
A priori Wannier functions from modified Hartree-Fock and Kohn-Sham equations

Christian Buth*
Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Straße 38, 01187 Dresden, Germany

�Received 12 October 2006; revised manuscript received 6 December 2006; published 29 March 2007�

The Hartree-Fock equations are modified to directly yield Wannier functions following a proposal of
Shukla et al. �Chem. Phys. Lett. 262, 213 �1996��. This approach circumvents the a posteriori application of
the Wannier transformation to Bloch functions. I give a rigorous derivation of the relevant equations by
introducing an orthogonalizing potential to ensure the orthogonality among the resulting functions. The prop-
erties of these, so-called a priori Wannier functions, are analyzed and the relation of the modified Hartree-Fock
equations to the conventional, Bloch-function-based equations is elucidated. It is pointed out that the modified
equations offer a different route to maximally localized Wannier functions. Their computational solution is
found to involve an effort that is comparable to the effort for the solution of the conventional equations. Above
all, I show how a priori Wannier functions can be obtained by a modification of the Kohn-Sham equations of
density-functional theory.
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I. INTRODUCTION

Ever since the introduction of Wannier functions in 1937,1

they have been used as an alternative representation to Bloch
functions in the study of crystalline solids.1–8 They provide a
local, atomic-orbital-like view on one-particle states of crys-
tals, which is the direct generalization to periodic systems of
the concept of localized molecular orbitals used by chemists
to study bonding in molecules and clusters. In such a way,
they come much closer to the intuitively accessible concepts
of chemical bonding than the conventional, plane-wave-like
Bloch orbitals which are completely delocalized over the
whole crystal.1–8 Wannier functions have been used fre-
quently in formal deductions. However, only recently do
they become practically important, e.g., they are used to
achieve linear scaling with the system size of the tight-
binding or Kohn-Sham method.9,10 Moreover, as soon as
electron correlations in the ground state and in excited states
are regarded, a local representation offers big
advantages.5,8,11–18

Conventionally, Wannier functions are determined a pos-
teriori from Bloch functions utilizing the Wannier
transformation.1–4,6,7 It is unique up to a unitary matrix,
which can be chosen freely to obtain a certain set of Wannier
functions, e.g., those which are maximally localized with
respect to a given criterion. Marzari and Vanderbilt6 and
Zicovich-Wilson et al.7 advocate the Foster-Boys
functional.19–21 However, there are a number of other local-
ization criteria such as the method of Edmiston and
Ruedenberg22 or the recipe of Pipek and Mezey23 which can
be used, too.

Instead, Shukla et al.24 proposed an embedded-cluster
model that facilitates solving modified Hartree-Fock equa-
tions, which directly yield Wannier-type functions. The
theory has been implemented in terms of the computer pro-
gram WANNIER,24,25 which has been used in a series of stud-
ies of polymers and crystals.11,24–27 It was found, empirically,
to provide accurate Hartree-Fock energies and band
structures.24,25,27,28 The program has also been used as a
starting point for post Hartree-Fock calculations; the correla-
tion energy of the ground state11,29 and the quasiparticle band
structure of several polymers and crystals have been

investigated.12,14,15,17 The idea to directly solve for Wannier-
type functions has also been discussed, e.g., in Refs. 9, 10,
and 30 �and references therein�.

The paper is structured as follows. In Sec. II, I devise a
rigorous proof of the modified Hartree-Fock equations of
Shukla et al.24 and give the corresponding modified
Roothaan-Hall equations. The functions that result from
these equations are termed a priori Wannier functions. The
relation of the modified equations to the canonical, Bloch-
function-based equations and a comparison of the computa-
tional effort of both approaches can be found in Sec. III.
Conclusions are drawn in Sec. IV; specifically, I show that
the Kohn-Sham equations of density-functional theory can
be modified in the same way as the Hartree-Fock equations
to obtain a priori Wannier functions.

Atomic units are used throughout the article.

II. A PRIORI WANNIER FUNCTIONS

A. Definitions

The sets of functions �wR���r�s�, �=1, . . . ,K� are associ-

ated with each unit cell R� of a crystal; they depend on the
spatial and spin coordinates r� and s, respectively. The sets
are translationally related; i.e., two such sets can be brought
into coincidence by displacing the functions in one of them

by a suitable lattice vector R� �,

wR� +R����r�s� � �r�s	R� + R� ��
 = wR���r� − R� �s� = T̂R��wR���r�s� .

