonds of around 1.9 Å, in agreement with our values. These
calculated bond lengths suggest that in �Ga,Mn�N, the near-
est intracluster Mn-Mn distances have a tendency to get
shorter than the Ga-Ga bulk distances, and this is exactly
what we find �3.10, . . . ,3.17 Å�3.22 Å�. The reason why
the intracluster Mn-Mn distances are slightly longer than
those of the ideal wurtzite MnN crystal lattice may be related
to the relatively rigid bulk GaN lattice around the Mn clus-
ters preventing full relaxation. We also observe that the
positions of Mn ions deviate from those of the ideal GaN
lattice less in the ring-shaped trimers �not shown� compared
to the star-shaped ones: in the rings, we get the Mn–Mn
and intracluster Mn–N bonds of 3.14, . . . ,3.20 Å and
1.94, . . . ,1.97 Å, respectively. Apparently, the coupling to
the surrounding bulk GaN is stronger in the rings preventing
the relaxation of the Mn ions.

As for the experiments, in Ref. 35 the Mn–N bond length
is found to be 2.07 Å, 0.12 Å longer than the Ga-N distance.
Another experimental study gives the values of
1.98, . . . ,2.01 Å.36 These values should correspond to our
Mn–N bonds surrounding the clusters because they form the
clear majority of the Mn–N bonds. Indeed, our calculated
values of 1.97, . . . ,2.01 Å agree quite closely with these
experiments, especially those of Ref. 36. In Ref. 37, the
calculated first-principles intracluster Mn–N bonds of
1.98, . . . ,1.99 Å are obtained for a dimer in bulk. These are
longer than the used experimental Ga-N length of 1.95 Å.
We find the Mn-N length of 1.93 Å �Fig. 3�a�� which is
shorter than our Ga-N length. The difference may be due to
the different lattice constants and lower plane-wave cutoff
energies used in Ref. 37.

B. Formation of Mn clusters

To estimate how favorable it is for the Mn ions to form
clusters, we calculate the binding energies Eb of Mn ions in
the energetically most stable complexes. This is done using
72 atom Ga36−nN36Mnn supercells, n=2, 3, or 4, where we
set a Mnn−1 complex and a Mn monomer as far apart as
possible �around 7 Å� and compare the total energy to that of
one Mnn complex: Eb=E�Mnn−1+Mn�−E�Mnn�. We calcu-
late Eb also for n=5,6, but in these cases we apply a 108
atom supercell without structural optimization. The calcu-
lated Eb are shown in Fig. 4 �filled squares and diamonds for
optimized and unoptimized geometries, respectively�. In or-
der to see the effect of the optimization and the cell size, the
case n=4 is calculated in both supercells and both with and
without optimization in the smaller cell. The obtained Eb are
622, 653, and 720 meV for the optimized and unoptimized
72 atom systems and the 108 atom system, respectively. The
calculated Eb is higher in the larger cell since the single Mn
is separated farther from the complex. However, optimizing
the structure changes the energy by only 5% so the lack of
structural optimization is a justified approximation. This was

to be expected since the positions of the Mn ions do not
change very much in the optimization �see Fig. 3�.

We always find clustering to be energetically favorable,
Eb	0, but there is a maximum at n=4 corresponding to
tetramer formation. The drop in Eb for larger n may be un-
derstood on the basis of the configurational energies of
smaller complexes: it is always most favorable to join the
Mn ions closely around one central N ion. However, after
completing the tetrahedral tetramer, this is no longer possible
and the next Mn ion must be set to a more loosely bound
position. It should be noted that the case n=6 in Fig. 4 is
calculated for a geometry where two Mn ions are set on
different sides of a Mn4 tetrahedron. Should the Mn ions be
set next to each other, the binding energy should be higher.
Still, the high-symmetry tetrahedron-shaped tetramer is an
especially stable configuration. We have calculated the bind-
ing energies also using LSDA+U up to tetramer formation
and the results are slightly lower but still very close to those
given by GGA �Fig. 4, open squares�.

