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We study density response N�k ,�� and one-particle spectra A�k ,�� for a Wigner lattice model at quarter
filling using exact diagonalization. We investigate these observables for models with short- and long-range
electron-electron interaction and show that truncation of the electron repulsion can lead to very different
results. The spectra show clear signatures of charge fractionalization into pairs of domain walls, whose inter-
action can be attractive or repulsive and is controlled by the formal fractional charges. In striking contrast to a
bound exciton in N�k ,��, we find an antibound quasiparticle in A�k ,��, which undergoes spin-charge separa-
tion. We present a case of extreme particle-hole asymmetry, where photoemission shows spin-charge separa-
tion, while inverse photoemission exhibits an uncorrelated one-particle band.
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I. INTRODUCTION

In contrast to higher dimensions, where interacting elec-
trons are renormalized into Landau quasiparticles that near
the Fermi surface still look like electrons, drastic things can
happen in one dimension.1 The elementary excitations are
collective ones involving many electrons, spin and charge
separate and move independently of each other, as seen, e.g.,
in photoemission �PES� experiments.2 Another case where
many-body effects lead to an apparent splitting of elementary
particles is quantum number fractionalization.3 Probably its
most famous realization is the fractional quantum Hall
effect.4 Likewise, Peierls distorted5 and charge-ordered6,7

one-dimensional �1D� systems with degenerate ground states
have fractionally charged solitons or domain walls as el-
ementary excitations. In fact, quantum number fractionaliza-
tion in one and two dimensions are intimately related.8 This
paper presents a study of dynamic observables for a model
showing both effects, spin-charge separation as well as quan-
tum number fractionalization.

When �long-range� Coulomb interaction is the dominant
energy scale of a system, electrons try to minimize their
energy by maximizing their distance and crystallize into a
Wigner lattice �WL�.9 Hubbard suggested this mechanism in
the context of tetracyanoquinodimethane �TCNQ� charge-
transfer salts6 where it is, however, difficult to distinguish
from a 4kF charge-density wave driven by a Fermi surface
instability.6,7,10 As pointed out recently,11 longer-range hop-
ping changes the Fermi-surface topology in doped edge-
sharing CuO-chain compounds like Na1+xCuO2 �Ref. 12� and
Ca2+yY2−yCu5O10,

13 and this allows for a clear distinction
between the Fermi-surface independent WL and the charge-
density wave.

The elementary excitations of a WL consist of domain
walls �DWs�. Their fractional charge follows from topologi-
cal arguments6,7,14 and merely reflects the n-fold ground-
state degeneracy at x=m /n filling—it is not related to the
specific form of the interaction that generates the charge or-
der. After introducing the employed model Hamiltonian in
Sec. II, we show in Sec. III that these fractional charges have
direct physical meaning in a model with long-range Cou-
lomb repulsion among electrons, because the resulting effec-

tive interaction between DWs is also Coulomb-type with a
coupling constant determined by the fractional charges, their
signs and distance. Consistent with the formal charges, the
interaction is attractive for the charge response15–17 but re-
pulsive for the electron addition �removal� process. We
present and discuss charge response N�q ,�� and spectral
densities A�k ,�� and show that the correspondence of formal
DW charge and effective physical charge is tied to the long-
range nature of Coulomb repulsion and absent for models
with truncated electron-electron interaction.

As the energy scale for spin excitations is much smaller
than either the Coulomb repulsion or the kinetic energy, pre-
vious investigations considered WL formation of spinless
fermions. We will address the spin degree of freedom in Sec.
IV and we will show how the interplay of spin and DW
excitations leads to two different scenarios for the spectral
density: �i� For nearest-neighbor hopping, the coherent anti-
bound DW excitation undergoes spin-charge separation in
perfect analogy to an electron or hole added to the half-filled
1D Hubbard model. �ii� For second neighbor hopping, we
find striking differences between the particle and hole chan-
nels, where an electron behaves like an independent particle
while a hole decays into a spinon and a holon.