�1�

Here, T̂R�� denotes the translation operator for a passive trans-

lation by R� �. Furthermore, the functions are assumed to be
orthonormal with respect to an integration over the entire
space,

�wR� �	wR���
 = �
s=−1/2

1/2 �
R3

w
R� �

* �r�s�wR����r�s�d3r = �R� R�����.

�2�

The two properties �1� and �2� characterize �spin� Wannier
functions,1–4 which are frequently termed �spin� Wannier or-
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bitals, if they are Hartree-Fock or Kohn-Sham �spin� orbitals.
I describe the crystal by a nonrelativistic Hamiltonian5,31

Ĥ = �
n=1

N

ĥn +
1

2 �
m,n=1

m�n

N
1

	r�m − r�n	
+ Ênucl, �3a�

ĥn = −
1

2
�� n

2 − �
i=1

N0

�
A=1

M ZR� iA

	r�n − r�R� iA
	
, �3b�

Ênucl =
1

2 �
i,j=1

i�j

N0

�
A,B=1

∨A�B

M ZR� iA
ZR� jB

	r�R� iA
− r�R� jB

	
, �3c�

assuming fixed nuclei. Here, N denotes the number of elec-
trons in the crystal which is represented by a parallelpiped
that consists of N0 unit cells. The distance between the mth
and the nth electron is represented by 	r�m−r�n	. The number of
nuclei per unit cell is indicated by M and ZR� iA

�ZA stands for

the charge of nucleus A in unit cell R� i. Then, 	r�n−r�R� iA
	 is the

distance between the nth electron and the Ath nucleus in unit

cell R� i. Finally, 	r�R� iA
−r�R� jB

	 denotes the distance between nu-

clei A and B of charge ZR� iA
�ZA and ZR� jB

�ZB in unit cells R� i

and R� j, respectively.

B. Wannier-Hartree-Fock equations

The ansatz for the Hartree-Fock wave function is given by
the Slater determinant in terms of the occupied Wannier or-
bitals,

�0
N�r�1s1, . . . ,r�NsN� = Â

i=1

N0


j=1

N�

wR� i�j
�r� j+�i−1�N�sj+�i−1�N�� ,

�4�

where N�= N
N0

is the number of occupied orbitals per unit cell

and Â stands for the antisymmetrizer.32 The energy expecta-
tion value of the Slater determinant �4� with the Hamiltonian
�3� reads24,32,33

E��0
N�r�1s1, . . . ,r�NsN��

= �
R�

�
�=1

N�

�wR� �	ĥ1	wR� �
 +
1

2 �
R� ,R��

�
�,�=1

N�

���wR� ��1�wR����2�� 1

	r�1 − r�2	
�wR� ��1�wR����2��

− �wR� ��1�wR����2�� 1

	r�1 − r�2	
�wR����1�wR� ��2���

+ Enucl; �5�

it is a functional of the Wannier orbitals.
In order to minimize the energy expectation value to ob-

tain the best description of the ground state by a single Slater
determinant in terms of Ritz’ variational principle, functional

variation with respect to the orbitals in Eq. �5� is carried
out.14,32,33 In doing so, I subtract the constraints

�
R� ,R��

�
�,�=1

N�

�R���R� ���wR� �	wR���
 − �R� R������ �6�

from E��0
N�r�1s1 , . . . ,r�NsN��, employing the Lagrangian mul-

tipliers �R���R� �; this ensures the orthonormality of the orbit-
als. One arrives at the Hartree-Fock equations in terms of
Wannier orbitals,

f̂ 	wR� �
 = �
�=1

N�

�R� �R� �	wR� �
 + �
R���R�

�
�=1

N�

�R���R� �	wR���
 , �7�

with f̂ denoting the Fock operator. Expression �7� forms a set
of N equations which couple the occupied Wannier orbitals
in a unit cell to the occupied Wannier orbitals in all other
cells of the crystal. Above all, the Hartree-Fock equations �7�
do not have the form of an eigenvalue equation. For these
reasons, their practical application is cumbersome.

