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We generalize the treatment of the electronic spin degrees of freedom in density functional calculations to
the case where the spin vector variables employed in the definition of the energy functional can vary in any
direction in space. The expression for the generalized exchange-correlation potential matrix elements is derived
for general functionals which among their ingredients include the electron density, its gradient and Laplacian,
the kinetic energy density, and nonlocal Hartree-Fock-type exchange. We present calculations on planar Cr
clusters that exhibit ground states with noncollinear spin densities due to geometrically frustrated antiferro-
magnetic interactions.
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I. INTRODUCTION

Since the spin-polarized formulation1 of density func-
tional theory2,3 �DFT� was introduced, a large number of
applications have been carried out in magnetic systems. In
most cases, the spin density is assumed to adopt a single
direction �collinear� at each point in space, which is usually
taken as z. However, there are a number of systems where
the spin density �or magnetization density� can take a more
complicated structure, and vary its direction at each point in
space. This type of noncollinear structure was observed in
the form of helical spin density waves or spin spirals for the
ground state of �-Fe,4,5 in geometrically frustrated systems
like, for instance, the Kagomé antiferromagnetic lattice,6 and
in systems with competing magnetic interactions such as the
composite magnet LaMn2Ge2 �Ref. 7� and Fe0.5Co0.5Si.8

Several papers dealing with noncollinear spin density in
DFT calculations have been published in the literature. The
pioneer work of Kübler and co-workers9 for the noncollinear
local spin density approximation �LSDA� was later followed
by a number of independent implementations and applica-
tions. Most of these implementations were carried out using
periodic boundary conditions and plane waves, and are based
either on the LSDA �Refs. 10 and 11� or on a generalized
gradient approximation �GGA�.12 Yamanaka and co-workers
developed a generalized DFT code based on Gaussian type
orbitals.13 Some noncollinear DFT calculations have been
published dealing with magnetic crystals,5,10 and with fourth-
period transition metal clusters.11,14–16 In all cases, the real-
ization of the LSDA and GGA employed in noncollinear
calculations is the same as that developed for collinear spin
systems.

Different parametrizations of the exchange-correlation en-
ergy �Exc� have been proposed beyond the LSDA and the
GGA, incorporating more ingredients in the definition of Exc.
The third rung in this hierarchy17 is the meta-GGA, which
includes the kinetic energy density as a functional ingredient.
Also, hybrid density functionals, which contain a portion of
Hartree-Fock-type exchange, can be regarded as belonging to
the fourth rung �hyper-GGA� in this picture.17 The purpose

of this paper is to provide a consistent generalization for the
treatment of noncollinear spin variables in DFT calculations
beyond the LSDA.

II. THEORY

To allow for noncollinear spin states in density functional
calculations, we start by introducing two-component spinors
as Kohn-Sham �KS� orbitals:

�i = ��i
�

�i
� � , �1�

where �i
� and �i

� are spatial orbitals that can be expanded in
a linear combination of atomic orbitals,

�i
��r� = �

�

c�i
� 	��r� �� = �,�� . �2�

Using the KS formulation, the electronic energy is parti-
tioned into four contributions:

E = ET + EN + EJ + Exc, �3�

where ET is the kinetic energy, EN is the nuclear-electron
interaction energy, EJ is the classical electron-electron Cou-
lomb repulsion energy, and Exc is the exchange-correlation
�XC� energy. Searching for stationary solutions of E is
equivalent to solving the KS equations, which in terms of
two-component spinors �i read

�T + VN + J + Vxc��i = 
i�i, �4�

where T=−1/2�2 is the kinetic energy operator, VN is the
external electron-nuclear potential, J is the Coulomb opera-
tor, and Vxc is the exchange-correlation potential. We shall
here refer to the KS equations in a two-component spinor
basis as the generalized KS �GKS� equations. Since T, VN,
and J are diagonal in the two-dimensional spin space, the
only term in Eq. �4� that couples �i

� and �i
� is Vxc �the spin-

orbit operator, present in a relativistic Hamiltonian, also
couples the two spinor components�. The potential Vxc de-
pends on the choice of Exc and therefore the coupling be-
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tween �i
� and �i

� in the nonrelativistic GKS equations de-
pends exclusively on Exc.