II. MODEL AND METHODS

We study the Hubbard-Wigner Hamiltonian17

H = t1�
i,�

�ci,�
† ci+1,� + H.c.� + t2�

i,�
�ci,�

† ci+2,� + H.c.�

+ U�
i

ni,↑ni,↓ + �
l=1

lmax

Vl�
i

�ni − n̄��ni+l − n̄� , �1�

with nearest- neighbor �NN� and next-nearest-neighbor
�NNN� hopping amplitudes t1 and t2. Operator ci,�

† �ci,�� cre-
ates �destroys� an electron with spin � at site i, ni,�=ci,�

† ci,�
and ni=ni,↑+ni,↓ give the density, n̄ is the average density.
We focus on long-range Coulomb repulsion Vl=V / l,18 but
also discuss truncated interaction �lmax=3� to illustrate that
truncation may have a strong impact on the excitation spec-
tra. The NN Coulomb matrix element V is used as unit of
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energy. We treat chains up to L=24 in the spinless case and
L=16 with spin using Lanczos diagonalization.

To our knowledge, neither the single-particle spectral
function A�k ,�� nor the density response N�q ,�� of a
Wigner lattice have been studied before. We consequently
treat here the most transparent case given by quarter-filling,
i.e., one electron per two sites. We will also analyze an ef-
fective low-energy model in terms of domain walls that is
appropriate for small hoppings t1 , t2�V ,U,15–17 and compare
the results to those of the full model �1� that is formulated in
terms of electrons or spinless fermions.

III. DYNAMICS OF THE SPINLESS MODEL

At quarter-filling the ground state of �1� is twofold degen-
erate for spinless fermions, and the lowest excitations are
therefore given by domain walls with a formal charge
±e /2.6,7,14 The existence of such DWs as elementary excita-
tions follows from topological considerations and only de-
pends on the degeneracy of the ground state, not on the de-
tails of the Hamiltonian or the interaction that stabilizes the
ground state. In the WL, where the hopping is not large
enough to destroy the charge order �the gap is expected to
vanish at t1 /V�0.2 �Ref. 19��, the description in terms of
domain walls is useful, and we will show that the dynamics
of the WL can be described by DWs and their interaction.
DWs can be created from the perfectly ordered state by a NN
hopping process t1, see Figs. 1�a� and 1�b�. Creating a pair of
domain walls is penalized by V and costs potential energy.
DWs can move by t1, see Figs. 1�b� and 1�c� and their po-
tential energy can depend on the distance d between the two
DWs. In Refs. 15 and 16, the DW interaction for a model
with long-range Coulomb repulsion has been discussed and
been found to correspond to a Coulomb-type attraction as it
would be expected between two physical charges of ±e /2
each. In Ref. 17, an effective low-energy Hamiltonian in
terms of DWs has been analyzed.

The lowest eigenenergies of �1� with a small NN hopping
t1=−0.02 can be seen in Fig. 2 ���. At �=0 and momenta
k=0 and k=�, we see the two ground states. While this
degeneracy at finite t1 is only perfect in the thermodynamic
limit, the numerical data in Fig. 3 for a N=20 site ring shows
that the states at k=0 and k=� are almost degenerate. The

collection of states at ��0.5±0.08 have been shown to rep-
resent a continuum of two independent domain walls,17 and
the states above ��0.8 mark the beginning of the 4DW
continuum. In addition to the continua, we find an exciton
corresponding to a bound 2DW state at energies just below
the 2DW continuum.17

In addition to the eigenenergies, Fig. 2 shows the dynamic
charge structure factor

N�q,�� = �
m

��m��q��0	�2��� − �Em − E0�� , �2�

where �m	 and Em are the eigenstates and energies of the
Hamiltonian, and ��0	 is the ground state with energy E0. For
the perfect WL without quantum fluctuations, it shows only
signals at �=0 and momenta k=� and k=0. Spectral weight
at finite frequency is produced by fluctuations around perfect
charge order and Fig. 2 reveals that most spectral weight is
observed in the exciton, while the 2DW continuum at 0.4V
	�	0.6V contains almost no weight.

