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Based on a functional-integral formalism, a generalization of the self-energy-functional theory (SFT) is
proposed which is applicable to systems of interacting electrons with disorder. Similar to the pure case without
disorder, a variational principle is set up which gives the physical (disorder) self-energy as a stationary point of
the (averaged) grand potential. Although the resulting self-energy functional turns out to be more complicated,
the formal structure of the theory can be retained since the unknown part of the functional is universal. This
allows one to construct nonperturbative and thermodynamically consistent approximations via searching for a
stationary point on a restricted domain of the functional. The theory and the possible approximations are
worked out for models with local interactions and local disorder. This results in a derivation of different
mean-field approaches and various cluster extensions, including well-known concepts such as the statistical
dynamical mean-field theory, the molecular coherent-potential approximation, and the dynamical cluster ap-
proximation. Due to the common formal framework provided by the SFT, one achieves a general systemati-
zation of dynamical approaches, i.e., approaches based on the spectrum of one-particle excitations. Different
mean-field and different cluster schemes naturally appear in this framework and complement the existing ones.
Their prospects for future applications are discussed.
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I. INTRODUCTION

The combined influence of electron-electron interaction
and of disorder on material properties represents a central
question of solid-state theory. In diluted magnetic
semiconductors' like Ga,_,Mn,As or Zn,_,Mn,Se, the mag-
netic properties, such as the Curie temperature, sensitively
depend on the (random) distribution of the Mn ions as well
as on the type and the strength of their effective magnetic
interaction which results from strong Coulomb interaction
among the Mn 3d valence electrons. Several transition-metal
oxides? with partially filled metal 3d shells (e.g., manganites
or cuprates) are antiferromagnetic Mott or charge-transfer
insulators and exhibit a rich phase diagram upon doping with
charge carriers. The disorder potential introduced due to the
substitution process considerably affects their magnetic,
charge, and orbital ordering.

While these examples show the need for a comprehensive
theory of interacting and disordered electron systems, they
also demonstrate the immense complexity one faces in any
theoretical approach. Even strongly simplified (Anderson-
Hubbard-type) models with local interactions and local dis-
order only are highly nontrivial if studied in a regime which
excludes a simple perturbative treatment.>’

For three (and higher) dimensions, one may, in the first
place, focus on the local charge and spin dynamics of the
electrons and, complementary to scaling theories,? disregard
the long-wavelength modes which govern the immediate vi-
cinity of a phase transition. In this context, mean-field ap-
proaches and cluster extensions are well justified. The mean-
field concept is formally valid in the limit of high
dimensions. Subsequent cluster extensions are suited to rein-
corporate short-range correlations which are neglected in the
purely local mean-field approach. Clearly, a mean-field treat-
ment excludes important effects such as the destruction of
long-range order due to thermal order-parameter
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fluctuations® or Anderson localization,® for example. Never-
theless, tractable mean-field theories can be valuable tools
for an understanding of interacting and disordered systems
with different competing orders and complex phase dia-
grams.

A mean-field theory can be formulated on the level of
Hamiltonians and electronic states. This yields simple ap-
proaches such as the Hartree-Fock appoximation to treat the
interaction part and the virtual-crystal approximation to treat
the disorder part of the problem.'®!! These are completely
static theories which, in addition to spatial fluctuation, also
neglect temporal fluctuations.

Temporal degrees of freedom can be taken into account in
a mean-field theory when this is based on the spectrum of
excitations. Placing the one-particle Green’s function in the
center of interest results in a mean-field theory which is dis-
tinguished by the fact that it yields the exact result in the
limit of infinite spatial dimensions. With a proper scaling of
the model parameters, this limit preserves a highly nontrivial
dynamics.'?!3 This distinguished mean-field theory, for the
interaction part of the problem, is the dynamical mean-field
theory (DMFT).'*-!7 It gives the exact (local) interaction
self-energy of the prototypical Hubbard model'®2° in the
D= limit. For the disorder part, the coherent-potential
approximation®'2* (CPA) gives the exact (local) disorder
self-energy of the disorder Anderson model’ in the D=
limit.

Phenomena depending on dimension are missed in a local
mean-field approach but can be restored step by step using
cluster expansions.!’>> Using a single-site mean-field theory
as a starting point for a systematic expansion is surely an
inadequate approach to include long-wavelength modes and
their effects. The main motivation for the subsequent inclu-
sion of spatial correlations in cluster theories is rather the
expected rapid convergence of local observables.

The purpose of the present paper is to contribute to a
systematization of mean-field approaches and their cluster
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extensions in the combined case of interactions and disorder
and to explore different approximation schemes. The strategy
is to seek for a proper generalization of the self-energy-
functional theory (SFT) developed recently.?®?” For the pure
(disorder-free) case, it has been shown that well-known
mean-field and cluster approaches are recovered, and differ-
ent approximations can be constructed in a systematic way
which guarantees thermodynamical consistency.”®?° Here,
we describe a different derivation of the SFT which is non-
perturbative, i.e., a formulation which does not refer to for-
mal sums of skeleton diagrams. This formulation is well
suited for an extension of the theory to disordered (and in-
teracting) systems. The generalized SFT is worked out in
detail. It is shown that it makes contact with (i.e., rederives)
a number of previous approaches:

(i) the DMFT+CPA put forward by Jani§ and Vollhardt*
and by Dobrosavljevi¢ and Kotliar,3'*> which has recently
been used to study metal-insulator transitions at noninteger
filling and the effects of disorder on magnetism;3*-3°

(ii) the local distribution approach of Abou-Chacra et
al.’” which has recently been evaluated numerically by Al-
vermann and Fehske®® and which is the conceptual basis for:

(iii) the statistical DMFT proposed by Dobrosavljevi¢
and Kotliar**#" with several recent applications,*! e.g., to
strongly coupled disordered electron-phonon systems;

(iv) the molecular CPA (Ref. 11) and its combination
with the cellular*?>*3 DMFT (C-DMFT) of Kotliar ef al. and
Lichtenstein and Katsnelson;

(v) the dynamical cluster approximation (DCA) for dis-
ordered systems as introduced by Jarrell and co-workers;*+*

(vi) the disorder analog of a simplified DCA recently in-
troduced by Tran*®

as well as with several variants of these approaches such as
the typical medium theory*’ (TMT) involving the geometri-
cal averaging of the local density of states which has been
suggested by Dobrosavljevi¢ et al. and applied in combina-
tion with DMFT by Byczuk et al.**°

The construction of a generalized SFT provides a unified
theoretical framework which is able to rederive and thereby
to classify the above-mentioned approximations (i)—(iv).
This procedure automatically discloses the view on other ap-
proximations: Generalizations of the periodized cellular
DMFT (PC-DMFT) (Ref. 50) and of the cluster-perturbation
theory’'”? (CPT) as well as the variational cluster
approach?®33>* (VCA) are suggested for disordered (and in-
teracting) systems.

The main intention of the paper is to work out the formal
concepts. The benchmarking and application of the different
approaches require a numerical implementation which is be-
yond the present scope but intended for the future.

The paper is organized as follows: Section II introduces a
number of basic quantities needed for the subsequent con-
struction of the self-energy functionals. In Sec. III the self-
energy functional for pure systems is derived nonperturba-
tively within the functional-integral formalism. A brief
general discussion of approximations follows in Sec. IV for
the case of a fixed disorder configuration. This provides the
basis for the statistical SFT in Sec. V and for the statistical
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DMFT, in particular. The main ideas for the construction of
the generalized self-energy functional of configuration inde-
pendent self-energies are provided in Sec. VI, while Sec. VII
shows how to generate consistent approximations. The spe-
cialization to limiting cases, in particular to the disordered
but noninteracting electron system, is given in Sec. VIIL.
This concludes the general buildup of the theory. The case of
disorder in the interaction part is briefly sketched in Appen-
dix A. In the rest of the paper, several concrete approxima-
tions are derived and classified. This includes well-known
but also different approximation schemes. Mean-field ap-
proximations are disussed in Sec. IX, cluster approximations
in Sec. X. A summary and a discussion of general topics in
Sec. XI conclude the paper.

II. HAMILTONIAN AND DYNAMIC QUANTITIES

We consider a system of fermions in equilibrium at tem-
perature 7" and chemical potential w. In the grand-canonical
ensemble, the macrostate of the system is given by the den-
sity operator

__exp[= (H- uN)/T]
P= Tr exp[— (H — uN)/T]’

(1)

where N is the total particle-number operator and H is the
Hamiltonian. H is assumed to consist of a free (bilinear) part
H, which exhibits the (discrete) translational symmetries of
an underlying D-dimensional lattice, a disorder potential
Hg;., and an interaction part H;,:

H=H(t,n,U) = Hy(t) + Hy(n) + Hin (V). (2)
The free part

H(t) = 2 faﬁCLC,B (3)
af

is characterized by a set of hopping parameters ,5, where an
index «a labels the states of an orthonormal one-particle basis
{la)}. Typically, « refers to the sites x of the lattice as well as
to some local degrees of freedom (e.g., spin projection o
=1,1),i.e., a=(x,o). The full hopping matrix with elements
I4p is denoted by ¢.

The interaction part

Hp(U)== > UaﬁzSyClCTBCycﬁ “4)

1
201,375

is a four-fermion point interaction and is specified by the
(Coulomb) interaction parameters U,gs,. The full set of in-
teraction parameters is written as U for short.

The disorder potential
Hg(n)=2> NafColp (5)
ap

is bilinear and given in terms of parameters 7,5 which are
random numbers with a joint probability distribution P(7)
with P(5)=0 and [dnP(7)=1. The configurational average
for any quantity A, depending on 7 is
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(A)p= f dnP(nA,,. (6)

For the theoretical setup, Hgi (%) and H,,(U) are taken to be
completely general. The construction of mean-field approxi-
mations will be most convenient for a local (Hubbard-type)
interaction U and a diagonal (local) disorder potential, 7,4
= ,57a With independent energies: P(#)=I1,p(7,).

Using the functional-integral formalism,> the grand po-
tential,

Qt,ﬂ,U= —T1In Zt,r],U’ (7)
and the partition function for a given configuration 7,

Zy yu=Trexp{-[H(t,n,U) - uN)/T}

= f DEDE exp(Aypu.e)- (®)
depend on the model parameters via the action

At,n,U,‘ff* = 2 gz(iwn)[(iwn + M) 5&,3 - ta,B - naﬁ]éﬁ(iwn)
n,af
1 /T )
23 V| 4B DD, ©)
afyd 0

Here Eli,) =T [ dre’ g (7) [&.(iw,)
=T"2[}Tdre "¢ (7)] are Grassmann fields at the fermionic
Matsubara frequencies iw,=i(2n+1)7T (with n=0,%1,....).
The configurational average of the grand potential is given
by

Gy py= f dnP( ﬂ)Qt,n,U = <Qt,17,U>P~ (10)

The subscript P indicates the dependence on the probability
distribution.