Let us first recall the standard formulation of Exc com-
monly employed in �collinear� unrestricted KS �UKS� calcu-
lations. The general expression of Exc for a hybrid case can
be cast as18

Exc = aEx
DFA + Ec

DFA + �1 − a�Ex
HF, �5�

where Ex
DFA and Ec

DFA are the exchange-correlation contribu-
tions to the energy at some �semi�local density functional
approximation, respectively, Ex

HF is the Hartree-Fock-type
exchange energy, and a is a mixing parameter �0�a�1�.
The functional forms of Ex

DFA and Ec
DFA �as well as the pa-

rameter a� depend, of course, on the choice of the functional
employed in the actual calculation. A general expression for
Exc

DFA=aEx
DFA+Ec

DFA can be written as

Exc
DFA =� d3r f�Q� , �6�

where Q is a set of variables �included in the definition of
Exc�:

Q � �n�,n�,�n�,�n�,��,��,�2n��2n�	 . �7�

Here n� and n� are the � and � electron densities, and �� and
�� are the � and � kinetic energy densities, respectively,
representing the “up” and “down” components along the z
axis.

On the other hand, in the noncollinear case, where the
vector component of the local variables employed in the
definition of Exc can point in any direction, Exc

DFA can be
generalized as follows:

Exc
NC =� d3r f�Q˜� , �8�

where

Q˜ � �n+,n−,�n+,�n−,�+,�−,�2n+�2n−	 . �9�

Here the subindices + and − refer to variables expressed in a
local reference frame along the local spin quantization axis.
The definition of these variables is given in detail in Sec. II.

Note that, by replacing Q by Q˜, we have only added degrees
of freedom to the local variables in such a way that they are
compatible with any arbitrary choice of the local spin axis.
The dependence of f �and therefore Exc

NC� on these variables
remains unchanged.

Two conditions must be satisfied by the set of variables in

Q˜. First, we should recover the standard collinear case if we
allow spin polarization only in one direction, and therefore
replace the labels + and − in Exc

NC by � and �, respectively. In
other words, noncollinear GKS solutions should coincide
with collinear solutions obtained with the standard UKS ap-
proximation in cases where the ground-state solution is col-
linear. Second, for spin-independent Hamiltonians, any arbi-
trary choice �other than z� of the spin quantization axis
should leave the energy unchanged. This means that any
rigid rotation of all local reference frames should not change
the total energy.

We therefore assume that Exc
NC depends on the local vari-

ables + and − in the same manner as in the standard collinear
case, and that Exc

NC must be invariant under rigid rotations of
the spin quantization axis. This is, of course, not the most
general possibility to define energy functionals for noncol-
linear magnetic systems.19

For practical applications, it is necessary to evaluate the
XC potential matrix to be employed in the solution of the
GKS equations. These matrix elements in a set of localized
orbitals �		 can be written as

�Vxc
NC��� =� d3r

� f�Q˜�
�P��

= �
p,q�Q˜

� d3r
� f�Q˜�

�q

�q

�p

�p

�P��

,

�10�

where P�� are matrix elements of the generalized density
matrix,

P�� = �
i�occ

�c�i
� c�i

�* c�i
� c�i

�*

c�i
� c�i

�* c�i
� c�i

�* � , �11�

and p represents variables that are linear in P��. The deriva-
tive �f /�q remains the same as in the collinear case. The rest
of this section is devoted to the definition of the variables

q�Q˜ in the local reference frame, and to the evaluation of
�Vxc

NC���.

A. Density

The main ingredient for the construction of Exc
NC in the

LSDA is the generalized density n̄, which can be written in a
two-component spin space as

n̄ =
1

2
�n + m · �� =

1

2
� n + mz mx − imy

mx + imy n − mz
� , �12�

where n is the electron density, m= �mx ,my ,mz� is the spin
density �magnetization� vector, and �= ��x ,�y ,�z� are the
Pauli matrices. In terms of two-component spinors �i, n, and
m are defined as

n�r� = �
i�occ

�i
†�r��i�r� �13�

and

mk�r� = �
i�occ

�i
†�r��k�i�r� �k = x,y,z� . �14�

Using Eqs. �1�, �2�, and �11�, it is straightforward to express
n and m as a linear combination of matrix elements of the
generalized density matrix P��.