In edge-sharing Cu-O chain compounds like the quarter-
filled Na3Cu2O4 system, the NNN hopping t2 is expected to
be larger than t1.11 The eigenvalues and charge response for

FIG. 1. �Color online� One of the two ground states �a� with
circles denoting holes and solid arrows spinless fermions, pair of
domain walls �indicated by dashed vertical lines� at distance d=2
created by moving one electron via t1 �b�, configurations with dis-
tance d=4 between the DWs �c�. FIG. 2. �Color online� Density response N�q ,�� with t1

=−0.02V and t2=0 for different momenta q=�m /10, m=0, . . . ,10.
The � show the eigenenergies relative to the ground-state energy.

FIG. 3. �Color online� Density response N�q ,�� with t1

=−0.02V and t2=−0.05 for different momenta q=�m /10, m
=0, . . . ,10. The � show the eigenenergies relative to the ground-
state energy.
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t1=−0.02V, t2=−0.05V are shown in Fig. 3 for a 20-site ring.
As explained in Ref. 17, the bound exciton has in this case
its minimum at q=� /2. At a critical value of t2 the exciton
gets soft and the WL with periodicity � is destroyed and
charge order with a periodicity � /2 sets in. Again, we see
that the exciton has large weight in N�q ,�� and should in
principle be observable in charge response.

Interestingly, the relevant lowest excitations of the WL
continue to be pairs of DWs in the case of the one-particle
spectral density,

A�k,�� = �
m

��m+�ck,↑
† ��0	�2��� − �Em

+ − E0��

+ �
m

��m−�ck,↑��0	�2��� − �Em
− − E0�� , �3�

where �m+	 ��m−	� are eigenstates with eigenenergies Em
+ �Em

− �
of the Hamiltonian with one particle added �removed�. This
observable is shown in Fig. 4 for a small NN hoping t1
=−0.05V and three different cases for the interaction in �1�:
�i� NN repulsion only �lmax=1�, where we see only a broad
featureless continuum, �ii� slightly longer-range interaction
with lmax=3, where we find a sharp quasiparticle below a
continuum with small weight, and �iii� long-range Coulomb-
repulsion with lmax=L /2, where the quasiparticle is observed
above the continuum. We will now go on to show how these
spectra—the continuum, the bound quasiparticle and the an-
tibound quasiparticle—which have been obtained without
any further assumption by exact diagonalization of the
Hubbard-Wigner model, can be understood in terms of DWs
and their interaction.

The schematic illustration in Fig. 5 shows that an addi-
tional electron again creates two DWs, this time both with an
identical charge of −e /2. Again, their formal charge does not
depend on details of the Hamiltonian: The total system has
charge −e �the additional electron� and both DWs are equiva-
lent, which gives each DW a formal charge −e /2. The inter-
action Ed between two domain walls at distance d can be
obtained by calculating the potential energy for a configura-
tion where they are d sites apart �as shown in Fig. 5 for
distances d=1,3� by setting all hoppings to zero. The result-
ing interaction is depicted in Fig. 6 both for long-range and
for truncated electron-electron interaction. If the Hamiltonian
�1� has only NN Coulomb repulsion lmax=1, the energy �� in
Fig. 6� does not depend on d, and the DWs are therefore
independent. For lmax=3, the DWs are independent for large
distance and attractive for small d. This means that their
interaction has the opposite sign from the one expected from
their formal charges of −e /2 each. For the long-range case
lmax=L /2 ��in Fig. 6�, however, the asymptotic behavior of
the interaction between two DWs decays like their inverse
distance d,

Ed/V � 1/2 + e2/�4d� . �4�

Hence, the interaction between the DWs is Coulomb-type
and the prefactor is given by the two fractional charges of
−e /2. The asymptotic relation �� in Fig. 6� gives an excellent
approximation already for rather small DW distances d
1.
The �formal� fractional charges of the elementary excitations

in charge ordered chains can be derived from the ground-
state degeneracy alone,6 without any reference to the particu-
lar form of the interaction stabilizing the degenerate ground
states. In the case of long-range electron-electron interaction,
and only in this case, the formal fractional charges have a
very direct physical meaning: Their interaction corresponds
exactly to that expected for half-electrons.