For later purposes, we need the free one-particle Green’s
function,

Gt,0,0= . ) (11)

which is a matrix with the elements G g ,5(iw,). The de-
pendence of G, on ¢ is indicated by the subscript. Depen-
dencies on the chemical potential u and the temperature 7'
will not be indicated; u and T are assumed to be fixed. Simi-
larly,

L (12)

denotes the free Green’s function in the presence of the dis-
order potential. The action determines the full Green’s func-
tion G, ,, y, the elements of which read

PHYSICAL REVIEW B 75, 125112 (2007)

Gt,ﬂ,U,aB(iwn)

Zt, nU

J Dng*ga(lwn) g;(lwn)exp(At, ﬂ,U,ff*) .
(13)

Finally, we introduce the (interaction) self-energy
3 0=Groo-1-Gu=Gyo—Grry.  (14)

2,’,,1] depends on the configuration #. The configuration in-
dependent (full) self-energy

Strv=Groo=Tipy (15)
is defined with the help of the averaged Green’s function

L pu=(Gpu)p- (16)

III. CONFIGURATION-DEPENDENT SELF-ENERGY
FUNCTIONAL

The main idea of the SFT is to express a thermodynamical
potential as a functional of the (interaction) self-energy,
which is stationary at the physical self-energy of the system.
Variation of the self-energy is achieved by taking trial self-
energies from a (exactly solvable) reference system and
varying its parameters. To be able to evaluate the self-energy
functional (which, in most cases, is defined only formally), it
is of crucial importance that the reference system shares with
the original system the nontrivial part of the functional so
that this can be eliminated. Details of the SFT are described
in Refs. 26-29. In the following, we present a construction
of the self-energy functional for a fixed configuration 7. The
construction is nonperturbative (i.e., does not refer to formal
sums of skeleton diagrams) and allows for a generalization in
the case of disorder (see Sec. VI).

To start with, we note that the action can be considered as
a functional of the (inverse) free Green’s function [Eq. (12)]:

ApeelGo'l= 2 £(i0,)Gylgliw,) Eli,)
n,af
1 vro
— =2 Upsy f dré(DE(NE(DESLT).
2aB75 0

(17)

Here Gal is considered to be a free “variable.” The physical
action A,y ¢z [Eq. (9)] is obtained by evaluating the func-

tional Ay ¢ ...] at the physical inverse free Green’s function
G,'=G,,, [Eq. (12)]. i.e.,

Apguee = AU,§§*[Gt_,1;,0]- (18)

Note that a hat is used to distinguish functionals from physi-
cal quantities. Additional dependencies of a functional (pa-
rameters) are indicated by subscripts.

In the same way, via Eqgs. (7) and (8), the grand potential
can be considered as a functional of Gal, and one has
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Oy pu= QU[GZ 17,0], Qov= QU[Gt_,(l),O]' (19)
Again, one has to distinguish clearly, e.g., between (), , ¢,
the exact grand potential of the model H(¢, 5,U) on the one

hand, and QU[G(_) ', a functional of the variable G;' on the
other. The latter only acquires the value (), ,, ; if evaluated at

G,'=G,
The functional derivative
1 50,[G;' 1 82,0611 4.
st T s =96l (20
T &G, ZlGy'] 3G,

defines a functional QU as

éU,afﬁ[G(_)]] == ) f Dng*ga(lwn)
ZylG,
X Eiw,)etv a6, (21)
which has the property
QU[Gt_, 17,0] =G, s QU[Gt_,(l),o] =G yp- (22)

Namely, at the physical inverse free Green’s function, the
functional integral in Eq. (20) defines the physical interacting
Green’s function, see Eq. (13).

Up to this point, the derivations are standard. The decisive
point in the construction of the self-energy functional is the
following equation:

GG +3]=G. (23)

The only purpose of this is to constitute a relation between
the variables G and ¥, which may formally be solved for G.

This formal solution G=6}U[2] then defines a functional
Gy[2] (which parametrically depends on U), i.e., we have

GulGU[ET " +3]1=Gy[3] (24)

for any 3 by construction. It is important to note that the

functional GU[E] is universal, i.e., it neither depends on ¢ nor
on 7. If evaluated at the physical self-energy, the functional
yields the exact Green’s function

(A;U[Et,n,U] = Gt,r],U (25)

since, by definition, (A;U[Et,,,,y] solves Eq. (24) if
Gyl2, 0] "' =G, 17,0 -3 0
The final step is to use the (universal, i.e., ¢ and # inde-

pendent) functionals Qy[Gg'] and Gy[2] to express the
grand potential as a functional of the self-energy. We define

the functional Fy[3] as

Ful21= QUG 2] +2]-TrinG,[2], (26

where TrA=T%, S ¢%"A(iw,). Equations (20) and (24)
imply
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- =-G,[2]. (27)

Hence, Gy[3] is a “gradient” of the “scalar” self-energy
functional F[2]. The physical meaning of F¢[2] is obvious
when comparing with the original derivation of the SFT (cf.

Ref. 26): Fy[2] is the Legendre transform of the Luttinger-
Ward functional.”®

Now, the grand potential can be considered as a functional
of the self-energy:

QO o[2]1=Trln _11 +Fy[2]. (28)

Gt, 1,,0 - 2

Two properties of this functional are very useful.
First, at the exact self-energy %=3,, . the self-energy
functional yields the exact grand potential:

Qt, 2wl qu)= Qv (29)

since

Qt,n,U[Et,rl,U] =Trln Gt,r],U + ﬁU[Et,rl,U] (30)
from Egs. (28) and (14) and

Ful%p0] = QG 0] - Trin G, 0 (31)
from Egs. (26) and (25). Hence, Eq. (29) follows from Egq.
(19).

Second, consider the derivative
1 5@, Ul 2] 1 A
TN =" - GylX]. (32)
T 52 Gt,IT],O - 2
The equation
N 1
GylX]=—"F—< (33)

th 1]’0 - 2

is a (highly nonlinear) conditional equation in the variable 3,
with parameters ¢, 7, and U which is solved by the physical
self-energy %=3, , . It is by no means straightforward to

find a solution, however, since the functional GU[E] is not
known explicitly but was constructed in a formal way only.
Obviously, this is equivalent to a search for the stationary
point of the grand potential as a functional of the self-energy:

80, . 2]
t,n,U _
—tall=2 g, (34)

This establishes a very general variational principle without
the need for an expansion in powers of the interaction
strength, i.e., the construction is nonperturbative.

IV. APPROXIMATIONS FOR A FIXED CONFIGURATION

For the discussion of possible approximations, we first
consider a fixed configuration #. Then ¢+ 7 is a fixed matrix
of hopping parameters but without translational symmetries.
The idea of the SFT is to construct approximations by
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searching for the stationary point of the functional Eq. (28)
on a restricted domain of trial self-energies. Trial self-
energies are chosen from a reference system which shares

with the original system the same interaction part H;,(U). In
the Hamiltonian of the reference system,
H'=H(t') + Hi,(U), (35)

the bilinear part H(¢') is varied arbitrarily. We have set %’
=0 for the reference system. However, no translational sym-
metry is assumed for the hopping ¢'.

Since the interaction part is the same and due to the uni-

versality of the functional Fy[3], only the first term of the
self-energy functional of the reference system,

Qo o[2]=TrIn +Fy[2], (36)

.00
differs from the functional of the original system Eq. (28). A
combination of the functionals Egs. (28) and (36) therefore
gives

] ; 1
Qt,n,U[S] = Qt’,o’(][z] +Trln 1 —Trln

- - —_
G, o= Goo—2

(37)

The unknown functional F[3] cancels out.

To search for the stationary point of the self-energy func-
tional of the original system, we insert as trial self-energies
the exact self-energies of the reference system: %=, o .
This yields a function of ¢’,

Qo) = Qo2 00 (38)

Searching for the stationary point of £}, ,,;,(t') as a function
of ¢’ means to search for the stationary point of the exact
self-energy functional Eq. (28) on the restricted set of trial
self-energies generated by the reference system with param-
eters ¢t'. From Egs. (29) and (14) for the reference system, we
have

tnU(t ) Qtr out Tr 111 —Trin Gt’,O,U'

G, 1,0 -3 o0u
(39)

The important point is that the right-hand side (rhs) can be
computed exactly if the reference system is an exactly solv-
able model. Specifying a certain reference system means to
generate a particular approximation. Typically, a suitable ref-
erence system can be found for lattice models by tiling the
original lattice into clusters of finite size and by neglecting
the intercluster hopping.

V. STATISTICAL SFT

To make contact with the statistical DMFT,>**? we con-
sider a system with local interaction and local (and uncorre-
lated) disorder. The statistical DMFT treats the disorder part
of the problem exactly, while the (dynamical) mean-field ap-
proximation is used for the interaction part. Within the
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FIG. 1. (Color online) (a) Representation of the Anderson-
Hubbard model in one dimension. Squares/diamonds: fixed con-
figuration of sites with local (Hubbard) interaction and local binary-
alloy disorder. Lines: nearest-neighbor hopping. (b) Reference
system generating a mean-field approximation (n,=4). Circles: bath
sites (no interaction) with on-site energies and hybridizations to
original sites (square, diamonds) to be treated as independent varia-
tional parameters.

framework of the SFT, a mean-field approximation is gener-
ated by a reference system in which all sites are decoupled.
This implies that spatial correlations are neglected altogether
in the computation of the self-energy. The local (temporal)
dynamics, however, can be optimized by introducing addi-
tional local degrees of freedom in the reference system. For
the Hamiltonian of the reference system, this means intro-
ducing additional uncorrelated sites (“bath sites”), the on-site
energies of which, as well as their hybridizations with the
original correlated sites, are treated as variational parameters.