A local reference system where the generalized density n̄
is diagonal can be obtained by rotating n̄ into n̄�,

n̄� = �n+ 0

0 n−
� , �15�

where
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n± =
1

2
�n ± m� =

1

2
�n ± 
mx

2 + my
2 + mz

2� �16�

are the eigenvalues of n̄. The densities n+ and n− can be
regarded as the local analogs of n� and n�. The potential Vxc

NC

is

Vxc
NC =

�Exc
NC

�n̄
=

1

2
�f+ + f−m̂ · �� , �17�

where

f± =
� f

�n+
±

� f

�n−
, �18�

and m̂=m /m is the unit vector in the direction of m. The
matrix elements of Vxc

NC can be evaluated straightforwardly as

�Vxc
NC��� =� d3r 	�Vxc

NC	�. �19�

The potential Vxc
NC in Eq. �17� can be split into two con-

tributions,

Vxc
NC = Exc

NC + � · Bxc
NC, �20�

where Exc
NC= f+ /2 can be interpreted as a scalar �electrostatic�

potential and Bxc
NC= f−m̂ /2 as a spin-dependent �magnetic�

potential, which for the LSDA is always parallel to m. It is
worth mentioning that in the limit of no magnetization �m
→0�, f−→0 and therefore Bxc

NC→0, recovering the nonmag-
netic case.

B. Density gradients

Let us consider next GGA energy functionals. In this case
the new ingredients in Exc

NC are �n+ and �n−, whose Carte-
sian component j �j=x ,y ,z� is

� jn± =
�n±

� j
=

1

2�� jn ±
1

m
�

k=x,y,z
mk� jmk� . �21�

We note in passing that this family of density functionals
usually depends on the gradient of the density through the
auxiliary quantities20

�ab = �na · �nb, a,b = + ,− . �22�

The matrix elements of Vxc
NC are

�Vxc
NC��� = �

j=x,y,z
� � f

��� jn�
� j�	�	��d3r

+ �
j,k=x,y,z

� � f

��� jmk�
�k� j�	�	��d3r

+ �
k=x,y,z

� � f

�mk
�k�	�	��d3r , �23�

where the first term on the right-hand side of Eq. �23� con-
tributes to the scalar potential Exc

NC, and the second and last
terms add to the magnetic potential Bxc

NC. The last term on
the right-hand side of Eq. �23� arises from the fact that �n±

depends on m �Eq. �21��. Applying the chain rule, and mak-
ing use of Eq. �21�, the derivatives of f in Eq. �23� can be
expressed as �we do not consider here derivatives of f arising
from �f /�n± since they were considered in the previous sec-
tion�

� f

��� jn�
=

1

2
gj

+, �24�

� f

��� jmk�
=

1

2

mk

m
gj

−, �25�

and

� f

�mk
= �

l=x,y,z

1

2
�lmk

m
gl

+ −
mk

m2gl
−�lm� , �26�

where we have defined

gk
± =

� f

���kn+�
±

� f

���kn−�
. �27�

Alternatively, one can calculate Vxc
NC as the functional de-

rivative

Vxc
NC =

�Exc
NC

�n̄
=

�Exc
NC

�n
+ �

i

�Exc
NC

�mi
�i. �28�

Using the chain rule for functional derivatives, �Exc
NC /�mi

can be written as

�Exc
NC

�mi
=

1

2
��Exc

NC

�n+
−

�Exc
NC

�n−
�mi

m
. �29�

Multiplying Eq. �29� by 	�	�, integrating over all space, and
applying integration by parts, we obtain Eq. �23�. Therefore,
from our definition of Exc

NC, the contribution to the XC mag-
netic field Bxc

NC from Eq. �28� is always parallel to m. How-
ever, this is not necessarily the case for a general form of a
GGA functional, as shown by Capelle and co-workers.21

One issue that is worth addressing is how our formulation
differs from previous noncollinear generalizations of the
GGA. In our case, we employ �n± as defined in Eq. �21�,
and therefore the ingredients used in Exc

NC are strictly the
gradients of the quantities n±. Other implementations12,22

employ either �m or the z component of the projection of
�mk onto m, therefore imposing the constraint of Bxc

NC being
parallel to m. Here, as in the LSDA case, in the limit of no
magnetization �m→0 and �m→0�, gk

−→0 for k=x ,y ,z and
hence Bxc

NC→0, recovering the nonmagnetic case.