To make progress towards a more favorable, modified
form of Hartree-Fock equations for Wannier orbitals, I omit
the intercell Lagrangian multipliers in Eq. �6� and thus arrive
at the new energy functional

L��0
N�r�1s1, . . . ,r�NsN��

= E��0
N�r�1s1, . . . ,r�NsN�� − �

R�
�

�,�=1

N�

�����wR� �	wR� �
 − ���� .

�8�

Here, the translational symmetry of � is exploited, i.e.,

�����0��0��=�R� �R� � for all lattice vectors R� and orbital indi-
ces �, �. This symmetry, however, will be broken again in
the next paragraph. Minimizing L leads to orthonormal spin
orbitals in each unit cell. However, by this simplification of
Eq. �6�, one does not enforce the mutual intercell orthogo-
nality of the orbitals. Starting from a properly orthonormal-
ized initial guess for the Wannier orbitals in the origin cell
may lead to overlapping orbitals.

In order to nonetheless achieve orthogonality of the occu-
pied orbitals in the origin cell to all other orbitals, i.e., their
periodic images in all the other unit cells, I modify the en-
ergy functional L in Eq. �8� once more by adding an artificial
orthogonalizing potential,

L���0
N�r�1s1, . . . ,r�NsN�� = L��0

N�r�1s1, . . . ,r�NsN�� + VOrth,

�9�

which is defined by

VOrth =
	

2 �
R� ,R��

R��R��

�
�,�=1

N�

�wR� �	wR���
�wR���	wR� �
 , �10�

where 	
0 is called the orthogonalizing potential strength
or shift parameter. All terms in definition �10� are real and
non-negative, causing an increase of energy proportional to
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the square of the modulus of the overlap between a pair of

orbitals in different unit cells R� and R� �. Minimizing L�, in
the limit 	→�, both preserves the orthogonality among the
Wannier orbitals in all cells of the crystal and minimizes the
Hartree-Fock energy functional E in Eq. �5�. It has been
shown in practical computations that a finite orthogonaliza-
tion potential strength 	 in the range of 103–105 hartrees
causes the resulting Hartree-Fock energies not to show a no-
ticeable dependence on 	.26

Expression �10� can be rewritten compactly by recogniz-
ing that the orbitals within a particular unit cell are orthonor-

mal by construction �8�. Therefore, the constraint R� ��R� ��
can be used instead for the summation in Eq. �10�. Conse-
quently, the potential VOrth can be expressed in terms of the
off-diagonal elements of the overlap matrix between the
orbitals,

S\R� �R��� = �1 − �R� R�������wR� �	wR���
 . �11�

By taking the trace of S\2, I arrive at

VOrth =
	

2
Tr S\2, �12�

which is an alternate form for Eq. �10�.
To minimize the functional L� in Eq. �9�, I carry out func-

tional variation with respect to the N� occupied orbitals in

unit cell R� ;44 I arrive at modified Hartree-Fock equations

� f̂ + 	P̂R��	wR� �
 = �
�=1

N�

�R� �R� �	wR� �
 , �13�

which I term Wannier-Hartree-Fock equations. The penalty
projection operator45 therein is defined by

P̂R� = �
R���R�

�
�=1

N�

	wR���
�wR���	 . �14�

It is not translationally symmetric; instead, the relation

T̂g�P̂R� = P̂R� −g� holds. This property of the projector P̂R� distin-

guishes the Wannier orbitals in unit cell R� in the Wannier-
Hartree-Fock equations �13� from their periodic images in
other unit cells because it breaks the translational symmetry

of the Fock operator f̂ .
The translational relation of the Wannier function �1� im-

plies that it is sufficient to formulate and solve Eq. �13� only
in the origin cell. For orthogonal orbitals, the Lagrangian
multipliers �0��0�� constitute a Hermitian matrix,32,33 which is

diagonalizable by a unitary transformation X†�X=�. Both f̂

and P̂0� are invariant under such a transformation which
mixes the orbitals within every unit cell including, particu-
larly, the origin cell. Therefore, I formally get a Hermitian
N��N� eigenvalue problem