To be explicit, the discussion is restricted to the
Anderson-Hubbard model

H= E txx’cxa-cx’0'+ E Nlyo t UE nxTnxJ, (40)

xx'o xo

Here, x refers to the sites of a lattice, nm—c +Cxo» and 7, are
independent random numbers distributed according to

P(p)=11p(n) (41)

X

with some density p(7,). A reference system generating a
mean-field approximation is H' =3 H, with (see Fig. 1)

H, = 2 fxmeCxa"‘ UE I/ > 2 s(x)axmaxm

o =2

+ 2 2 Vgx)(a;ia'cxa + C;oﬂxio') . (42)

o =2

It consists of effective impurity models with n sites each:
the correlated site x (with U#0) and n,—1 bath sites (with
U=0) labeled by i. The effective impurity models can be
solved independently to get a trial self-energy.

There is an indirect coupling, however, via the optimiza-
tion of the variational parameters ¢'=(z/ (x) V(x ): The Eu-
ler equation,

XX’

Q) =0, (43)

simplifies due to the fact that the trial self-energy (and its
derivative with respect to ¢’, see Ref. 57) is necessarily local.
Using Eq. (39) and carrying out the derivative, Eq. (43) can
be written as
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a)

40—

000000000

FIG. 2. (Color online) The same as Fig. 1 but for a continuum of
bath sites (n,— ), represented by big circles. The reference system
generates the generalized or statistical DMFT (see text).

]

aExx(inl)
1 ’
nx t,m,0 - 2t’,O,U

po =0. (44)

nxx

Now, the variation of the one-particle parameters of the im-
purity model at site x does not affect the self-energy of the
impurity model at site x” (x' #x). Therefore, the Euler equa-
tion simplifies to

2(;

aExx(inl)
—1 ’
n t,1,0 - 2t/,O,U

ot

nxx xx

—G,,,O,U) =0, (45)

where 7, denotes the variational parameters at the correlated
site x. This is a set of equations labeled by the site index x.
Due to the matrix inversion in Eq. (45), however, the equa-
tions are coupled. This implies that for a generic configura-
tion, the individual self-energies of the effective impurity
models are different at the stationary point as the sites of the
original lattice model are inequivalent.

For n;—oo, i.e., for a continuous bath (see Fig. 2), an
additional formal simplification is possible: As is obvious
from Eq. (45), a solution ¢’ of the coupled equations

1
=(Gy o p(iw,)s (46
(G;,i,,ouw,,)—z,,,o,uuwn)),,x (Grawtioee (40

yields a stationary point of the self-energy functional. Note
that for any finite n,<<oc there is no solution: The rhs of Eq.
(46) is the Green’s function of a finite system which exhibits
a finite set of poles on the real frequency axis (after analyti-
cal continuation). Contrary, the left-hand side represents an
approximate lattice Green’s function, which in the thermo-
dynamical limit L— < has branch cuts on the real axis in-
duced by the branch cut of the free Green’s function.

In the case of systems with a few inequivalent sites, i.e.,
for inhomogeneous systems with a somewhat reduced trans-
lational symmetry, Eq. (46) exactly recovers a generalization
of the DMFT, which has been put forward to describe corre-
lation effects at surfaces and in thin films.”® They are just the
self-consistency equations of this generalized DMFT. Typi-
cally, only a few effective impurity models have to be con-
sidered in this approach.>®-

For disordered systems without any translational symme-
try, the self-consistency equation (46) constitutes the statisti-
cal DMFT as introduced by Dobrosavljevi¢ and Kotliar.3*40
In principle, Eq. (46) can be solved iteratively. For any itera-
tion in the self-consistency cycle, one then needs the local
Green’s function at each site of the system, which in each
case requires the solution of an interacting impurity problem.
Equation (46) and the absence of translational symmetry also
imply the need for an inversion of matrices, with dimension
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given by the system size. For these reasons, the statistical
DMEFT is a numerically extremely expensive method.

Choosing a reference system consisting of decoupled ef-
fective impurity models with finite (and actually small) n;
could thus be an interesting alternative. Calculations based
on such a statistical dynamical impurity approximation (stat-
DIA), however, have not yet been performed. Since all
physical quantities derive from an explicit though approxi-
mate expression for a thermodynamical potential, the stat-
DIA is a thermodynamically consistent approximation. This
can be seen as an advantage compared to statistical DMFT
approaches which employ additional approximations to ren-
der practical calculations possible.

The self-consistency equation (46) allows for a stochastic
reinterpretation: For a given configuration of on-site energies
{7}, the local Green’s function G,, will be site dependent.
The distribution of the local Green’s function at a site x
(generated by all configurations), however, will be the same
as the distribution at a site x’ #x since the on-site energies
7, have been assumed to be independent random numbers
distributed according to the same density p(7,) for each x.
Moreover, the distribution of the local Green’s function at a
site x, generated by all configurations {7,}, is identical to the
distribution of the local Green’s function on all lattice sites
for one fixed typical configuration of on-site energies. Hence,
the index x in the self-consistency equation (46) can be
viewed as a label for a particular realization of the random
variable G,,.

For a Bethe lattice, Eq. (46) can be reinterpreted as a
stochastic recursion equation. Starting from an arbitrary ini-
tial sample for the local Green’s function, {G,,}, the equation
recursively generates a sequence of samples which con-
verges to a sample which is representative of the distribution
of the local Green’s function. The practical advantage of this
reinterpretation consists in the fact that a Gibbs-sampling
Monte Carlo algorithm for the calculation of marginal distri-
butions can be applied (see Ref. 41, for an example). The
iterative solution of the self-consistency equation (46) for a
given typical configuration of on-site energies is then equiva-
lent to the recursive update of a sample of local Green’s
functions. Furthermore, the matrix inversion required in Eq.
(46) can be avoided in the case of a Bethe lattice. For a
general (e.g., cubic) lattice, however, the stochastic scheme
breaks down, and one has to return to the site interpretation
again.

VI. CONFIGURATION-INDEPENDENT SELF-ENERGY
FUNCTIONAL

The above discussion has shown the practical needs to
construct more simple approximations. An intuitive strategy
involves considering quantities involving configurational av-
erages and searching for sensible approximations of the av-
eraged quantities instead of considering full distributions.
The simplest and most natural average is the arithmetical
average (- **)p, which has been introduced in Sec. II. It shall
be understood that one has to be extremely careful when
discussing transport properties in terms of the averaged one-
particle Green’s function I'; p ;1 Close to Anderson localiza-
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tion, the distribution of the local Green’s function (at w=0)
can exhibit an extreme asymmetry and a long tail such that
the average is of no physical meaning and can by no means
serve as an order parameter for a metal-insulator transition.
Here our goal is to construct nonperturbative and thermo-
dynamically consistent approximations for averaged quanti-
ties which give information on thermodynamic properties
and one-particle excitations. Within the framework of the
self-energy-functional approach, this can be achieved by in-
troducing functionals that involve quantities averaged ac-
cording to the given probability distribution P. In particular,
we consider functionals of the configuration-independent
(full) self-energy S and the configuration-dependent (interac-
tion) self-energy X, as defined at the end of Sec. IL
Analogous to Eq. (23), the equation

1
<m>r o

constitutes a relation between the averaged Green’s function
I" on the one hand and S and 2,, on the other. The functional
CA/U[~ -] in Eq. (23) is replaced by the functional (1/(---
—m))p, and the probability distribution P, instead of the in-
teraction parameters U, plays the role of the external param-
eter. Contrary to Eq. (23), the above relation is diagonal in
the frequency iw, (which is suppressed in notations).
Assume that S and (for any configuration #) %, are
given. Then, the equation can formally be solved for I'. This

Green’s function I'=L"p[S {2 p] to any § and X, This func-

tional plays a role analogous to the functional Gy[2] in Sec.
111
Analogous to Eq. (25), we have

fP[St,P,U’{Et, n,U}] = Ft,P,U (48)

since Eq. (47) holds when evaluated for S=S,,,, %,
=3, ,uv» and I'=T', p ;; as is obvious from Eqs. (14)—(16).
From Eq. (33) we have

1

Gul2,l= 5 (49)
7 t,(l),O -—n- 217
for any 7. This equation and
8.3 ]=— 50
AS (2= oo — (50)

form a (highly nonlinear) system of conditional equations for
the variables S(iw,) and X,(iw,). The external parameters ¢,
P, and U specify the model under consideration. Equations
(49) and (50) are satisfied for the exact self-energies S(iw,)
=8, pylio,) and 3, (iw,) =2, , yliw,).

In the following, we show that the conditional equations
Egs. (49) and (50) can be considered as stationarity condi-
tions of the averaged grand potential as a functional of the
self-energies. We define the self-energy functional
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. 1
Qt.P,U[S’{E 17}] =Trln _]—S
1,00~
1
LS {E " +S-9-3,/,
~TrIn DS {2+ (F[Z, e (51)

The sum of the second and third terms on the rhs is a func-
tional which is universal, i.e., it is independent of # [note that
the terms do not cancel each other as the operations In(---)
and {---)p do not commute]. With Egs. (14)—(16), (47), and
(48), the evaluation of the functional at the exact self-
energies yields

+{ Trin

Qt,P,U[St,P,Us{Et, y,U}] =(TrlnG,, n,U>P + <ﬁ vl 1],U]>P
= <Qt,1],U>P = Qt,P,U7 (52)

i.e., the exact averaged grand potential. The functional de-
rivatives are readily calculated:

100 [SA3H 1
T S 00—S

- 08.2,]  (53)

and

l mt,P,U[S’{Erl}] - ( 1
r 527/ IAjPl:S9{S'77}:|_1+S_11_271

-Gyl n]) P(3). (54)

Hence, setting the functional derivatives to zero yields two
equations equivalent to Egs. (49) and (50). Therefore, the
functional is stationary at the exact self-energies:

0 lSeriErgl]
oS ’
mt,P,U[St,P,U,{Et,r,,U}] 0. (55)
5%,

The self-energy functional Eq. (51) represents a generaliza-
tion of the self-energy functional Eq. (28) for interacting
systems with disorder. It is completely general and provides
an exact variational principle.

VII. CONSISTENT APPROXIMATIONS

In the spirit of the SFT for pure systems, approximations
shall be constructed by restricting the domain of self-
energies in the functional Eq. (51) while retaining the exact
functional dependence. We consider both the full as well as
the interaction self-energy. Trial self-energies are taken from
a reference system, which is a system in the same macro-
scopic state, i.e., with the same temperature 7" and the same
chemical potential w as the original system, but has different
one-particle parameters ¢'. The Hamiltonian of the reference
system reads
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H'=H(t',n,U) =H(t') + Hgi(n) + H;, (V). (56)

H' has the same interaction part as compared to the original
system. Likewise, the disorder potential, i.e., the distribution
P(m), is assumed to be unchanged. Hence, the self-energy
functional of the reference system is given by

N 1
Qp pofSAZH1=Trin ———
1,00

1
f‘P[S7{21]}]_l+S_77_217 P
Tl S, (S 4 B3, D (57)

Only the first term on the rhs is different as compared to the
functional for the original system Eq. (51). Combining Egs.
(51) and (57), the last three terms on the respective rhs can-
cel out, and one is left with

+{ Trin

~ A 1
O pofSAZ}= O p S+ Trin ——
Gt,O,O -S

1
=Trin ———. (58)
t',o,o_S

Note that the full and the interaction self-energies are con-
sidered as variables at this point, and that for the cancellation
of the functionals it is of crucial importance to choose the
reference system to have the same interaction and disorder.
The self-energy functional Eq. (58) is still exact.