C. Kinetic energy density

To deal with kinetic energy density contributions, we can
proceed in analogy to Sec. II A and define a generalized
kinetic energy density:

�̄ =
1

2
�� + u · �� =

1

2
� � + uz ux − iuy

ux + iuy � − uz
� , �30�

where � and u can be written in terms of two-component
spinors as

NONCOLLINEAR MAGNETISM IN DENSITY FUNCTIONAL… PHYSICAL REVIEW B 75, 125119 �2007�

125119-3



��r� =
1

2 �
i�occ

���i�r��† · ��i�r� , �31�

and

uk�r� =
1

2 �
i�occ

���i�r��†�k · ��i�r� �k = x,y,z� . �32�

Comparing �̄ �Eq. �30�� and n̄ �Eq. �12�� one is tempted to
define �+ and �− as the local eigenvalues of �̄. However, this
choice would lead to a different local reference frame than
the one used for n̄, and therefore collinear solutions obtained
in this way will not necessarily be the same as those obtained
with standard unrestricted KS calculations. To avoid this
problem, we have chosen the following definitions for �+ and
�−:

�± =
1

2
�� ± m̂ · u� , �33�

which is equivalent to locally projecting u onto the axis de-
fined by m. Using this choice for �+ and �−, the contribution
to the XC potential matrix elements can be written as

�Vxc
NC��� = �

j=x,y,z
� � f

��
�� j	�� j	��d3r

+ �
j,k=x,y,z

� � f

�uk
�k�� j	�� j	��d3r

+ �
k=x,y,z

� � f

�mk
�k�	�	��d3r . �34�

The partial derivatives of f in Eq. �34� can be expressed in
terms of the derivatives of f with respect to �+ and �− as

� f

��
=

1

2
h+, �35�

� f

�uk
=

mk

2m
h−, �36�

and

� f

�mk
=

1

2m
h− �

j=x,y,z
uj�� jk −

mjmk

m2 � , �37�

where

h± =
� f

��+
±

� f

��−
. �38�

The first term on the right-hand side of Eq. �34� contributes
to the scalar potential Exc

NC, while the second and third terms
are spin dependent and therefore contribute to Bxc

NC. In the
limit where m→0 then �m ·u�→0, and therefore Bxc

NC→0
since h−→0.

D. Laplacian of the density

The dependence of Exc
DFA with the Laplacian of the density

can be generalized for the noncollinear case through �2n±,

which in terms of n, m, and their derivatives can be written
as

�2n± =
1

2�2n ± �
k=x,y,z

�mk

m
�2mk + �

j=x,y,z
� �� jmk�2

m

− �
l=x,y,z

mlmk� jml� jmk

m3 ��� . �39�

Three types of contributions to the XC potential arise in
this case, since �2n+ and �2n− depend on �2n, �2mk, mk, and
�mk �Eq. �39��,

�Vxc
NC��� =� �t+ + t−� · m̂��2�	�	��d3r

+ �
j=x,y,z

� �t+ + t−� · m̂��� j	�� j	��d3r

+ �
k,j=x,y,z

� t−�k

2

���2m�
��� jmk�

�� j	�� j	��d3r

+ �
k=x,y,z

� t−�k

2

���2m�
�mk

�	�	��d3r �40�

where

t± =
� f

���2n+�
±

� f

���2n−�
. �41�

The derivatives of �2m with respect to the linear variables
can be obtained from Eq. �39�. In the limit of no magnetiza-
tion where m→0 and �2m→0, all contributions to Bxc

NC are
zero since t−→0.