For the description of the photoemission process of a
spinless fermion added to the perfect WL an effective low-
energy Hamiltonian in terms of DWs can be obtained that
contains hopping t1 and the potential energy Ed. A reader
interested in details for the following short derivation should

FIG. 4. Spectral density A�k ,�� for spinless fermions for �a�
truncated Vl with lmax=1, �b� truncated Vl with lmax=13, and �c�
long-range Vl with t1=−0.05V, t2=0. Insets show the density of
states.
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consult Ref. 17, where an analogous treatment is given for
the case depicted in Fig. 1. Starting from the ground state
with p=0,

��WL	 =
1

2

��0↑0↑0↑ ¯ 	 + �↑0↑0↑0 ¯ 	� , �5�

and adding an electron with momentum k, we arrive at a
state ��d=1,k	 with momentum k where the DW centers have
distance d=1 �see Fig. 5�b��,

��d=1,k	 = ck,↑
† ��WL	 =

1

L

�
r=1

L

eikrcr,↑
† ��WL	

=
1


2L
�eik�↑↑0↑0↑ ¯ 	 − e2ikr�↑↑↑0↑0 ¯ 	

− e3ik�0↑↑↑0↑ ¯ 	 + ¯ � , �6�

where the minus signs are due to a Fermi sign obtained by
moving the creator through an existing electron. Once the
two DWs have been created at distance d=1, they can move
via NN electron hopping t1,

T1��d=1,k	 = t1�
r=1

L

�cr,↑
† cr+1,↑ + H.c.���d=1,k	

=
t1


2L
�eik��↑0↑↑0↑ ¯ 	 + �↑↑0↑ ¯ ↑↑0	�

− e2ikr��↑↑0↑↑0 ¯ 	 + �0↑↑0↑0 ¯ ↑↑	�

− e3ik��↑0↑↑0↑ ¯ 	 + �0↑↑0↑↑ ¯ 	� + ¯ �

= 2t1 sin k��d=3,k	 , �7�

where ��d=3,k	 denotes the state with momentum k and dis-
tance d=3 between the DWs �a complex phase has been
absorbed into its definition�. Repeating step �7�, d can grow
further, with each t1 process increasing �or reducing� d in
steps of two, see Fig. 5. �Additionally, t1 can introduce more
DWs, as in Fig. 1�b�, but such processes cost energy and will
be neglected in this low-energy analysis.�

We now arrive at the effective DW Hamiltonian HDW in
terms of d and k,

HDW = �
E1 t̃1�k� 0. . .

t̃1�k� E3 t̃1�k� 0 . . .

0 t̃1�k� E5 t̃1�k� 0 . . .

� �

 , �8�

where the diagonal contains the potential energy Ed and mo-
mentum k enters the effective hopping t̃1�k�=2t1 sin k.

We are interested in the spectral density �3�, which can be
written as

A�k,�� = −
1

�
Im��0�ck,↑

1

� − �H − E0� + i0+ck,↑
† ��0	

� −
1

�
Im��1,k�

1

� − HDW + i0+ ��1,k	 , �9�

i.e., we need the �1, 1� element of the inverse of the matrix
�−HDW, which can be written as a continued fraction

�� − HDW�1,1
−1 =

1

� − E1 −
t̃1�k�2

� − E3 −
t̃1�k�2

� − E5 − ¯

. �10�

This fraction can be easily evaluated for the distance inde-
pendent DW potential Ed=V that is found, if only NN Cou-
lomb repulsion is kept in the electronic Hamiltonian �1�, see
Fig. 6. We then obtain

A1 = �� − HDW�1,1
−1 =

� − Ẽ

2t̃1�k�2
±
� � − Ẽ

2t̃1�k�2�2

−
1

t̃1�k�2
,

�11�

FIG. 5. �Color online� One of the two ground states �a� with
circles denoting holes and solid arrows spinless fermions, pair of
domain walls �indicated by dashed vertical lines� at distance d=1
created by adding one electron �b�, configurations with distance d
=3 between the DWs mediated by t1 �c�.

FIG. 6. �Color online� Potential Ed between two domain walls at
distance d, see Fig. 5, for long-range electron-electron interaction
�lmax=L /2, ��, effective DW interaction �4� ���, and for truncated
electron-electron interaction �lmax=1, � and lmax=3, ��.
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where Ẽ denotes the distance-independent DW potential,

here Ẽ=V. The resulting spectral density has only a regular
part and no singularities �except for k=0,�, where the hop-
ping t̃1�k� vanishes�, and is shown in Fig. 7�a�. The incoher-
ent 2DW continuum at energies V−4t1 sin k���V

+4t1 sin k results from the independent �since Ed= Ẽ=const�
movement of the two DWs, and corresponds to the spectral
density depicted in Fig. 4�a�, which was calculated for the
full fermionic model �1� with only NN repulsion �lmax=1�.