� f̂ + 	P̂0��	w̌0��
 = �0��	w̌0��
 , �15�

which resembles the canonical Hartree-Fock equations31–35

and is thus named pseudocanonical Wannier-Hartree-Fock
equations. The transformation of the orbitals is indicated by

affixing a check accent. They are referred to as pseudoca-
nonical Wannier orbitals. Due to the fact that these orbitals
diagonalize the Fock matrix in the origin cell, they are
uniquely determined, apart from degeneracies, in analogy to
canonical orbitals.32,33 Once a self-consistent solution of Eq.
�15� has been found, the parametrical dependence on 	 of the
orbitals and eigenvalues therein vanishes because they are
equal to the orthonormal orbitals from the previous iteration

that have been used to construct f̂ and P̂0� to begin with.
The pseudocanonical Wannier orbitals are delocalized

over the entire origin cell and thus implicate a similar disad-
vantageous nonlocality associated with Bloch orbitals when
applying cutoff criteria to the Fock matrix and to the two-
electron integrals.14,15,17 However, this form of the Wannier-
Hartree-Fock equations is a good starting point for further
improvements by means of an additional localizing potential
that can be introduced in the expression for L� in Eq. �9�.
Established forms of localizing potentials are the one of Ed-
miston and Ruedenberg22 for their localization criterion and
the one of Gilbert36 for the Foster-Boys criterion.19–21

The functional dependence of f̂ +	P̂0� on the occupied
Wannier orbitals can be disregarded.32,33 Then, the Fock op-
erator becomes a conventional Hermitian operator and the
restriction of the penalty projection operator, to act only on
occupied orbitals, can be released, i.e., N� in Eq. �14� is
replaced by the total number of orbitals per unit cell K. Now,
Eq. �15� holds also for virtual Wannier orbitals.

C. Wannier-Roothaan-Hall equations

Spin Wannier orbitals have been employed so far. Let me
assume a restricted, closed-shell Hartree-Fock point of view
to remove the spin dependence.32,33 In this case, the spin
orbitals are expressed as the product of a spatial orbital
w̃R���r�� with the spinor for spin up �s� and spin down ��s�,
respectively. The spatial orbitals, w̃R���r��, �=1, . . . ,K, are ex-
panded in terms of one-particle basis functions,7,24 ���r��,
�=1, . . . ,K,

w̌R���r�� = T̂R��
g�

�
�=1

K

Cg��0��T̂g�+d��
���r��

= �
g�

�
�=1

K

Cg�+R� �R�����r� − d�� − g� − R� � . �16�

The number of basis functions K determines the number of
orbitals per unit cell. In Eq. �16�, I exploit the fact that both
the spatial Wannier orbitals and the basis functions

T̂g�+d��
���r�� form sets of functions whose members are related

by lattice translations �1�. The expansion coefficients, hence,
are translationally symmetric Cg�+R� �R��=Cg��0���C���g��. The

displacement d�� of the �th basis function in a unit cell ac-
counts for the fact that a basis function is frequently centered
on atoms which, in turn, are displaced somewhat from the
origin of the unit cell.

The basis-set representation of the Fock operator f̂ is

Fg��g���= ��g��	 f̂ 	�g���
, the overlap matrix is Sg��g���
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= ��g�� 	�g���
, and the matrix of the penalty projection opera-
tor �14�—with N� replaced by K—reads24

�PR��g��g��� = ��g��	P̂R� 	�g���


= �
R��,g�1,g�2

R���R�

�
�,�,�=1

K

Sg��g�1�Cg�1�R���C
g�2�R���
*

Sg���g�2�
* .

�17�

Representing Eq. �15� in the basis set, I obtain modified
Roothaan-Hall equations24

�F + 	P0��C� � = �0��SC� � �18�

to which I refer as Wannier-Roothaan-Hall equations. For-
mula �18� yields the occupied and virtual Wannier orbitals in
the origin cell w̃0���r�� with �=1, . . . ,K and expansion coef-

ficients �C� ��g���Cg��0�� for all KN0 indices g��. In expression
�18�, the coupling of the Wannier orbitals in the origin cell to
the Wannier orbitals in neighboring unit cells reappears by
means of the basis-set representation �16� which could be
avoided by omitting the Lagrangian multipliers in Eq. �8�.
Consequently, the dimension of the matrices in Eq. �18�
scales both with the number of basis functions in the origin
cell and with the number of unit cells utilized to support the
Wannier orbitals. Note that only a subset of K eigenvectors
out of the KN0 eigenvectors of Eq. �18� is required. The
Wannier orbitals in other but the origin cell are simply given
by lattice translations �1�, exploiting that the expansion co-
efficients C���g�� are translationally symmetric. Therewith,
all Wannier orbitals of the crystal are determined. The energy
bands are not given by the �0�� in Eq. �18�. Instead, they are
found by diagonalizing the Hermitian matrix F�k��
=�R�eik�R�F0�R� for a number of k� points, where �F0�R����

= �w0��	 f̂ 	wR��
 are blocks of the Fock matrix in Wannier rep-
resentation.