E. Hartree-Fock-type exchange

The Hartree-Fock-type �HF-� type exchange contribution
to �Vxc���, needed for hybrid density functional calculations,
can be generalized in terms of two-component spinors as

K��
��� = �

�

P�
��������� , �42�

where P�
��� are the spin blocks of the generalized density

matrix in Eq. �11�. The notation ��� ��� has been introduced
for the two-electron integrals in the atomic orbital basis set.
This is analogous to the generalized unrestricted HF �GUHF�
approximation.23 The evaluation of the four matrix blocks of

K��
��� is carried out by splitting P�

��� into real and imaginary
parts, and symmetric and antisymmetric components. The
symmetric imaginary and antisymmetric real contributions to
K�� and K�� are zero because of the Hermiticity requirement
of the Kohn-Sham �or Hartree-Fock� Hamiltonian. There-
fore, a total of eight HF exchange blocks needs to be com-
puted; four of them are symmetric and four are antisymmet-
ric.

III. IMPLEMENTATION

We have implemented the self-contained field �SCF� so-
lution of the GKS equations in the GAUSSIAN suite of
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programs.24 Molecular spinors �Eq. �2�� are spanned in terms
of atomic Gaussian orbitals using a set of complex coeffi-
cients c�i

� . These coefficients are employed to construct the
generalized density matrix P�� �Eq. �11��, from which the
Hartree-Fock-type exchange matrix can be calculated, as
well as all the variables needed for the numerical quadrature
employed in the evaluation of �Vxc

NC���. To accelerate the
SCF convergence, we have generalized the direct inversion
of the iterative subspace25�DIIS� and the energy-based DIIS
techniques26 for two-component complex spinors.

In a GKS calculation, the spin density of the system is
fully unconstrained, and is thus allowed to change in any
arbitrary spatial direction. For instance, in a simple calcula-
tion of the �nonrelativistic� ground state of the hydrogen
atom using the LSDA, one can obtain an infinite manifold of
solutions with the same total energy but different orientation
of the spin density. These solutions are just linear combina-
tions of the two degenerate linearly independent solutions.

We have verified for a representative sample of function-
als that, for cases with ground-state collinear solutions, the
GKS solution for different choices of the quantization axis
gives the same total energy as in a collinear UKS calculation.
We have also verified that the calculated electric dipole mo-
ment evaluated as finite differences agrees with the expecta-
tion value of the electric dipole operator, satisfying the
Hellmann-Feynman theorem.

The third term on the right-hand side of Eq. �23� leads to
instabilities in the numerical integration due to the presence
of ��mi /m�, which is exactly zero for collinear spin densities
but may present significant oscillations for spin densities that
are slightly noncollinear. For some cases, this prevented con-
verging the total SCF energy better than 10−6 hartrees, which
is not enough for our standard accurate convergence criteria.
To avoid this problem, we discard contributions to Eq. �23�
from grid points where the magnetization helicity, defined as
mh=m · ���m�, is less than a certain threshold �mh=0 in
collinear cases�. In our tests, a cutoff value of mh�10−6

worked reasonably well.

IV. RESULTS

In order to test our GKS code, we have chosen a set of
planar Cr clusters where the ground state is expected to ex-
hibit noncollinear spin density arising from geometrically
frustrated antiferromagnetic coupling �as in a Heisenberg
spin Hamiltonian model� between neighboring Cr atoms. In
Fig. 1, we show a scheme of the Cr3 �C3v�, Cr5 �C5v�, Cr7

�C6v�, and Cr12 �C6v� clusters and their resulting magnetic
structures obtained in this work. In all cases, we have set the
Cr-Cr bond length to 3.70 bohrs in our calculations. This
allows us to compare the direct effect of each functional on
the magnetization.

All calculations were carried out using a Ne core energy-
consistent relativistic effective core potential �RECP� from
Dolg and co-workers.27 We have employed a polarized
triple-� Gaussian basis set consisting of 8s7p6d1f functions
contracted to 6s5p3d1f .27 Even though our implementation
offers the possibility of including the spin-orbit operator, us-
ing either RECPs or in an all-electron framework, we have
chosen not to include the spin-orbit interaction in the present

FIG. 1. �Color online� Schematic representation of the Cr3, Cr5,
Cr7, and Cr12 clusters employed in our tests. The arrows represent
the magnetization orientation on each atom as qualitatively obtained
in our calculations. For Cr3 and Cr5, two different chiralities were
considered.