Next, we move to the case lmax=3, which leads to a short
range attraction between the DWs, see Fig. 6. Since the po-
tential is constant for d3, we can use the result obtained
above for Ed=const in order to arrive at

A3 =
1

� − E1 − t̃1�k�2A1

, �12�

which is shown in Fig. 7�b�. In addition to the continuum, we
now find a pole where the denominator of �12� vanishes. It
results from the DW attraction and corresponds to a bound
quasiparticle with dispersion,

��k� = E1 +
t̃1�k�2

E1 − Ẽ
= E1 +

�2t1 sin k�2

E1 − Ẽ
, �13�

where Ẽ=V is the potential at distances d3 and E1
�0.83V the potential at d=1. For long-range electron-
electron repulsion, we simplify the resulting DW potential to

E1=0.7V , Ẽ=0.5V and can then apply �12� and �13�. How-
ever, the quasiparticle is now an antibound state above the
incoherent continuum, see Fig 7�c�. This highly unusual situ-
ation is also observed in the spectra of the full model �see
Fig. 4�c�� obtained by exact diagonalization. As we have
seen here, it results from the DW repulsion and is thus a
direct consequence of the long-range nature of the Coulomb
repulsion absent from short-range models.

The only feature of the spectra for the full model �1� that
is not reproduced in the simplified DW analysis is the trans-
fer of spectral weight seen in Fig. 4 with more weight in
photoemission �PES� at k=0 and more in inverse photoemis-
sion �IPES� at k=�. This transfer is caused by fluctuations
around perfect charge order in the ground state induced by t1,
see Fig. 1, and will be discussed elsewhere.

Motivated by experimental data indicating that NNN hop-
ping t2 is larger than t1 in Na3Cu2O4,11 we now turn to the
spectral density for t2�0. Via NNN hopping, an electron
inserted into an empty site of the WL can hop over the oc-
cupied sites and move along the empty ones like a free fer-
mion, and the same holds for a hole inserted into an occupied
site. For t1=0, we therefore obtain an independent-electron-
like dispersion with ��k�=V ln 2+2t2 cos 2k �not shown�.
The dispersion is the same in PES and IPES, which results in
an indirect band gap with the highest occupied state at k
=� /2 and the lowest unoccupied ones at k=0,�. Finite NN
hopping t1�0 can be taken into account just like in the t2
=0 case discussed above by setting E1=V ln 2+2t2 cos 2k in
�12�. The resulting spectral density of the effective DW
model is shown in Fig. 8�b� and the corresponding results for
the fermion Hamiltonian �1� in Fig. 8�a�. Both for PES and
for IPES, we see the 2DW continuum as well as a quasipar-
ticle dispersion �cos 2k. But we observe a certain particle-
hole asymmetry: For IPES, the continuum has small weight
and the width of the dispersion is 4t2 as for a free electron.
For PES, the continuum is stronger and almost mixes with

FIG. 7. Spectral density obtained from the effective 2DW
Hamiltonian �8� for t1=−0.05V , t2=0. �a� For noninteracting DWs
with Ed=const, see Fig. 4�a� for the spectral density for the corre-
sponding case lmax=1 in the electron Hamiltonian �1�. �b� Attractive
DW interaction with E1=0.83V ,Ed3=V, resulting from lmax=3 in
�1�, compare to Fig. 4�b�. �c� Repulsive DW interaction with E1

=0.7V ,Ed3=0.5V as an approximation to the DW potential of the
long-range electron Hamiltonian with lmax=L /2, the pertaining
spectral density is seen in Fig. 4�c�. The � peaks of bound states
have been slightly broadened and their height has been cut for bet-
ter visibility of the 2DW continua.
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the quasiparticle at momenta k�� /2, which somewhat re-
duces the bandwidth for the quasiparticle. We will see in the
next section that the particle-hole asymmetry is strongly en-
hanced for electrons with spin.