Even when Ga ions are wholly randomly substituted by
Mn ions �at a given concentration x�, a considerable percent-
age of the Mn ions will form dimers and also some larger
complexes as well.12,18 As the formation of Mnn complexes
is energetically favorable, we expect that an even higher por-
tion of the Mn ions will form complexes in a real system.
Such a tendency is seen in lattice gas MC simulations, which
predict that at a 1000 K thermal equilibrium, there will be
few monomers �about 10% of clusters� and a considerable
number of dimers, trimers, and tetramers �15%–40% each,
when only considering the N-centered clusters�.13 Since the
highest Eb is found for trimers and tetramers, it is possible
that the clustering favors these sizes at least if the Mn con-
centration x is not very large �Fig. 4�. This agrees with Ref.
14, where the heat of reaction Eh=E�Mnn−1+Mnn+1�
−E�2Mnn� is found to change sign at n	3, suggesting that
trimers are the most stable complexes. Since N-centered Mn
clusters are the most important type of complexes, we focus
on these clusters in the following sections.

FIG. 4. Binding energies Eb of Mn ions in Mnn complexes. The
cases n�4 �squares� are calculated in a 72 atom Ga36−nN36Mnn

supercell with structural optimization, while for n
4 a 108 atom
Ga54−nN54Mnn supercell is used without optimization �diamonds�.
The unconnected diamond at n=4 is calculated in a 72 atom super-
cell without structural optimization. GGA values for n=2, 3, and 4
�72 atom supercell� are from Ref. 13.
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IV. MAGNETIC PROPERTIES

A. Intracluster spin-flip energies

In order to study the magnetic properties of single Mnn
clusters, we calculate internal spin-flip energies by compar-
ing the total energies of various collinear spin configurations.
We set up a 72 atom supercell with one Mn2, Mn3, or Mn4
cluster inside and calculate the energies of nonequivalent
spin configurations. Due to rotational and spin symmetries,
there are only two such configurations for the a-plane dimer
and trimer: the ferromagnetic one and a configuration where
one spin is flipped. On the other hand, because of the asym-
metry in the c direction, there are three symmetric spins and
one asymmetric spin in a tetrahedral tetramer. Therefore,
there are two ferrimagnetic configurations where one spin
has been flipped and one antiferromagnetic state where two
spins have been flipped.

The total magnetic moment of a supercell in a ferromag-
netic state is always found to be n �the number of Mn ions�
times 4�B regardless of the cluster size and used exchange-
correlation functional. �The integer magnetic moment is a
consequence of the minority-spin channel having no partially
filled electronic bands which dictates that there cannot be a
noninteger occupation in the majority channel either.� On the
other hand, the distribution of magnetization density does
depend on the value of U. The largest contribution to the
magnetic moment comes from Mn d states whose localiza-
tion is enhanced by the U correction. Thus, while the local
GGA magnetic moment at a Mn ion �in an atomic sphere� is
on average 3.5�B, the local LSDA+U moment increases up
to 4.4�B for U=7 eV. This change is compensated by induc-
ing small antiparallel magnetic moments to the N p states at
the neighboring sites, in qualitative agreement with Refs. 23
and 38.

We always find the ground state to be ferromagnetic, but
as n increases from 2 to 4, the calculated spin-flip energies
are found to decrease linearly with n from 307 �spin-flip
energy for a Mn spin inside a dimer� to 226 �trimer� and 123
or 131 meV �symmetric and asymmetric spins in a tetramer,
respectively�. Furthermore, flipping two spins in a tetramer
costs 401 meV in showing that the second spin flip requires
an energy of 278 or 270 meV, i.e., more than twice the en-
ergy needed for the first flip. Thus, in agreement with Ref.
14, this demonstrates that a simple Heisenberg model fails to
describe the intracluster spin-flip energies since with ferro-
magnetic exchange constants, the model predicts the spin-
flip energies to be proportional to n.

We have also calculated two spin-flip values using
LSDA+U and they show a markedly different behavior com-
pared to the GGA. First, the LSDA+U spin flips are much
larger than the GGA ones: 478 and 502 meV for n=2 and 3,
respectively. Second, these values show an increase as a
function of n at least for the two smallest clusters. Clearly,
the on-site correction has a considerable effect on the short-
ranged intracluster magnetic coupling. However, this differ-
ence is not crucial considering the Curie temperature, as will
be discussed later.