As trial self-energies we insert the exact self-energies of
the reference system: $=S, py and X ,=3, ,y. Searching
for the stationary point of the exact self-energy functional
Eq. (51) on the subspace of trial self-energies taken from H’
and parametrized by ¢’ means to search for the stationary
point of a function of ¢':

Qpv®) = Qp oS p {0t (59)

where ¢, P, and U are fixed by the original system. From Eqs.
(52) and (15) for the reference system, we get the compara-
tively simple result:

Qt,P,U(t,) =Qtr‘P,U+Tr In 1

—Trln Ft',P,U'
10,0 St’,P,U

(60)

This result is formally very similar to Eq. (39) for pure sys-
tems. Again, the important point is that the rhs can be com-
puted exactly if the reference system is an exactly solvable
model. The only difference consists in the fact that the grand
potential, the Green’s function, and the self-energy of the
reference system on the rhs are replaced by the correspond-
ing averaged quantities and the configuration-independent
(full) self-energy.

A certain approximation may be constructed along the
following steps: (i) A reference system is specified with P
and U fixed as in the original system. The hopping part, i.e.,
t’, however, is fully at one’s disposal and should be used to
simplify the problem posed by the reference system. (ii) For
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a given set of variational parameters ¢', the reference sys-
tem’s Hamiltonian H'=H(¢',n,U) is diagonalized for any
configuration 7 to get the (many-body) eigenenergies and
eigenstates. (iii) The grand potential €} ,y and, from the
Lehmann representation, the Green’s function G/ , y are ob-
tained for any #. (iv) Averaging yields Q p y=(Qy ,1)p
and Ty py=(Gy ,u)p. The self-energy is computed via
S,,,P,U=G;{0’0—F;,{P’U. (v) Inserting these results as well as
the free Green’s function of the original model into Eq. (60)
yields €, p y(t"). (vi) Steps (ii)—(v) are repeated for different
¢’ to find the stationary point ¢ given by

aQ, p (L))
=0, (61)

This approximation strategy shares a number of advanta-
geous features with the corresponding strategy for pure sys-
tems: Any approximation constructed in this way is a ther-
omdynamically consistent one since the theromdynamics as
well as the (averaged) one-particle excitation properties both
derive from an explicit expression for the approximate aver-
aged grand potential (), p /(¢;) at the stationary point (see the
discussion in Ref. 61). The only approximation consists in
the restriction of the domain of the self-energy functional.
The approach is systematic as an enlarged domain leads to an
improved approximation (see the discussion in Ref. 57). As
the exact functional form is retained, approximations are
nonperturbative by construction.

VIII. LIMITING CASES

Equation  (51)
Q,!P,U[S,{E,,}] for a disordered and interacting system. To
discuss the limiting cases of the pure, of the noninteracting,
and of the pure and noninteracting systems, we first have to
specify the domain of this functional. This also applies to the
functionals f‘P[S,{Eﬂ}],GU[E], etc.

For a given set of interaction parameters U and for a
given probability distribution P, the domain D=DgyX Ds of

gives the self-energy functional

the self-energy functional Q,,P,U[S {2 ,}] shall consist of
(full) self-energies S € Dy and (for any #) interaction self-
energies %, € Dy taken from the reference system. Namely,
a (full) self-energy S belongs to Dy if there is some ¢' such
that $=S8,/ p ¢, i.e., such that S is the exact self-energy of the
problem given by H'=H(t',n,U) and P for some ¢'. Like-
wise, a set of interaction self-energies {2} (for all possible
7) belongs to Dy if there is some ¢’ such that %,=3, , 1,
i.e., such that X, is the exact (interaction) self-energy of the
problem given by H'=H(t',n,U) for some ¢'. Hence, the
hopping parameters ¢’ span the domain of the self-energy
functional.

This definition is very convenient as it automatically en-
sures the correct analytical and causal properties for any self-
energy in the domain. It also avoids formal difficulties for
pure or noninteracting systems which arise from the fact that
conditional equations such as Eq. (47) become tautological
in these limits and cannot serve to define a self-energy func-
tional. With the above definition of the domain, however, this
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becomes irrelevant as for the cases of pure or noninteracting
systems the domain consists of a single element or a null set
only.

With these preparations, let us discuss the limits in detail:

(i) The pure and noninteracting case is given by P(#)
= 8(n— n,) and U=0. Note that we can set 7,=0 for simplic-
ity (in the absence of disorder, a nonzero 7, merely implies
a redefinition of the hopping: ¢+ 7). The domain of the self-
energy functional Eq. (51) shrinks to the point §=3,=0.
According to Egs. (26) and (25), this implies

Fy-o[0]= QU:O[GZ(I),O] =TrinG;4(=0 (62)

as Trln G, is the grand potential of a system of nonin-
teracting electrons with hopping ¢. For np=7,=0 and S
=2,=0, the second and third terms on the rhs of Eq. (51)
cancel, and thus one is left with

Oy, o[0,0]=Tr In Gy, (63)

which is the correct result.

(ii) In the case of P(3)=48(%) but finite interaction U
#0, one still has % ,=%=S on the domain, and due to the
cancellation of the second and third terms on the rhs of Eq.
(51), the self-energy functional reduces to Eq. (28), as ex-
pected.

(ili) For a system of noninteracting electrons (U=0)
moving in a disorder potential with P(7)# &(#), one has
3 ,=0 on the domain of the self-energy functional and thus

Fy=o[0]=0. With T',[S]=T,[S,%,=0], this yields the self-
energy functional O, p[S]=Q, p y_o[S .2 ,=0] with

~ 1 N
O H[S]=Trln ——-TrIn T[S
t,P[ ] Gt_,(l),() _ S P[ ]
1
+{ Trin —— (64)

Lp[ST'+S-7/,

for the problem with disorder only. The last two terms play

the same role as the functional £ v,nL 2] for the problem with
interaction only. This functional is discussed in the next
section.

IX. MEAN-FIELD APPROXIMATIONS

Mean-field approximations for systems with local disor-
der and local interactions represent a simple but instructive
class of approximations within the framework of the self-
energy-functional approach. It is well known that any mean-
field theory of disorder will be deficient in various ways.
Issues such as localization cannot be addressed, for example,
by means of the famous CPA.%> Nevertheless, the mean-field
concept represents an important benchmark and starting
point for improvements and is, in many cases, the best we
have at hand for practical calculations.

We start by considering the functional (64) for the nonin-
teracting, disorder-only limit of the model (40). This is the
Anderson model
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FIG. 3. (Color online) (a) Representation of the (disorder)
Anderson model Eq. (65). (b) Reference system generating the
atomic approximation (see text). (c) Two-site approximation. (d)
Improved mean-field approximation due to atomic reference system
with more bath sites (n;=4). (¢) The optimum mean-field approxi-
mation generated by a continuum of bath sites is the coherent-
potential approximation (CPA). If (a) represents the (pure) Hubbard
model, (b) yields a Hubbard-I-type atomic approximation, (d) is a
typical mean-field approximation, and the optimum mean-field ap-
proximation (e) is given by the DMFT. In case that (a) represents
the Anderson-Hubbard model Eq. (40), the reference system (d)
leads to the DMFT+CPA approach.

H= fewrCheyr + > MeCoCr (65)

xx' x

with local disorder given by Eq. (41) and some density p(7,)
characterizing, for example, an alloy with R components
(Z,p=1):

R

p(n) =2 p,8n-1,). (66)
r=1

For simplicity, the spin index is suppressed.

A mean-field or single-site approximation is generated by
a reference system consisting of decoupled sites [see Fig.
3(b)], i.e., by switching off the hopping term. For an alloy-
type disorder, this reference system is exactly solvable, as
one has to compute the Green’s function for a finite number
of R configurations. Models with a continuous distribution
p(mn,) have to be simulated by a finite but large R. Adding
“bath” sites to the reference system, i.e., sites with fixed,
configuration-independent on-site energies, enlarges the
space of variational parameters ¢’ and trial self-energies S
=Sy p and implies an improved mean-field approximation
[see Figs. 3(c) and 3(d)]. Note that the disorder part is still
the same as in the original model (65), as it is required to
justify Eq. (60).

The Hamiltonian of the reference system reads

H =Y t;xc;cx + > nxcicx + 2> Vgx)(c;axi +H.c.)
X x X i
+ 2 2 salay. (67)
x i

It consists of the local part of Eq. (65) and, for each site x,
includes bath sites with (configuration-independent) energies
sl(.x) hybridizing with the original sites via Vf.x), where i
=2,...,n, As the Hamiltonian describes an impurity model
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with identical and decoupled replicas at any site x, it is in
fact sufficient to focus on one impurity model only. The site
index x can be suppressed in this case. This reflects the trans-
lational symmetry of averaged quantities in the original
model (65).

Due to the decoupling of the original sites, the reference
system yields a trial self-energy which is local. Spatial cor-
relations due to nonlocal contributions of the self-energy are
neglected. Differences between different mean-field approxi-
mations are due to the temporal correlations, i.e., due to ad-
ditional bath sites. Obviously, the optimum single-site ap-
proximation is obtained for a continuum of bath sites n,
— oo [Fig. 3(e)].

A. Atomic approximation

The simplest approximation is obtained for n,=1, i.e., no
additional bath sites [Fig. 3(b)]. This case is instructive as it
allows for a largely analytical treatment which elucidates
some general features of the disorder SFT. The reference-
system Hamiltonian consists of the first two terms on the rhs
of Eq. (67). We consider the case of a binary alloy (R=2)
with on-site energies #; and 7, and corresponding probabili-
ties p; and p,. The only variational parameter left is the
(configuration-independent) on-site energy 7)=t,..