The solution of the Wannier-Roothaan-Hall equations �18�
has been implemented in the WANNIER program24,25 and its
accuracy was tested in a series of studies. Systematic com-
parisons were made of ground-state properties and band
structures of crystals25,27 and infinite chains.28 The basis-set
expansion �16� is found to provide a satisfactory accuracy
using up to third-nearest-neighbor cells for ionic three-
dimensional crystals14,15,24–27 as well as covalently bonded
and hydrogen-bonded infinite chains.13,14,16,17,28 Note, how-
ever, that despite the fact that variation of the expansion
coefficients in Eq. �16� is allowed only in a small cluster of
unit cells, a sophisticated treatment of the very long range
electrostatic interactions in the Fock operator is required, ac-
counting for a large number of unit cells. Therefore, one uses
the Ewald summation technique for the Coulomb matrix el-
ements and an extended summation for the exchange matrix
elements.25 The occupied pseudocanonical a priori Wannier
orbitals are found to reach a few angstroms from the atom
they are centered on.25,26

III. PROPERTIES

A. Relation to canonical Hartree-Fock equations

The connection of the Wannier-Hartree-Fock equations
�15� to the corresponding equations of a Bloch-orbital-based
formalism—the canonical Hartree-Fock equations32,33—can
be achieved readily. To this end, the orthogonalizing poten-
tial �12� is replaced by an expression which comprises the
full overlap matrix, i.e., 	

2 Tr S2. As the Wannier functions are
normalized to unity, one obtains Tr S2=Tr S\2+KN0. This
amounts to a meaningless overall energetic shift of L� in Eq.
�9� upon replacing VOrth. Functional variation of the new L�
yields that the summation in the penalty projector of Eqs.
�14� and �17� is no longer restricted to the unit cells in the
neighborhood but also contains the origin cell, i.e., the op-

erator �R���R� is exchanged by �R��. The new projector P̂ be-
comes translationally symmetric and actually the identity op-

erator 1̂. This transformation of the Hartree-Fock equations is

equivalent to the addition of ��=1
N� 	wR� �
�wR� �	 on both sides of

Eq. �13�, which causes the eigenvalues �0�� �cf. Eq. �15�� to
shift by 	, i.e., they become �0��+	. The modification undoes
the orthogonalizing potential and reverts the equations to the
modified Hartree-Fock equations which result from Eq. �8�
with its eigenvalues shifted by 	. Expression �7� is obtained

again by realizing that the matrix representation of f̂ +	P̂ in
terms of Wannier orbitals also contains off-diagonal terms
with respect to the lattice vectors, thus reintroducing off-
diagonal Lagrangian multipliers.

The arguments of the previous paragraph can be ex-
pressed more clearly by changing the Wannier-Roothaan-
Hall equations �18� because their dimensionality and formal
structure are preserved under the replacement of the projec-

tor. Due to the translational symmetry of f̂ + P̂, Born–von
Kármán boundary conditions become beneficial.3,4 With the

matrix representation of P̂= 1̂, which is P=S, the modified
Roothaan-Hall equations �18� are changed to14

�F + 	P�C� = SC���. �19�

The N0K�N0K matrices F, S, and P are cyclic matrices
which can be block diagonalized employing the unitary

transformation31,37 WR��k�p= 1
�N0

��peik�R� . Multiplying with W†

from the left and inserting WW† before C�, the eigenvalue
problem �19� breaks down into N0 independent K�K eigen-
value problems,

�F�k�� + 	P�k���C��k�� = S�k��C��k�����k�� . �20�

Solving these equations yields orthonormal Bloch orbitals
and energy bands which are shifted by 	.