B. Intercluster spin-flip energies

The relatively large intracluster spin-flip energies show
that the Mn clusters form quite stable magnetic entities, and

we expect that the long-ranged intercluster interactions will
determine the nature of magnetism in the system at the mac-
roscopic scale. To study the intercluster coupling, we calcu-
late spin-flip energies �E of the entire clusters in hexagonal,
monoclinic, and orthorhombic 48–108 atom supercells. In
these cells, we set up clusters Mnn1

and Mnn2
�n1 ,n2

=1 , . . . ,4� at varying distances and compare the total ener-
gies for parallel �↑n1

+↑n2
� and antiparallel �↑n1

+↓n2
� spin

configurations to obtain �E. This is done without structural
optimization, which is expected to have only a minor effect.
As a test, we calculate �E for Mn3-Mn3 in a 108 atom su-
percell with and without structural optimization and obtain
the very close values of 32 and 33 meV, respectively, justi-
fying the omission of the optimization. The resulting �E’s
are presented in Fig. 5 as functions of r, the minimum dis-
tance between the cluster centers of mass. �Due to periodic
images, there are more than one coupled cluster pair in each
system.�

We observe that the coupling is always ferromagnetic and
spatially decaying, yet quite long ranged.12,13 We also find
that abnormally large spin-flip energies are obtained at the
intercluster distances of r	6, . . . ,8 Å �Figs. 5�a�, 5�b�, 5�e�,
and 5�h�� which qualitatively agrees with Refs. 23, 38, and
39. Unlike in �Ga,Mn�As,18 the strength of the coupling be-
tween clusters depends on the sizes of the clusters n1 and n2:
Monomers couple relatively weakly to each other �Fig. 5�a��
and to tetramers �Fig. 5�d�� at long distances, while dimers

FIG. 5. Spin-flip energies �E for Mnn1
-Mnn2

cluster pairs as a
function of separation of the cluster centers of mass, r. The small
squares represent values obtained using supercells of 48 and 72
atoms, while the large squares are calculated in 96 and 108 atom
cells. Some of the values are from Ref. 12.
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�Figs. 5�b�, 5�e�, and 5�f�� and trimers �Figs. 5�c�, 5�f�, and
5�h�� interact more strongly even beyond several lattice con-
stants. Tetramers altogether lose their ability to interact with
other clusters beyond r�9 Å �Figs. 5�d�, 5�g�, 5�i�, and
5�j��. Changing from the GGA to LSDA+U has an effect on
the intercluster spin-flip energies, but the change is not as
dramatic as in the case of intracluster coupling.12 We find the
largest difference for a Mn1-Mn3 pair 6.13 Å apart, for
which �E increases 50% from 76 to 117 meV when GGA is
changed to LSDA+U. On average, LSDA+U yields higher
spin-flip energies by some tens of percent but qualitatively
the intercluster magnetic properties remain similar to those
predicted by GGA.

The observed long-ranged magnetic coupling is different
from coherent potential approximation �CPA� cal-
culations,39,40 where a short-ranged double-exchange mecha-
nism is reported as the dominant interaction. While our re-
sults also show that a strong interaction exists at short dis-
tances, they also suggest the presence of an additional
relatively long-ranged coupling mechanism. As the interclus-
ter spin-flip energies are considerably smaller than the intra-
cluster ones, the intercluster coupling will indeed be the
dominating factor in determining the Curie temperature of
the system at low Mn concentrations. Since the GGA and
LSDA+U intercluster spin-flip energies are quite close to
each other, the choice of functional should not have a dra-
matic effect on TC

MC. Furthermore, since the LSDA+U ener-
gies for both intra- and intercluster spin flips are usually
higher than the GGA ones, calculating the TC

MC based on
GGA values should avoid an overestimate.

Figure 6 shows the first-principles GGA spin-flip energies
versus the corresponding energies calculated using the effec-
tive Hamiltonian �Eq. �1�� demonstrating quite a good agree-
ment �see the Appendix for details on the mapping of the
first-principles results onto the Hamiltonian�. The figure also
shows three open squares which were calculated afterward to
verify the consistency of the fit. These DFT values deviate

somewhat more from those predicted by the effective Hamil-
tonian; however, even in these cases the first-principles val-
ues are higher than the ones given by the effective Hamil-
tonian, which indicates that the fit does not overestimate the
coupling strengths.

C. Curie temperatures

Curie temperatures calculated using the MC method
�TC

MC� and the MFA methods �TC
MFA and TC

�E, Eq. �2�� are
given in Fig. 7. The TC

MC for a random system mimicking
as-grown �Ga,Mn�N �solid line in Fig. 7� increases linearly
as a function of x and reaches room temperature slightly
below x=0.14 �TC

MC=326 K for x=0.14�. We also find that
clustering causes a dramatic drop in TC

MC as seen by compar-
ing the solid and dashed lines in Fig. 7 representing the ran-
dom and clustered 1000 K equilibrium states, respectively.
For example, at x=0.10, the random configuration value of
215 K is lowered to 72 K in a clustered state �for a more
detailed discussion of the effects of clustering, see Ref. 13�.