FIG. 2. �Color online� Magnetization plot for Cr3 obtained in a
PBE calculation. The arrows show the direction of the spin polar-
ization �m /m� in the plane containing the nuclei, whereas the spin
modulus m is represented in red �dark gray�. The top �a� and bottom
�b� panels show two energetically degenerate configurations with +
and − chiralities, respectively.
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test calculations. Atomic magnetic moments are calculated
according to Mulliken population analysis. The expectation
value �S2� is evaluated in all DFT cases as for the GUHF
determinant.

We have chosen one representative functional from each
class of functionals discussed in Sec. II. For the LSDA, we
employ LDA �Dirac� exchange and the parametrization of
Wosko, Wilk, and Nusair28 for correlation �SVWN5�; for the
GGA we use the functional of Perdew, Burke, and Ernzerhof
�PBE�;29 for the meta-GGA we use the functional developed
by Tao, Perdew, Staroverov, and Scuseria �TPSS�;30 and as a
representative hybrid functional we use a PBE hybrid,31

�PBEh, also refer to as PBE1PBE �Ref. 32� and PBE0 �Ref.
33� in the literature�. For comparison, we also present results
for the GUHF case.

For Cr3 and Cr5, we were able to verify that the two chiral
magnetic structures �Figs. 1�a� and 1�b�, respectively� have
the same total energy. These two chiral magnetic states can
be thought of as a product of a reflection of the spin density
pseudovector in a molecular symmetry plane. For Cr3 and
Cr5, we have found that starting the SCF procedure from
different initial guesses always leads to coplanar spin densi-
ties, although the plane containing the spin density does not
necessarily coincide with the plane containing the nuclei
since the spin density can arbitrarily rotate without changing
the total energy. We therefore have chosen to constrain the
spin magnetization to the plane containing the nuclei for the
rest of our tests.

In Figs. 2 and 3, we present a plot of the PBE spin density
in the plane containing the nuclei for Cr3 and Cr5, respec-
tively. The white �low spin polarization� holes at the nuclear
positions are a consequence of the pseudopotential approxi-
mation. The red zones surrounding the nuclei correspond to
high spin polarization regions. Four lobes can be distin-
guished around each atomic center, which is a signature of
the spin polarization of the d orbitals.

From Figs. 2 and 3, it can also be seen that the magneti-
zation tends to be collinear in the atomic regions. Inside
these atomic domains, the magnetization angle changes
smoothly whereas it changes abruptly at the domain bound-
ary. This was also observed in Fe clusters11 and in unsup-
ported Cr monolayers in the 120° Néel state.12 Spin density
plots obtained using density functionals other than PBE do
not differ qualitatively from these plots. However, the mag-
nitude of the spin polarization does, as discussed below.

In Table I, we summarize the results obtained for Cr clus-
ters with the different functionals. In all cases, the atomic
magnetization increases systematically when going from
LSDA → PBE → TPSS → PBEh → GUHF. The value of
�S2� follows the same trend, and it can be taken as a measure
of the total magnetization. As a remark, we would like to

TABLE I. Atomic magnetic moments �in units of the Bohr mag-
neton �B� and �S2� �in �B

2� of Cr clusters calculated using different
energy functionals. See Fig. 1 for a scheme of the spin density
configurations.

Method

Cluster Property LSDA PBE TPSS PBEh GUHF

Cr3 �C3v� m 1.44 1.66 1.93 2.40 2.95

�S2� 3.25 3.87 4.71 6.32 8.11

Cr5 �C5v� m 1.61 1.84 2.07 2.47 2.91

�S2� 5.21 6.21 7.38 9.78 12.47

Cr7 �C6v� mc 0.18 0.21 0.31 2.09 2.36

me 0.24 0.89 1.29 2.33 2.87

� �deg� 143 103 100 105 107

�S2� 2.08 4.02 5.80 14.60 22.57

Cr12 �C6v� mi 0.72 0.84 1.03 1.86 2.15

me 1.24 1.50 1.72 2.28 2.80

�S2� 5.73 7.60 9.67 17.71 22.82

FIG. 3. �Color online� Magnetization plot for Cr5 obtained in a
PBE calculation. The arrows show the direction of the spin polar-
ization �m /m� in the plane containing the nuclei, whereas the spin
modulus m is represented in red �dark gray�. The top �a� and bottom
�b� panels show two energetically degenerate configurations with +
and − chiralities, respectively.