For T=0 and u=0, the averaged grand potential of the
reference system )’ =), p is easily calculated:

Q'/L=p(15+ 7)O(= 15— 7)) + pa(tg + 1) O(= 15— 7).
(68)

This is the first term on the rhs of Eq. (60).
The averaged Green’s function of the reference system
[Eq. (16)] is obtained immediately as I'; (@)= &, I’ (w) with

Mew)=—2— P2 (69)

! !
w—Ily=1 ==

Using the considerations of Ref. 27 [see Eq. (20) therein],
only the poles w{ ,=1,+ 7, , enter the result for the third term
on the rhs of Eq. (60):

Ly.po

= 00(-w)- Es

Trln 3
r=1,2 L

(70)

The term Ry (see Ref. 27) cancels out later.

With the free Green’s function of the reference system,
Gi(w)=1/(w—t,), we get from Eq. (15) the self-energy as
S (@)=8S(w), where

N2
S(@)=(m+ ,<772> (m) '
o—ty— 11— +{(n)

(71)

Let (k) be the eigenvalues of the hopping matrix ¢ and let
I (w)=L"" 3, e*“9T (), with L the number of lattice
sites and I'y(w)=1/[w—e(k)-S(w)] the averaged Green’s
function of the original system as it appears in Eq. (60).
From Eq. (71) we find
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a) a

INw) = +

(72)

w— W) (l)—wz,

with  poles  w;,=[e(k)+1y+ m1+ 7,1/ 2+{[e(k)+2{m)— 7,
—7]2—16]2/4+<7]2>—<77>2}”2 and weights a;=(w;- 7,7
() =1) /(01— 0,) and
ay=(wy— = m+{(m—1))/ (w,—w). The k dependence of
the poles is only due to e(k), ie., w,=w,(k)=w(ck)).
Hence, using Eq. (21) of Ref. 27 and the definition of the
free density of states py(z)=L"' =, dz—e(k)], we get

r - R
Trin =422 3 | dz p(@)w, ()0 w(2)] - -
r=1,2 J -0

(73)

for the second term on the rhs of Eq. (60).

Adding the three contributions, one can search for a sta-
tionary point numerically. Here, we restrict ourselves to the
particle-hole symmetric case, i.e., we assume py(z)=py(-z),
n1=1,, and p;=p,=1/2. While the different contributions to
the SFT grand potential Eq. (60) are asymmetric, it is
straightforward to see that their sum is symmetric with re-
spect to a sign change of the variational parameter:
Q, po(t) = po(—1). Furthermore, the dependence on f; is
smooth for |#)|<|#,|. Hence, the SFT grand potential is sta-
tionary at 7,=0, which had to be expected by virtue of
particle-hole symmetry.

The optimum self-energy is given by Eq. (71) with 7;,=0.
It consists of the “virtual-crystal” potential (7) [note that
S(w)=(7n) is the so-called virtual-crystal approximation'!]
and a frequency-dependent part with one simple pole at w
=0. Its weight is given by the disorder strength, namely, by
the variance (7%)—(7)*= 7. For any finite 7,, this leads to a
splitting of the averaged local density of states into a lower
and an upper alloy band. In the case of strong disorder, this
result is qualitatively correct as could be expected since the
high-frequency behavior of S(w) is correct up to the order
1/ w?*. However, the widths of the alloy bands turn out to be
too small.

This atomiclike approximation is very much reminiscent
of the Hubbard-1 approximation'® for the pure but interacting
system, although the Hubbard-I self-consistency condition is
somewhat different from the SFT Euler equation and leads to
different results away from the particle-hole symmetric
point. The analogy between approximations for disordered
but noninteracting and pure but interacting systems relies on
the same structure of the reference system. In this analogy,
the static part of the disorder self-energy, the virtual-crystal
potential (), corresponds to the static part of the Hubbard-I
self-energy which, for the Hubbard model, is given by
U{c! cyo), i.€., to the Hartree(-Fock) approximation. A com-
bination of both Hubbard-I-type approximations for the in-
teracting and disordered system is straightforwardly set up
with an atomiclike reference system including (local) inter-
action and disorder.

In view of the simplicity of the Hubbard-I-type approach,
it is remarkable that the variational optimization of the on-
site hopping ensures thermodynamical consistency with re-
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spect to the particle number, i.e., the averaged particle num-
ber as obtained from the (approximate) disorder-averaged
grand potential as a w derivative is always the same as the
averaged particle number calculated by integration of the
(approximate) disorder-averaged single-particle Green’s
function. The proof for this consistency is analogous to that
given in Ref. 61, see Appendix B.

It is also interesting that the stationary point ¢’ =0 actually
(locally) maximizes the SFT grand potential as has been veri-
fied by a simple numerical evaluation of Eq. (60) for the
particle-hole symmetric case. In general, and for high-
dimensional parameter spaces in particular, we expect that
stationary points are saddles.

B. Two-site approximation

The two-site approximation [see Fig. 3(c)] is the simplest
mean-field approach beyond the atomic approximation. For
the case of the pure Hubbard model without disorder, the
two-site approximation has proven to be very instructive and
successful.2”:93-% Tt provides a handy mean-field approach
which is able to reproduce qualitatively the DMFT phase
diagram for the Mott transition in the single-band model and
which has been employed to study more complex two- and
multiorbital systems. A recent application®” to the Anderson-
Hubbard model has shown that the approach can straightfor-
wardly be extended to disordered (and interacting) systems
along the lines described here. The two-site approximation
qualitatively reproduces the results of the DMFT+CPA
method but with a minimum computational effort.

C. Coherent-potential approximation

The two-site approach can, of course, be improved by
adding more bath sites [Fig. 3(d)]. The best mean-field ap-
proach is then obtained for n,— o, i.e., for a continuum of
bath sites [Fig. 3(e)]. Varying all parameters, i.e., ty=1,,,
si=sgx), and V;= Vﬁx), yields the optimum local self-energy
as the stationary point

aé’t,P[St',P] S (iw,)
88, (iw,) at'

0= %Qt,P[Sﬂ,P] = 2 2 (74)

n x

of the function Q,yp(t’)EQ,yP[S,r!P]. Here it has been used
that the self-energy (and also its ¢’ derivative) is local and
nonzero at the impurity site only. From Eq. (64), we have

1
Qpt) =Trin————
10,0~ Pt'.P

~Trln f‘P[St,,P]

1
+( Trin— . (75)

Up[Se p1 ' +Sup—n/,

Note that the last term on the rhs is just the averaged grand
potential of the reference system () p.
The Euler equation (74) is satisfied if
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80, oSy p]
0=———— 76
55 ulico) (76)

for each site x and for each Matsubara frequency w,. Calcu-
lating the derivative of the functional Eq. (64), we obtain

1 mt,P,O[St/,P] B ( 1 )
T 8Sulio) rx
P)xx
(77)

iw,+u—t—S(iw,)

1
( lﬁ‘P[St’,P]_l + S(iwn) -7

The first term on the rhs is the local element of the averaged
Green’s function of the lattice model, I'j.(iw,), which is
calculated with the approximate local self-energy S(iw,) (ex-
ploiting translational symmetry, the site index can be su-
pressed). The second term on the rhs is the averaged Green’s
function of the reference system at the impurity site
I'l..(iw,). The optimum local disorder self-energy is thus de-
termined by the condition that the local averaged Green’s
function equals the averaged impurity Green’s function of
the reference system:

FIOC(iwII) = F{oc(iwn) . (78)

This is exactly the self-consistency condition of the
coherent-potential approximation.

To elucidate this point, we note that, for the reference
system Eq. (67), I'|..(iw,) is the average of the impurity
Green’s function for the different on-site energies, i.e.,

1
I‘lroc(iwn) = 2 Py

, 79
r lw, + p— 7/]r_A(iwn) ( )

where A(iw,)=2,V?/(iw,+u—¢;) is the hybridization func-
tion. On the other hand, from the definition of the disorder
self-energy for the reference system, we have

1
I (iw,) = . 80
i) iw,+ pu—Aliw,) - S(ivw,) (80)
Eliminating the hybridization function, we get
! . 1
Floc(lwn) = 2 Pr 1 . (81)
! +S(iw,) - 7,

I‘l’OC(iwﬂ)

After a few manipulations, this equation can be cast into the
form

7= S(lwn) _
; prl - Fl,oc(iwn)[nr - S(lwn)] -

which makes contact with the original derivation of the CPA
where the averaged atomic scattering matrix is set to zero.?*
Introducing the free Bloch-band dispersion e(k) as the Fou-
rier transform of the hopping ¢ and the free Bloch-density of
states po(z)=(1/L) 24 dz-e(k)], we have

0, (82)
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oL po(2)dz
Floc(lwn) = f iw,, -z S(lw,,) . (83)

In combination with Eq. (78), this equation can be used to
eliminate I'| .(iw,) from Eq. (81) to obtain a single condi-
tional equation for S(iw,).

For a practical calculation, one may set up the following
self-consistency cycle: Starting from a guess for the hybrid-
ization function A(iw,), the averaged impurity Green’s func-
tion I'} (iw,) can be computed from Eq. (79). With the help
of Eq. (80), S(iw,) is determined, which is then used in Eq.
(83) to get the CPA Green’s function I'j(iw,) =T (iw,).
Using Eq. (80) again, a new hybridization function can be
found.

Obviously, the bath sites of the reference system play the
role of an “effective medium.” The bath parameters or,
equivalently, the hybridization function A(iw,) parametrizes
the local disorder self-energy in the most general way, con-
sistent with causality requirements. The present rederivation
of the CPA therefore very clearly shows the CPA to be the
best local approximation.

D. Dynamical mean-field theory

The reference systems shown in Fig. 3 can also be used in
the context of a pure system without disorder but with local
interaction such as the Hubbard model. In this case, the
theory reduces to the conventional SFT. The reference sys-
tem (b) with the hopping between the correlated sites
switched off generates an atomic approximation very much
the same as the Hubbard-I approximation'® but with the
Hubbard-I self-consistency replaced by the SFT Euler equa-
tion for that reference system which is different. The rather
crude atomiclike approximation can be improved by adding
uncorrelated bath sites. This yields the reference system (d),
which is a set of disconnected single-impurity Anderson
models with n, <o sites each. Qualitatively, the results of the
two-site dynamical-impurity approximation®”-%3-% [Fig. 3(c)]
are already close to the n,=% limit. The convergence with
increasing n; is rapid (see Ref. 68, for example).