We also find that disorder decreases TC
MC: When a regular

Mn1-Mn2 lattice at x	0.08 is changed to a random system
with nearly the same Mn concentration, TC

MC drops from
187 to 160 K. Similarly, changing from a regular Mn1 lattice
at x=0.10 to a random system causes the TC

MC to drop from
246 to 215 K.13 The result agrees qualitatively with Ref. 40
but our changes are smaller. The relatively small drops in
TC

MC we observe are due to the magnetic interactions extend-
ing quite far and having weak dependence on the intercluster
distance r at the tail region r�9 Å �see, e.g., Fig. 5�b��. The
number of distant �r�9 Å� cluster pairs outweighs that of
nearby �r�9 Å� ones even though the latter interact more
strongly. This makes TC

MC relatively insensitive to the
changes in r’s that occur when changing from an ordered to
a disordered configuration.

FIG. 6. The spin-flip energies �E given by DFT versus the same
energies calculated from the effective Hamiltonian. The filled
squares have been used in the fitting of the exchange function,
while the open squares are additional points calculated in order to
test consistency.

FIG. 7. Calculated Curie temperatures as a function of Mn con-
centration x. Solid and dashed lines represent TC

MC’s for random and
1000 K clustered states, respectively �Ref. 13�. TC

MFA and TC
�E val-

ues for ordered lattices are given as diamonds and triangles, respec-
tively. TC

�EDFT and TC
�EH are calculated from �EDFT and �EH, re-

spectively. The cluster sizes in each lattice are given by the numbers
in parentheses. Some of the TC

�EDFT values are taken from Ref. 12.
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We next compare the Monte Carlo and mean-field meth-
ods for calculating Curie temperatures of ordered lattices. We
obtain two sets of TC

�E values by using both �EDFT and �EH
in Eq. �2� �see Fig. 6�. These values are shown in Fig. 7 as
triangles for lattices where the clusters are set uniformly; i.e.,
the two clusters are set as far apart from each other as pos-
sible in the spanning supercell. The TC

MFA values for the same
lattices are shown in Fig. 7 as diamonds and the three mean-
field values of a given system are connected with a vertical
line. The highest TC

�E values we obtain are approximately
514 K for the Mn1-Mn2 �x=0.083� and 515 K for the
Mn2-Mn2 �x=0.100� supercells. These values are twice the
corresponding TC

MC ones �even for ordered lattices�. The
MFA neglecting internal degrees of freedom of the clusters
as well as local fluctuations in magnetic ordering always
overestimates the Curie temperature. However, since the
spins in the studied systems exhibit long-ranged interactions,
the mean-field treatment should be reasonable. In fact, Fig. 7
shows that most of the TC

�E values obtained for the supercell
systems are of the same order as the TC

MC values—only the
highest �E’s lead to very high overestimates. This error is
mostly due to the difference between TC

MFA and TC
�E, as dis-

cussed in Sec. II. In the cases of the highest �E values,
where the anomalously strong nearest-neighbor interactions
occur �in the region r	6, . . . ,8 Å�, our TC

�E values are
nearly twice the corresponding TC

MFA ones. The TC
MFA values,

on the other hand, are not too bad overestimates since the �E
approximation is not made. For instance, for the Mn1-Mn2
lattice with x=0.083, TC

�E is about 514 K but calculating the
sum of exchange coefficients using the fitted J’s �Eq. �A8��
yields �J=72 meV and TC

MFA=278 K, i.e., 240 K lower than
the value extracted straightforwardly from �E although still
90 K higher than the accurate Monte Carlo result TC

MC

=187 K �for an identical ordered lattice�. Although the TC
MFA

values, having been calculated for ordered lattices, appear as
a rather scattered set of data points, further inspection reveals
that they are actually in reasonable quantitative agreement
with the TC

MC values: The lattices with small clusters �the
cluster sizes are given in parentheses in Fig. 7� have their
TC

MFA values close to the TC
MC of the random state �solid line

in Fig. 7� where also most of the Mn reside in monomers and
dimers. The supercells with no more than four Mn ions in
them even reasonably well capture a similar increasing trend
as a function of x as seen in TC

MC. Lattices with larger clusters
have their TC

MFA values closer to the TC
MC of the clustered

state �dashed line in Fig. 7�, and especially the tetramer lat-
tices show suppressed TC

MFA’s. Thus, also the effect of clus-
tering is clearly visible in the TC

MFA results.
In a similar calculation for �Ga,As�Mn, we found TC

MC to
be slightly too high but otherwise a good quantitative esti-
mate for the experimental Curie temperature.41 Therefore, we
expect that also in the case of �Ga,Mn�N the obtained values
of TC

MC, while possibly slightly overestimated, describe the
Curie temperature semiquantitatively correctly.