B. Computational efficiency

To compare the computational effort of the canonical
Hartree-Fock method to the modified Hartree-Fock method, I
analyze the corresponding Roothaan-Hall equations, Eqs.
�20� and �18�, respectively. Without regarding space group
symmetry, both sets of equations have the same dimension-
ality because the number of orbitals �or basis functions� is
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the same, namely, KN0. The effort to compute the matrix
elements is clearly the same for the basis-set overlap matrix;
it is also equal for the Fock matrix because the Fock operator
is invariant under unitary transformations of the orbitals. The
support of the basis-set expansion is the same for Bloch and
Wannier orbitals: the basis functions in the parallelepiped of
N0 unit cells. Only the expansion coefficients differ. Conse-
quently, the number of floating point operations necessary to
determine the Fock operator is the same, if no further ap-
proximations are made. Yet the projection operator, which is
only required for the modified Hartree-Fock equations, re-
quires an extra effort.

In a next step, the modified and canonical Roothaan-Hall
equations need to be diagonalized. In both cases, a full di-
agonalization requires the same effort. However, in practice a
selective computation is carried out. The canonical equations
are block diagonalized first, Eq. �20�, and the subblocks are
independently diagonalized fully afterwards for a grid of k�
points.38 The Wannier-Roothaan-Hall equations have to be
treated differently. The spectrum of F+	P0� in Eq. �18� has
a very favorable property: the lower K eigenvalues corre-
spond to the Wannier orbitals in the origin cell. The other
eigenvalues are well separated from the former ones because
they are shifted to high values by the shift parameter 	.25

Iterative eigenvalue solvers, particularly the one of
Davidson,39 can be employed to reduce the numerical effort
to determine the lowest K eigenpairs of F+	P0�. Their effort
is predominantly determined by the matrix times vector
product. As the summation expression for this product and
the summations for the block diagonalization and subsequent
k� space integration are similar, the overall computational ef-
fort of both methods, to determine crystal orbitals with a
certain accuracy, should be comparable. In fact, the Bloch-
orbital-based equations can be solved more efficiently for
crystals with a small number of atoms per unit cell; the so-
lution of the Wannier-orbital-based equations is more effi-
cient for crystals with a large unit cell because cutoff criteria
can be established to lower the actual effort.

IV. CONCLUSION

In this paper, I derive modified Hartree-Fock equations,
which directly yield Wannier orbitals. An orthogonalizing
potential is added to the Hartree-Fock energy functional to
ensure the proper orthonormality of the resulting orbitals. It

serves to replace the Lagrangian multipliers between unit
cells needed otherwise. The equations necessarily break the
translational symmetry as Wannier functions are translation-
ally related, in contrast to Bloch functions which are trans-
lationally symmetric. I show how the conventional Bloch-
orbital-based Hartree-Fock equations can be recovered by
restoring the translational symmetry of the modified equa-
tions. Analyzing the spectral properties of the modified Fock
matrix, I find the numerical effort of the method to be com-
parable to the effort of the Bloch-orbital-based approach.

The orbitals which result from the modified Hartree-Fock
equations are referred to as pseudocanonical Wannier func-
tions as they are delocalized over the entire unit cell. How-
ever, they can be localized additionally within unit cells by
adding a suitable localizing potential to the energy expres-
sion. Particularly, the potential of Gilbert36 is to be men-
tioned here, which minimizes the Foster-Boys
functional.19–21 It thus offers a different route to Refs. 6 and
7 to determine maximally localized Wannier functions. Al-
ternatively, the potential of Edmiston and Ruedenberg can be
used as a localizing potential.22

This study is based on the Hartree-Fock theory. However,
the extension of the ideas to density-functional theory40–42 is
straightforward. To this end, one exchanges the Hartree-Fock
energy functional �5� by the Hohenberg-Kohn energy func-
tional in terms of the Kohn-Sham orbitals.41,42 The
Hohenberg-Kohn variational theorem40,42 ensures that mini-
mizing this functional with respect to the orbitals provides
the exact ground-state energy, if one uses the exact
exchange-correlation energy functional. The minimization is
carried out under the constraint that the orbitals remain or-
thonormal using Eq. �6�. In other words, we can essentially
follow the line of argument that leads from Eq. �5� to Eq.
�15�. I term the latter equation—with the Fock operator re-
placed by the Kohn-Sham operator—pseudocanonical
Wannier-Kohn-Sham equations. All subsequent arguments
and expressions carry over analogously.
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