The most general local trial self-energy compatible with
the requirements of causality is generated in the limit ny=00.
Here, the calculation proceeds in a way analogous to the
previous section and yields the Euler (or self-consistency)
equation (see Ref. 26):

Gloc(iwn) = G{OC(i(z)n) . (84)

Here Gy, (iw,) is the on-site element of the lattice Green’s
function [Fig. 3(a)] calculated approximately from the ap-
proximate local self-energy via the Dyson equation for the
lattice model, and G, (iw,) is the exact Green’s function of
the reference system [Fig. 3(e)] at the impurity site. Equation
(84) is just the self-consistency equation of the dynamical
mean-field theory.!>14-10

The CPA for a noninteracting system with local disorder
has a formal structure which is very similar to the DMFT for
a pure system with local interaction. This is apparent when
comparing the respective self-consistency conditions (78)
and (84) and also the respective self-consistency cycles

PHYSICAL REVIEW B 75, 125112 (2007)

which serve to iteratively solve the mean-field equations. As
the DMFT, the CPA becomes exact in the limit of high spa-
tial dimensions D — o as has been shown by Vlaming and
Vollhardt'® and Schwartz and Siggia.®” Both approaches are
characterized as approximations that yield the optimum local
self-energy. All of these are made very obvious within the
framework of the SFT, which discloses the formal analogies
between Green’s-function-based approaches to disordered or
interacting systems.

A self-evident idea that has been pursued in the past is to
derive the DMFT (or a different many-body approach to pure
interacting systems) by using the formal structure of the
CPA. This requires, however, a transformation of a pure sys-
tem with local interaction to a noninteracting system with
local disorder to which the CPA can be applied. Hubbard’s
alloy analogy’ and also a refined version’!' represent such
transformations. The subsequent application of the CPA to
Hubbard’s ficticious alloy yields the so-called Hubbard-IIT
approximation. The alloy analogy (the transformation) itself,
however, must be seen as a rough approximation which fails
to recover Fermi-liquid properties even for weak interac-
tions. The “many-body CPA” by Hirooka and Shimizu,”? the
“generalized CPA” by Jani§,”® as well as the “dynamical
CPA” of Kakehashi’* go beyond a simple analogy. The ideas
of the dynamical CPA are to perform the transformation to an
effective one-particle Hamiltonian within the functional-
integral formalism by means of a Hubbard-Stratonovich
transformation and to recover the DMFT by the subsequent
use of the CPA (see Ref. 75 for a discussion).

In this context, it is also worth mentioning the Falicov-
Kimball model which can be considered as a variant of the
Hubbard model with the hopping of one of the two spin
species switched off. The exact solution of the Falicov-
Kimball model in the limit D— o0 has been worked out by
Brandt and Mielsch.”~7® They could show that the local (in-
teraction) self-energy of the mobile carriers is given by the
CPA (disorder) self-energy—no alloy analogy is necessary
for this simplified model. It is tempting to understand the
dynamics of the mobile carriers as the scattering of noninter-
acting particles from the (local and uncorrelated binary) dis-
order potential generated by the immobile ones.

E. DMFT+CPA

For a system with Hubbard-type interactions and local
disorder, e.g., the prototypical Anderson-Hubbard model Eq.
(40), the optimum mean-field theory is generated by the ref-
erence system shown in Fig. 3(e). Note that the reference
system shares with the original system the same interaction
part and the same disorder potential. The continuum of bath
sites is uncorrelated and configuration independent.

We start from Eq. (60). For the present case, the Euler
equation d€), p ;(¢')/dt' =0 is satisfied if

1 mt,P,U[St’,P,U’{Et',rl,U}] B
T ISy (iw,) -

0 (85)

for the local elements of the self-energy. This is the Euler
equation which fixes the variational paramters ¢'. Analogous
to Eq. (77), we then obtain
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1
<iwn +u- t— St’,P,U

i.e., the local averaged Green’s function equals the averaged
impurity Green’s function of the reference system,
I (io,) =T (iw,), as in the noninteracting case with disor-
der.

Analogous to the procedure described in Sec. IX C, this
self-consistency equation can be solved in an iterative man-
ner: Starting with a guess for the variational parameters ¢’ or,
equivalently, for the hybridization function A(iw,)
=3, V}/(iw,+u—e;), the interacting impurity Green’s func-
tion is calculated for any (local) configuration of the refer-
ence single-impurity Anderson model and averaged over the
configurations to get I'| (iw,). The self-energy is obtained
from Eq. (80), which is the defining equation Eq. (15) for the
self-energy also in the case of an interacting impurity model.
S(iw,) is then used in Eq. (83) to get the averaged lattice
Green’s function I' . (iw,). Via the self-consistency equation,
this gives us I'| (iw,) and, using Eq. (80) again, a new hy-
bridization function. Note that for a continuum of bath sites
the optimum on-site element of the hopping 7 is always
given by f)=1,,. This can be shown in essentially the same
way as has been done in Ref. 61 for the pure case.

The self-consistency condition Eq. (86) and the cycle des-
ribed above constitute what is known as the DMFT+CPA
approach, which has been put forward by Jani§ and
Vollhardt*® and by Dobrosavljevié¢ and Kotliar>'3? in a dif-
ferent context: Originally, the DMFT+CPA has been intro-
duced and characterized as the exact theory in the limit of
infinite spatial dimensions which remains nontrivial for a
proper scaling of the hopping parameters.'> The presented
rederivation places the DMFT+CPA into the broader frame-
work of the SFT.

The TMT, as suggested recently by Dobrosavljevi¢ et
al.,*” can be seen as a variant of the DMFT+CPA (see also
Refs. 48 and 49). Here a modification of the above-described
self-consistency cycle is considered by replacing (ad hoc) the
usual arithmetical average of the interacting impurity
Green’s function over the (local) configurations by a geo-
metrical one. Actually, this geometrical average is applied to
the corresponding (positive definite) spectral density, and the
Green’s function I'| (iw,) is obtained afterwards from this
average as the usual Hilbert transform. A rederivation of this
variant within the SFT does not seem to be possible: Any
approximation generated within the SFT preserves the el-
ementary sum rule [ dw A;,.(w)=1 for the local spectral den-
sity, while this must be violated when averaging geometri-
cally. Despite this conceptual shortcoming, the TMT can be
motivated physically (see Refs. 47 and 48) and clearly im-
proves upon the mean-field concept as it is able to describe
aspects of Anderson localization. It should be seen as a prag-
matic simplification of the statistical DMFT that allows for
practical computations in many cases which are not acces-
sible to the statistical DMFT. As can be shown for a simpli-
fied model,” the results of TMT qualitatively agree very well
with those obtained from a full evaluation of the statistical
DMFT for interaction- and disorder-driven metal-insulator
transitions.

) = f‘P[St’,P,U’{Et’,n,U}]xxv (86)
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FIG. 4. (Color online) Decomposition of real-space lattice vec-
tors, x=X+X, and reciprocal-space wave vectors, k=%+K, for a
D=1 dimensional lattice (lattice constant @) with L=12 sites tiled
with L/L.=3 clusters consisting of L.=4 sites each. x, original
lattice; ¥, superlattice; and X, sites in a cluster. Reciprocal space:
There are L allowed wave vectors k in the unit cell of the lattice
reciprocal to x, and there are L/L. allowed wave vectors k in the
unit cell of the lattice reciprocal to the superlattice X. K are the
reciprocal superlattice vectors, exp(iKx)=1.

X. CLUSTER EXTENSIONS

A mean-field approximation neglects spatial correlations
by considering an effective single-site problem to generate
the self-energy. A straightforward idea to improve upon the
mean-field concept is therefore to replace the effective
single-site model by an effective cluster model consisting of
a finite (small) number of sites. This should restore the im-
portant short-range correlations and provide a systematic ap-
proach with the inverse cluster size as a small parameter. The
goal is to construct a cluster approximation which, on the
one hand, reduces to the CPA or to a simpler mean-field
approach, which, on the other hand, becomes exact in the
infinite-cluster limit, and which preserves the translational
and point-group symmetries of the lattice, in addition. This,
however, is by no means trivial, and naive theories often
suffer from causality violations.!' In contrast, it is easy to see
that all approximations that are constructed within the SFT,
including the different cluster approximations discussed in
the following, are manifestly causal. This is briefly discussed
in Appendix C.

Before discussing the different cluster approaches in de-
tail, let us introduce some notations (see Fig. 4): We consider
a system on a D-dimensional lattice of L sites with periodic
boundary conditions and L— ¢ in the end. The position vec-
tor to a site in the lattice is denoted by x. There are L allowed
wave vectors in a unit cell of the reciprocal lattice, which are
denoted by k. The lattice is tiled with L/L, clusters consist-
ing of L. sites each. Let X be the position vector of the cluster
origin and X the position vector of a site in a cluster, refer-
ring to the cluster origin. We then have the unique decompo-
sition x=X+X. The vectors X form a superlattice with a unit-
cell volume enlarged by the factor L.. In a unit cell of the
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o—0—->0

"0-0-0 0-0-0 000

FIG. 5. (Color online) (a) Representation of the Anderson model
Eq. (65). (b) Reference system generating the (disorder) variational-
cluster approximation (VCA) (without variational optimization:
cluster-perturbation theory). (c) Reference system generating the
molecular CPA (M-CPA). In the case of an additional local (Hub-
bard) interaction, (a) represents the Anderson-Hubbard model, (b)
yields a generalized VCA, and (c) generates the C-DMFT
+M-CPA approximation.

o—0——=0

reciprocal superlattice, there are L/L. allowed wave vectors

k. Its volume is reduced by the factor L, as compared to the
volume of the reciprocal unit cell of the original lattice. For

a given k, we have the unique decomposition k=k+K, where
K are the vectors of the reciprocal superlattice, i.e.,
exp(iKx)=1. In the reciprocal unit cell of the original lattice,
there are L. vectors K. These can also be interpreted as the
allowed cluster wave vectors when imposing periodic bound-
ary conditions on the individual cluster.