V. CONCLUSIONS

We have studied the structures, formation energies, and
magnetic interactions of various Mn clusters in �Ga,Mn�N by

carrying out all-electron total-energy density-functional cal-
culations. In agreement with previous results, we find that it
is energetically favorable for the substitutional Mn ions to
form clusters and that small clusters where the Mn ions sur-
round one central N ion are especially stable. The energy
gain associated with clustering has a maximum for tetramer
formation, suggesting that the Mn clusters are most likely to
be small. We find a relatively long-ranged magnetic interac-
tion between the clusters and this coupling is strongest for
dimers and trimers and weakest for tetramers. By mapping
the density-functional spin-flip energies on an effective
Hamiltonian, we calculate the Curie temperature TC of the
material using Monte Carlo methods. It is found that cluster-
ing has a strong, decreasing effect on TC at all concentra-
tions: for a random distribution of Mn ions, quite high TC’s
are found while in a clustered state the Curie point is much
lower. As a comparison, disorder has a much smaller effect
compared to clustering due to the long-ranged interactions
present. Curie temperatures calculated using the mean-field
approximation �by evaluating the sum of exchange con-
stants� are in reasonable agreement with the accurate Monte
Carlo results. On the other hand, calculating TC directly from
energy differences between ferromagnetic and antiferromag-
netic states can in some cases lead to high overestimates.42
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APPENDIX: THE EFFECTIVE HAMILTONIAN

In this appendix, we derive the Hamiltonian used and
present the assumptions made. We describe Mn spins by
classical unit vectors eik, where i is the cluster index and k is
the index inside the cluster. The number of spins in cluster i
is ni. The Heisenberg Hamiltonian reads

H = − �
�ik,jk��

Jij
kk�eik · e jk�

= − �
�i,j�

�
k,k�

Jij
kk�eik · e jk� − �

i
�

�k,k��

Jii
kk�eik · eik�

= Hinter + Hintra, �A1�

where �·, ·� denotes a sum over pairs. The normalized spin of
cluster i is given by the vector sum of the Mn ion spins

si =
1

ni
�

k

ni

eik. �A2�

The intercluster couplings in Hinter are approximated as

Jij
kk� = Jninj

�rij�ni
−1nj

−1, �A3�

where rij is the distance between cluster centers i and j.
Jninj

�rij�’s thus depend on intercluster distances and cluster
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types but directional dependencies are excluded. Substituting
expression �A3� in Hinter �Eq. �A1�� gives

Hinter = − �
�i,j�

Jninj
�rij�
 1

ni
�

k

ni

eik� · 
 1

nj
�
k�

nj

e jk��
= − �

�i,j�
Jninj

�rij�si · s j . �A4�

We do not use the Heisenbergian expression Hintra in Eq.
�A1� for the intracluster interactions since it is incapable of
describing the calculated total energies �see Sec. IV A�. In-
stead, we describe the internal energies of clusters as func-
tions of the effective spins,

Hintra = − �
i

Eni
�si� . �A5�

As our first-principles calculations are restricted to collinear
spin configurations �↑n, ↑n−1↓, etc.�, for which the effective
spin s obtains values Sn

m= �n−2m� /n, m=0, . . . ,n, we set the
values of En�Sn

m� according to the calculated first-principles

energies and interpolate for values of s in between. This is
done so that for the dimer, we retain the usual e1 ·e2 cou-
pling,

E2�s� = E� − Je1 · e2 = E2�1� + �E2�0� − E2�1���1 − s2� .

�A6�

The quadratic interpolation is generalized for other n
straightforwardly by

s � �Sn
m+1,Sn

m� ⇒ En�s� = En�Sn
m� + �En�Sn

m+1� − En�Sn
m���1 − 
 s − Sn

m+1

Sn
m − Sn

m+1�2 . �A7�

This completes the construction of Hintra in Eq. �A1�. The
values En�Sn

m� are given in Sec. IV A.
We determine the intercluster exchange coefficients

Jninj
�rij� by demanding that the spin-flip energies obtained

using the effective Hamiltonian �Eqs. �A1�–�A7�� agree with
the first-principles ones as closely as possible �in the least-
squares sense�. This is done by considering suitable func-
tional forms for Jninj

�r� and fitting the energy values explic-
itly taking into account the periodicity of the calculated
systems and the coupling to periodic images up to a cutoff
distance, chosen as rcut=13 Å	4a.