IV. DYNAMICS OF ELECTRONS WITH SPIN

Having understood the dynamics of the spinless system,
i.e., of the charge sector, we now include the spin. An in-
serted electron or hole then produces a spinon in addition to
the two DWs, see Fig. 9 illustrating the possible processes in
the WL with spin. Again, the dynamics of the charge sector
are determined by DW hopping via t1. The spinon can move
by spin-flip processes �J2= t2

2 /U or �J1= t1
2 /U, a magnetic

scale much smaller than the hopping scale. In this section,
we will discuss how the spectral density indicates spin-
charge separation similar as in the half-filled 1D Hubbard
model.

At first, we will focus on NN hopping and compare the
spectral density for t1=−0.05V , t2=0 with spin �Fig. 10� to
the one without spin �Fig. 4�c��. The 2DW continuum is
broader with spin, e.g., at k=0 and k=�, where the width of
the continuum shrinks to zero in the spinless model. A more
fundamental change is apparent in the antibound quasiparti-
cle of the spinless case: It has evolved into a narrow structure

with high spectral weight comprised of several peaks. Figure
11�a� shows a blow-up with higher energy resolution of this
structure �in IPES� for k=0 to k=� /2. When we compare
this blow-up to IPES for the usual half-filled 1D Hubbard
model �t=1,U=200t� shown in Fig. 11�b�, we observe re-
markably similar structures. It is well known that an electron
in the Hubbard model decays into a spinon and an antiholon,
see Fig. 12�a�, and that IPES is given by a convolution of
spinon and antiholon branches. While this may not be so
obvious on the present short eight-site ring, the antiholon
with width �t and the spinon �J=4t2 /U� t are clearly vis-
ible in the thermodynamic limit.20 The strong similarities
seen in the spectral densities in Fig. 11 for the Wigner and
the Hubbard models let us conclude that the Wigner model
likewise shows a convolution of spinon and antiholon bands;
the role of the antiholon is now taken by the antibound 2DW
state that is the elementary collective excitation of the charge
sector, see Fig. 12�c�. Since the antibound 2DW state already
has a periodicity of �, see �13�, the momentum range k=0 to
k=� /2 corresponds to k=0 to k=� in the Hubbard model
with NN hopping, where the one-particle dispersion has pe-

FIG. 8. Spectral density A�k ,�� for t1=−0.02V , t2=−0.05V. �a�
For the spinless-fermion Hamiltonian �1� with long-range interac-
tion lmax=L /2 obtained by Lanczos diagonalization via �3�. �b� For
the effective DW Hamiltonian �8� obtained by �12� with E1=0.7V

+2t2 cos 2k , Ẽ=0.5V. Insets show the density of states.

FIG. 9. �Color online� An electron added to the perfect WL, as
Fig. 5, but for electrons with spin. In addition to the two DWs, an
electron now creates a spinon �denoted by the unfilled circle/
ellipse�. As in the spinless case, the DWs can move via t1, and the
spinon can move via spin-flip processes.

FIG. 10. �Color online� Spectral density A�k ,�� with spin for
t1=−0.05V , t2=0, U=4V, L=16. The right-hand inset shows a
blow-up of IPES with a higher energy resolution, the dashed and
solid lines indicate spinon and antiholon branches �guides to the
eye�. The inset on the left-hand side shows the density of states.
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riodicity 2�. The width of the convolution is determined by

that of the antibound 2DW state, hence �
�2t1 sin k�2

E1−Ẽ
, see �13�;

the spinon has almost no dispersion, because �J1� t1. The
small differences between Figs. 11�a� and 11�b� are due to
weak interactions with the 2DW continuum in the former
case.