Consider the L X L matrix U with elements

Q

1 .
Ux,k = \’TZ lkxs (87)

the L/L.X L/L. matrix V with elements

1
Vei= e*x (88)
UL,

and the L. X L, matrix W with elements

1 .
Wy g = ——e*X. (89)
VL,

U, V, and W are unitary and define Fourier transformations
between the respective real and reciprocal spaces. Note that
U#VW=WV. A quantity A, ,, which is invariant under lat-
tice translations x, i.e., Asixg = Axxs is diagonalized by
U: (U'AU)r =A(k) 8 - A quantity A, which is invariant
under superlattice translations ¥, as well as under cluster
translations X, (i.e., which is cyclic on the -cluster),
Apizy 45, = AxeX g +X, = A x> is diagonalized by VW:
(WIVAVW )ik ik =Ak, K) 8 o Sk k-

A. Variational cluster approach

A straightforward extension of the single-site atomic ap-
proximation (see Sec. IX A) is the (disorder) VCA, which is
the analog of the VCA known?®3334 for the interacting but
pure system. To be definite, consider the Anderson model Eq.
(65) again. The model is represented in Fig. 5(a). A suitable
reference system to include short-range correlations in the
disorder self-energy consists of a set of isolated clusters of L.
sites tiling the original lattice, as shown by Fig. 5(b). Since
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within the SFT the (only) approximation is to replace the
exact self-energy by the self-energy of the reference system,
the VCA must become exact in the limit L,.— %, i.e., the
VCA is a systematic approach which is controlled by the
inverse cluster size as a small parameter.

To calculate the cluster self-energy S, p, the Anderson
model must be solved on an individual cluster (by switching
off the intercluster hopping) for all configurations. For large
cluster size L., the computational cost therefore scales expo-
nentially with L.. This is, of course, characteristic for all
cluster approximations.

The intracluster hopping parameters ¢’ including the on-
site energies are considered as variational parameters. A non-
variational variant of the VCA is obtained if one sets these
parameters to the original (physical) hopping parameters
within the cluster: ¢’ =¢,,,,. This constitues the analog of the
CPT,’!? which is known for the interacting, pure system.

Obviously, the CPT is also systematic and controlled by
1/L.. The additional optimization of the variational param-
eters ¢' within the VCA is expected to speed up the conver-
gence with increasing L. as it does for interacting but pure
systems.?® One should note, however, that the variational op-
timization should become less and less important with in-
creasing L, as the exact solution is approached for L,—
with ¢’ =t,,,, anyway. It is therefore advisable to restrict the
space of variational parameters and to optimize a few param-
eters only as, for example, those parameters that are close to
the cluster boundary.

Parameter optimization is beneficial if (local) interactions
are considered, in addition (as, e.g., in the Anderson-
Hubbard model). Figure 5(b) defines a generalized VCA for
this case. The additional interactions can drive a spontaneous
breaking of a continuous symmetry. This is signaled within
the VCA by a stationary point of the SFT grand potential at
a nonvanishing value of a symmetry-breaking field. Note that
the respective field term can be added to the reference-
system Hamiltonian if this is given by a one-particle term.
This “Weiss” field is a ficticious one, which clearly has to be
distinguished from a physical field and which describes
spontaneous as opposed to induced symmetry breaking. For
pure systems and spontaneous SU(2) and U(1) symmetry
breaking, this concept has already been applied
successfully.>3->+61.80

B. Molecular CPA

The (disorder) VCA is obtained as the cluster generaliza-
tion of the atomic approximation. Likewise, within the
framework of the SFT, the cluster generalization of the CPA
leads to the so-called molecular CPA (M-CPA).8! To be defi-
nite, we again consider the Anderson model Eq. (65). The
reference system generating the M-CPA is shown in Fig.
5(c). It consists of a set of isolated clusters of L, sites each
and a continuum of bath sites attached to each of the original
sites.

As in the case of the CPA, this allows one to derive a
simplified Euler equation. Analogous to Egs. (74) and (77),
we can derive the following stationarity condition:
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1
iw,+u—t—S(iw,)

0=T§2(

xx'
anx’(iwn)

Py (90)

- Ft/,P(iwn)>

x'x,11

x and x’ must belong to the same cluster since S,/ (iw,)=0
and also the “projector” S, (iw,)/dt' =0 if x and x’ belong
to different clusters as these are decoupled in the reference
system. Note that ¢’ is a matrix labeled as t;x,!ﬁ,, where i
=1,...,n, and i# 1 refers to the additional bath sites at-
tached to each original site x. The same holds for I';; » and
S=S, p. As the reference system exhibits local disorder on
the original sites x, there are nonzero elements of the self-
energy for i=i'=1 only. We write S, ;;=S,, for short. Ob-

ViOUSly, Sxx’ =S§:))(, 5_;}/ =SXX’ 5_;;/.
Both the original and reference systems are invariant un-
der translations of the superlattice. Hence, Fourier transfor-

mation given by Vi3 [Eq. (88)] is appropriate. This yields

o:rgﬁzz( !

L XX’ iw,,+,u—t(%)—S(iwn)
. aSer(iwn)
- Fﬂ,p(zw,») —=. 1)
ot
X'X,11

Here, k runs over the L/ L. wave vectors in the reduced Bril-
louin zone. The trial self-energy S as well as I'y p are k
independent matrices in the intracluster position vectors
X, X’ while t(k) is k dependent.

The M-CPA self-consistency equation reads'!

L. 1
7 Niw,+u—tk)=S/ xx

where the frequency dependence has been suppressed for
convenience. This generalizes the CPA self-consistency
equation (78), which is obtained from Eq. (92) for X=X’ and
cluster size L.=1.

Comparing with the stationarity condition Eq. (91), we
note that the SFT grand potential is stationary at the M-CPA
self-energy, i.e., at the self-energy S(iw,)=S, p if variational
parameters ¢’ can be found such that Eq. (92) is satisfied for
any iw,, X, and X'. Hence, the reference system [Fig. 5(c)]
generates the M-CPA.

The following self-consistency cycle can be set up: We
start with a guess for the one-particle parameters of the ref-
erence system, i.e., the parameters for a single cluster
t(,),X,X’Et}c,'+X,}+X’,ll’81(‘X) and VEX) (i=2,...,n,). For a fixed
(intracluster) configuration of the disorder potential 7y, the
intracluster part of the Green’s function Gt(ry,, is an L. XL,

matrix G’ with elements G%’ +xz+x- BY solving its equation
of motion, one easily verifies G'(iw,)=1/[iw,+u—t;—n
—-A(iw,)], where the matrix hybridization function A(iw,) is
diagonal with elements AX(iwn)=Ei2V$X)2/(iwn+M—8§X)).

Averaging over the different configurations (e.g., 2%« for a
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FIG. 6. (Color online) Systematics of different approximations
that can be constructed within the SFT framework for pure interact-
ing systems, disorder-free systems, or interacting systems with dis-
order. The interaction and/or disorder are/is assumed to be local.
The axis intercepts L. and n, characterize the reference system and
thereby the type of approximation. A local approximation (“dy-
namical impurity approximation,” DIA) is obtained for L.=1. The
optimum local approximation with ng— oc bath sites is the DMFT,
CPA, or DMFT+CPA, respectively. A cluster (“cellular” or “mo-
lecular”) extension of DMFT/CPA is obtained for L,> 1. The varia-
tional cluster approximation (VCA) is a cluster approximation with-
out the use of bath sites (L.>1, ng=1). The exact solution would be
obtained in the limit L, — % irrespective of n;.

binary alloy) yields I'y p(i®w,) and, by comparison with the
free Green’s function, the self-energy S(iw,). This fixes the
lhs of Eq. (92), i.e., the averaged Green’s function of the
original model. Equation (92) is then used to get a new
I'; pliw,) and thus a new hybridization function via A(iw,)
=iw,+u—t)—n-G'(iw,) . Parameters SEX) and VEX) are ob-
tained as the poles and weights of A(iw,). From the above it
is obvious, however, that the self-consistency cycle can be
set up for A directly. The variational determination of ¢ is
not a problem: Analogous to the discussion given in Ref. 61,
a high-frequency expansion easily shows that, at stationarity,
t, must equal the intracluster part of the original hopping ¢.

Note that for the noninteracting but disordered system, the
M-CPA is related to the CPA as is, for the interacting but
pure system, the C-DMFT (Refs. 42 and 43) to the DMFT.
The M-CPA is a conceptually simple and straightforward
generalization of the single-site CPA, which includes short-
range correlations in the disorder self-energy but is mean-
field-like on a scale beyond the cluster size. Like the VCA,
the M-CPA is systematic and controlled by 1/L. as a small
parameter, in principle. Practical calculations, however, are
restricted to comparatively small clusters due to the expo-
nential growth of the number of local (intracluster) configu-
rations. For systems with local interactions and disorder, the
structure of the reference system [Fig. 5(c)] generates a com-
bined C-DMFT+M-CPA approach, which is the straightfor-
ward cluster extension of the DMFT+CPA (Sec. IX E). The
approximations within the SFT for different n, and L. are
schematically grouped in Fig. 6.

C. Translation symmetry

There is an apparent problem remaining: Due to the con-
struction of the reference system as a set of decoupled clus-
ters, the trial self-energies do not preserve the translational
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FIG. 7. (Color online) (a) Anderson model. (b) Possible refer-
ence system consisting of isolated clusters with periodic boundary
conditions generating a variant of the CPT. Within the VCA, the
hopping marked as a dashed line may be treated as a variational
parameter.

symmetries of the original lattice. This is a self-evident prob-
lem for any cluster approximation which is formulated in
real space and has initiated the development of several fur-
ther cluster approximations in the past. It has turned out,'!
however, that the construction of a self-consistent and sys-
tematic approach which, on the one hand, recovers (for L.
=1) the CPA and, on the other, approaches (L,— ©) the exact
solution, which respects the requirements of causality, and
which perserves the lattice translational symmetries at the
same time, is not easy to find.

A straightforward idea is to use a reference system as
displayed in Fig. 7(b). Here, isolated clusters are considered
again but with a hopping ¢’ satisfying periodic boundary con-
ditions. This restores translational invariance within the clus-
ter at least. The idea has been put forward in the context of a
pure but interacting system as a modified cluster-perturbation
theory (CPT with periodic boundary conditions) by Zacher er
al.3? but was recognized® to give less convincing results
when compared to the usual CPT. Later on, it could be
shown?® within the VCA that periodic boundary conditions
are, in fact, unfavorable: One simply has to treat the hopping
integral connecting the edges of a cluster as a variational
parameter. The SFT grand potential turns out to be stationary
if this hopping integral vanishes. This corresponds to open
boundary conditions. In any case, however, it is obvious that
the full translational symmetry cannot be restored with the
reference system of Fig. 7(b).

Another straightforward idea is to formulate the original
problem as well as the reference system in reciprocal space
by using annihilators ¢, instead of c,. In graphical represen-
tations of H and H' like the one in Fig. 7, dots would have to
be reinterpreted as referring to one-particle states labeled by
k. The advantage is that, by construction, H' always exhibits
the full translational symmetry. While there are no principle
objections, it appears to be impossible in practice, however,
to generate meaningful approximations in this way. The rea-
son is that a local interaction in real space transforms into a
delocalized one in reciprocal space: The interaction param-
eters Uy basically couple any k point to any other. Like-
wise, a local uncorrelated disorder transforms into a delocal-
ized correlated one. As H and H' must share the same
interaction and disorder, it is unlikely to find a ¢’ that permits
a (simple) solution of the resulting problem.