PERALTA, SCUSERIA, AND FRISCH PHYSICAL REVIEW B 75, 125119 �2007�

125119-6



recall that the Cr cluster geometries are fixed in these test
calculations and hence relaxation effects are not included in
the reported atomic magnetic moments. For Cr3 and Cr5, we
obtain comparable values of the atomic magnetization m for
a given functional. This is not the case for Cr7 and Cr12

clusters, where the atomic magnetic moments of the internal
Cr atoms are smaller than those of the external atoms in all
cases. From the values of mc and me �see Fig. 1� for Cr7 with
PBEh and GUHF, we can notice a large effect of Hartree-
Fock exchange compared to the rest of the clusters. In fact,
GUHF gives an atomic magnetization in Cr7 approximately
10 times larger than those obtained with LSDA, while for
Cr3 and Cr5 the ratio is less than 2, and for Cr12 is about 3.

In Figs. 4 and 5, we present the PBE spin density in the
plane containing the nuclei for Cr7 and Cr12, respectively.
The plot for Cr7 resembles the spin density in the supported
Cr monolayer shown in Ref. 12. The difference arises mainly
in the low spin polarization region of the Cr7 cluster. Cr12
can be thought of as a cluster model of a two-dimensional
Kagomé lattice. However, as the magnetization of the inter-
nal and external atoms is not the same, one would expect that
the actual ground state is a result of different competing ef-
fects. For instance, in a Heisenberg spin Hamiltonian, the
uppermost Cr atom, Fig. 1�d�, couples antiferromagnetically
with its more weakly polarized nearest neighbors and with its
more strongly polarized second-nearest neighbors, and it is
not clear a priori which coupling is larger. Therefore, we
expect that this type of noncollinear DFT calculation would
be helpful to investigate the magnetic properties of clusters
and molecules where a simple Heisenberg spin Hamiltonian
cannot be straightforwardly applied.

V. SUMMARY AND CONCLUSIONS

We have generalized the treatment of the electronic spin
degrees of freedom in density functional calculations to the
case where the vector variables employed in the definition of
the XC energy can vary in any direction. Our noncollinear
generalization can be applied to general functionals contain-
ing a variety of ingredients. Our generalization assumes that
the XC energy depends on the local variables in the same
manner as in the standard collinear case, and that the energy
expression is invariant under rigid rotations of the spin quan-
tization axis. This is not the most general way to define en-
ergy functionals for noncollinear magnetic systems, but it
provides a general starting point to incorporate new terms
like those suggested in Refs. 19 and 21.

Test calculations on planar Cr clusters suggest that the
choice of energy functional has an important impact on the
resulting atomic magnetic moments, giving qualitatively
similar but quantitatively different results. We expect that our
generalization will open the door to studies on the perfor-
mance of density functionals other than the LSDA for non-
collinear magnetic systems.

ACKNOWLEDGMENTS

J.E.P. thanks K. Capelle, R. Pino, A. F. Izmaylov, and O.
Hod for useful discussions and T. Van Voorhis for suggesting
the Cr12 example. This work was supported by the Depart-
ment of Energy Grant No. DE-FG02-01ER15232, ARO-
MURI DAAD-19-03-1-0169, and the Welch Foundation.

FIG. 4. �Color online� Magnetization plot for the Cr7 cluster
obtained in a PBE calculation. The arrows show the direction of the
spin polarization �m /m� in the plane containing the nuclei, whereas
the spin modulus m is represented in red �dark gray�.

FIG. 5. �Color online� Magnetization plot for the Cr12 cluster
obtained in a PBE calculation. The arrows show the direction of the
spin polarization �m /m� in the plane containing the nuclei, whereas
the spin modulus m is represented in red �dark gray�.
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