We now turn to the spectral density for t2�0, at first
choosing t1=0 for simplicity. The ground state is then given
by the perfectly charge ordered WL, an electron added in
IPES goes into an empty site and can move freely on the
empty sublattice, without any interaction with the occupied
sublattice �as t1=0�. Consequently, IPES shows a one-
particle-like tight-binding band with dispersion E�k�=V ln 2
+2t2 cos 2k just like in the spinless model, see �
0 in Fig.
13�a�. The situation for a hole is, however, fundamentally
different: The hole goes into the occupied sublattice, which
is a half-filled Hubbard chain, and it therefore separates into
spin and charge. The resulting spinon and holon branches in
PES can be seen for ��0 in Fig. 13�a�. �Again, the spec-

trum was found to agree with the one for the Hubbard model
on eight sites. In this case even without any deviation, be-
cause there is no 2DW continuum.� In this case of extreme
particle-hole asymmetry, one and the same observable, the
spectral density, shows both pure one-particle behavior �in
the particle sector� and strongly correlated behavior �in the
hole sector�. If both t2 and t1 are active, the inserted particle

FIG. 12. �a� Charge-spin separation in 1D Hubbard model: Elec-
tron �solid line� decays into holon and spinon; �b� Wigner lattice at
quarter-filling: Decay of electron into 2DWs and a spinon; �c� long-
range Coulomb repulsion of DWs generates a DW �anti� bound
state �DWBS�. This scattering state behaves like a holon.

FIG. 13. �Color online� Spectral density A�k ,�� with spin for �a�
t1=0, t2=−0.05V, �b� t1=−0.02V , t2=−0.05V, U=4V, L=16. Insets
on the left-hand side show the density of states. In �a�, spinon and
holon branches in PES are indicated by dashed and solid lines
�guides to the eye�, the dashed-dotted line in IPES gives the one-
particle dispersion E�k�=V ln 2+2t2 cos 2k.

FIG. 11. �Color online� Comparison of the spectral density for
Wigner and Hubbard models. �a� Blow-up with higher energy reso-
lution of IPES for the Wigner model �L=16 sites� as in Fig. 10. The
dashed and solid lines are guides to the eye indicating spinon and
antiholon branches. �b� IPES for the half-filled 1D Hubbard model
�L=8� with NN topping t=1 and U=200t.
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�hole� can interact with the occupied �empty� sublattice, see
the spectral density in Fig. 13�b�. t1-hopping processes now
induce an additional incoherent 2DW continuum, and we
aquire incoherent weight in IPES. However, the strong
particle-hole asymmetry persists: As in the spinless case
shown in Fig. 8, we see that the quasiparticle in IPES re-
mains largely intact and that—surprisingly—the peaks fur-
thest from the Fermi energy remain sharpest.

V. SUMMARY AND CONCLUSIONS

To conclude, we have investigated the dynamics of a
quarter-filled Hubbard-Wigner model. Apart from being the
most transparent situation on a Wigner lattice, quarter-filling
is also appropriate for the edge-sharing chain compound
Na3Cu2O4. We find that electrons decay into a spinon and
two domain walls as sketched in Fig. 12�b�.

In the absence of the spinon, i.e., for the spinless model,
we have investigated the effects of a truncated Coulomb in-
teraction vs fully long-range interaction in Sec. III. By com-
paring dynamic observables of the Wigner model �1� to those
of an effective DW Hamiltonian, we have shown that the
DWs and their interaction clearly manifest themselves in ob-
servables and are thus accessible to experiment. In the case
of truly long-range electron-electron interaction, the formal
fractional charges can be given a direct physical meaning

that is consistent for both one-particle spectra A�k ,�� and
two-particle dynamics N�q ,��. In models with truncated in-
teraction, we still find formal fractional charges, but their
interaction does no longer directly correspond to their formal
charge. This difference has a strong impact on A�k��: The
DW repulsion due to long-range electron-electron interaction
leads to a highly unusual antibound quasiparticle vs a more
conventional bound quasiparticle observed for truncated
electron-electron interaction.

We have finally analyzed the Hubbard-Wigner model for
electrons with spin, where we find the signatures of both
charge fractionalization and spin-charge separation. Despite
its composite nature, the antibound quasiparticle undergoes
spin-charge separation reminiscent of an electron in the 1D
Hubbard model, see Fig. 12�c�. Experimentally, t2
 t1 could
be more relevant,11 and this case shows striking particle-hole
asymmetry: For t1=0, an added electron behaves like an in-
dependent particle while a hole shows strongly correlated
behavior and decomposes into spinon and holon. Even for
finite t1, this behavior persists to some extent.
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