We examine first the Mn1-Mn2 pair, for which ten first-
principles data points exist �see Fig. 5�b��. Neglecting the
anomalous �E values at r	6 Å, we fit power-law and ex-
ponential functions to the spatially decaying part in J12�r�.
The best fit is obtained using a function A12r

−3 with A12

=3.00 eV Å3. In order to represent the anomalous �E values
neglected thus far, we add a local correction term B12�r
−r12

a �exp�−12�r−r12
b �2�, which yields the best fit with pa-

rameters B12=302 meV Å−1, r12
a =5.59 Å, r12

b =5.69 Å, and
12=16.3 Å−2. The difference between spin-flip energies �per
cluster pair� given by DFT and the effective Hamiltonian
remains less than 7 meV in all cases and the relatively good
fit also suggests that using the Heisenberg-type model for the
intercluster couplings is justified. The coupling function is
generalized for other cluster pairs by assuming the same
functional form

Jninj
�r� =

Aninj

r3 + Bninj
�r − rninj

a �e−ninj
�r − rninj

b �2
. �A8�

However, due to computational reasons, we have been able
to calculate only few data points for each cluster pair �Fig.
5�, and so we further assume that the shape of the local
correction and its height with respect to the decaying part are
the same in all cases; i.e., that rninj

b —rninj

a , ninj
, and

Bninj
/Aninj

�rninj

a �−3 are constants. This leaves only Aninj
and

rninj

a as free parameters, which are then fitted to the first-
principles data. The obtained parameter values are given in
Table I �see also Ref. 13�. The highest Aninj

are obtained for
dimers and trimers and the lowest for tetramers. Note that if
the intercluster coupling was described as a sum of separate
Mn-Mn couplings, we would expect Aninj

�ninj �cf. Eq.
�A3��, which is clearly not the case. Therefore, it is important
that the coupling is studied separately for all cluster pairs. It
should also be noted that although directional dependencies
in the exchange coupling may in some cases be
important,43,44 consistency between our model and the DFT
results is good even though directional effects have been
neglected �see Fig. 6�.

To complete the construction of the effective Hamil-
tonian, we must properly define the clusters into which the
Mn ions are grouped. Our cluster locating algorithm works
as follows: �i� Mark all Mn ions in the system as being “free”
and set n=4. �ii� Scan the system. If a N ion with n free Mn
nearest neighbors is found, mark them as one Mnn cluster

TABLE I. Parameters Aninj
�given in multiples of A11

=1.5 eV Å−3� and rninj

a �in Å� for the fitted exchange functions �Eq.
�A8��.

�ni ,nj� Aninj
rninj

a �ni ,nj� Aninj
rninj

a

�1,1� 1.0 5.9 �2,3� 2.8 6.3

�1,2� 2.0 5.6 �2,4� 1.5 5.9

�1,3� 2.8 5.8 �3,3� 2.8 6.5

�1,4� 0.9 5.7 �3,4� 0.8 7.0

�2,2� 2.8 5.4 �4,4� 0.5 7.3
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�“nonfree”�. �iii� Once completed, set n=n−1. Finish if
n=0, otherwise return to step �ii�. Summarizing, we define a
cluster as a collection of Mn ions with a common nearest-
neighbor N with the restriction that each Mn ion can belong
to only one cluster. In this way, for instance, a ring-shaped
trimer is treated as a dimer and a monomer and a planar
tetramer as a trimer and a monomer. This is not a unique
grouping, but the ionic relaxations and the result that the
N-centered clusters are the most stable structures support this
definition. The definition also fixes the maximum cluster size
to Mn4, and therefore we know the functions Jninj

�r� for all

cluster pairs. Although the exchange interactions for dimers
and trimers have been studied using only the a-plane con-
figurations of Mn2 and Mn3, we assume that tilted configu-
rations behave similarly. When generating simulation geom-
etries, we randomly deposit clusters in the lattice according
to a predetermined size distribution. Once the generation is
completed, the cluster distribution is recalculated to check
that the grouping is correct. If the distribution is not correct
�e.g., two dimers are set next to each other and form a trimer
and a monomer�, clusters are removed and added as needed
until the required distribution is reached.
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