A pragmatic way out would be to distinguish formally
between the self-energy S, p that is determined as the sta-
tionary point of the SFT grand potential, on the one hand,
and the translationally invariant (“physical”) self-energy, on
the other. The latter is obtained from S=S, p by some peri-

odization procedure which employs a universal functional T
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“periodizing” the self-energy: S — TS]. This idea has been
suggested in the context of the C-DMFT.*>*Y One possibility
is to Fourier transform the optimized self-energy S, p from
real space, S,,, to reciprocal space via U, ;, Eq. (87). This
yields the self-energy in the representation Syy. Substituting

Skk’_’Skk’ék,k’Ef[S]kk’ gives a translationally invariant

(physical) self-energy 7T[S]. In real space, this periodization
reads

A 1
T[S]xx’ = ZE 5x—x’,y—y’Syy" (93)
»'

T could also be applied to the Green’s function calculated
from S via Dyson’s equation. This is the usual procedure
within the CPT to generate translationally invariant Green’s
functions. While the problem of translational symmetries can
be fixed in this or in a similar way, the procedure appears to
be ad hoc as it is placed on top of a variational (or self-
consistent) calculation which itself involves S instead of

TIS].

D. Periodized M-CPA, periodized VCA

Koller and Dupuis®* have discussed a modified form of
the self-energy functional for (pure) systems of interacting
bosons to get translationally invariant trial self-energies. This
method can be adapted to disordered systems as described
below.

Consider the Anderson model Eq. (65) and the following
self-energy functional:

1 .
T AT Trin T'p[S]
w00~ T1S]

1
+{Trin—m—— ) . (94)
LST'+S-7n/,

Q;l;[S] =Trln

As compared to the original functional Qt! #LS] given by Eq.
(64), the modified functional QSIZ[S] differs in the first term

as this includes the periodizing functional T. As usual, the
hopping term of the Anderson model is supposed to be trans-

lationally invariant, T[f]=¢. The exact self-energy is there-

fore translationally invariant, too, and satisfies f’[S,,P]:S,,P.
Hence, we have

QE,IP)’[SLP] = Qt,P[St,P]- (95)

Using a one-particle basis of Bloch states labeled by wave
vectors k to evaluate the traces, we furthermore have

s0,)s] ( I
Sy t_,(l),O - 118]

) S k=TS (96)
Kk

Since I'[S; plix'= S s T[S, plix, this shows that the exact
(translationally invariant) self-energy is a stationary point of
the modified self-energy functional. Concludingly, the func-

tionals (A)g[S] and (A)t, pLS] are different, in general, but co-
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incide and are stationary at the exact self-energy S, p. They
are similarly suited for constructing approximations.

Consider now a trial self-energy S, p from a reference
system with the same disorder (i.e., the same distribution
function P) but with hopping parameters ¢’ breaking transla-
tional symmetries, as is the case, e.g., for the reference sys-
tem given by Fig. 5(c). The condition for stationarity of the
modified self-energy functional within the restricted set of
trial self-energies then reads

1

0=7T> >

nopk'

. o . 6k’k,
iw, + p—t=T[S](iw,) |

&Skk’ (iw11)

— [Ty pliw,) ki o (97)

Here, S =S, p for short. This replaces the condition Eq. (90)
characteristic for the M-CPA.
Fourier transformation U [Eq.

_L_12 —ikx ik/x/S d th
= xx'€ e v’ and thus

(87)] ylelds Skk'

0=7T> 2>

!
noxx

12 e—ik(x—x')( 1 )
Lk iwn+/L—t—T[S] kk
anx’(iwn)

pe (98)

= [y pliwy) Jerx

For the reference system of Fig. 5(c) with isolated clusters,
we have S, =Sz, x5 +x=Si+x5+x O (and the same for its
t' derivative) and thus the Euler equation (98) is satisfied if

. ’
ezk(X—X )

1
. " =Ty p)xxr- (99)
k iw,+p—e(k) - T[S](k)

As compared to the self-consistency condition of the M-CPA
[Eq. (92)], the main difference consists in the fact that its
solution is based on a self-consistency cycle which involves

at each step the periodized self-energy f‘[S ] instead of S. The
Green’s function of this periodized M-CPA, G = (iw,+u—t

—T[S]), is likewise translationally invariant: 7[G]=G.

The analog of the self-consistency equation (99) for the
pure but interacting system is the self-consistency equation
of the PC-DMFT, see Ref. 50. Hence, the above derivation
also shows how the PC-DMFT can be rederived within the
SFT framework. Furthermore, the construction of a com-
bined PC-DMFT +periodized M-CPA is straightforward. It is
also straightforward to constuct a periodized VCA for disor-
dered or interacting systems along the lines above.

As in the usual VCA (and also in the usual M-CPA) one,
in principle, has the choice between open and periodic
boundary conditions in the reference system. In the case of
the periodized VCA or periodized M-CPA, a translationally
invariant self-energy and Green’s function are generated by
either choice. The value of the SFT grand potential at the
stationary point decides which kind of boundary conditions
should be preferred.
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With a suitably defined functional T, there are no prob-
lems to extend the approach and to restore point-group sym-
metries of the underlying lattice which could be violated by
the choice of the reference system. Essentially the same ar-
guments given for the case of translational symmetries can
be repeated.

There is yet another way to modify the original functional
and thereby to construct a theory which respects the transla-
tional symmetries of the underlying lattice. This shall be
mentioned here for the sake of completeness. Consider the
functional

~ ~ 1 N
O2[S]=Trln T{ _1—} —TrinI'p[S]
Gt,o,o -

+{ Trin — (100)

LpST'+S-7/»

Again, only the first term on the rhs is modified. Note that
this is essential for the construction of approximations: It
ensures that the implicitly known but universal functional
given by the remaining terms cancels out when comparing
with the functional of a suitably defined reference system, as
usual. QE’Z;[S] coincides with Qt, pLS] and QE’IIZ[S] at the exact
self-energy S, p and is stationary there. With the reference
system of Fig. 5(c), the following self-consistency equation
can be derived:

o
iw,+u—t—-S

lz eik(X—X')(
L7

) = (T plxxr. (101)
kk

As compared to the periodized M-CPA, the conceptual dis-
advantage consists in the fact that only the propagator

f[(GZ(l)‘O—S)‘l] but not the self-energy is translationally in-
variant.

E. Dynamical cluster approximation

Originally, the DCA has been proposed as a cluster exten-
sion of the DMFT for interacting systems.>~%7 Essentially
the same ideas, however, can also be used to construct a
generalization of the single-site CPA for the disorder
problem.***> Here, it is shown that the (disorder) DCA can
be rederived within the SFT framework by utilizing the real-
space perspective on the DCA first discussed by Biroli et
al.>

While the main idea of the periodized M-CPA to restore
translational symmetry is to consider a modified but equiva-
lent self-energy functional, one could also keep the exact
functional form (), p[S] but modify the hopping of the origi-
nal system, i.e., —7. Approximations are then constructed
by starting from €); p[S] and using a reference system con-
sisting of isolated clusters again. To ensure that the resulting
approximations systematically approach the exact solution
for cluster size L.— o, the replacement £—# must be con-
trolled by L., i.e., it must become exact (up to irrelavant
boundary terms) in the infinite-cluster limit.

Consider, for example,

125112-17



MICHAEL POTTHOFF AND MATTHIAS BALZER

EF TSPl Tk T PEP T LA Lol R ? TP S LA e SR+ T 34

FIG. 8. (Color online) (a) Anderson model. (b) The original
Anderson model but with a modified one-particle part #—¢, which
is the starting point for the dynamical cluster approximation (DCA).
7 is invariant under superlattice and cluster translations. (c) Refer-
ence system generating the DCA. Note that ¢’ has the same trans-
lational symmetries as 7. (d) Reference system generating a simpli-
fied DCA (see text).

T=(VWUtU(VW)". (102)

For clusters of finite size L., the combined Fourier transfor-
mation VW is different from U. For L.— %, however, this
becomes irrelevant. With e(k)=(UTtU)(k) we have

— 1 . ! LL. T~ ~1 ~
oy = L_E o/ KX-X )ZE e*E ek +K).  (103)
c K 7

Obviously, 7 is invariant under superlattice translations as
well as under cluster translations (with periodic cluster
boundary conditions). The original system and the modified
system with H=H(Z,7,0) are represented by Figs. 8(a) and
8(b). The construction of 7 is such that it exhibits the same
translational symmetries as the one-particle parameters ¢’ of
a reference system consisting of isolated clusters tiling the
original lattice with periodic boundary conditions, see Figs.
8(c) and 8(d). Since both ¢ and 7 are invariant under super-

lattice translations, we can compare tXXr(%)=(VTtV)XXr(7c)

with Tyy: (k) =(V'EV) gy (k). It turns out that they are equal up
to a phase factor:

- 1 . N~
Ty (k) = L—Z XXX (k + K)
c K

L. 2 e—i;(&ﬂX-&E’—X’)

, -
X3 +X' = e )tXX’(k)-

=

XX

(104)

To rederive the disorder DCA within the framework of the
SFT, we use the functional €, p[S] and the reference system
of Fig. 8(c). Therewith, one formally arrives at the M-CPA
self-consistency condition, Eq. (92), but with ¢ replaced by #:

L

¢ 1
z (—_~ ) =y p)xx.  (105)
k iw,1+,u,—t(k)—S XX’

The bold symbols are matrices in the cluster variables X, X"’.
The self-energy and the averaged Green’s function of the
reference system are independent of k. The decisive differ-
ence as compared to the M-CPA is that the (modified) hop-
ping of the original system f is invariant under cluster trans-
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lations, as is the case for ¢'. This is important as it allows one
to simultaneously diagonalize all matrices in Eq. (105) by
the cluster Fourier transformation W. Furthermore, from the
definition of 7, the W transformation yields (k) — e(k+k)
=¢g(K), i.e., we find

L, 1
LE

% o, +pu— etk +K) - (WISW)g

= (WTFtr,PW)K.

(106)

This, however, is just the self-consistency equation of the
disorder DCA.#*

We can thus state that, analogous to the work of Biroli et
al®® for the usual DCA, it is found that the disorder DCA is
equivalent to the M-CPA applied to the system with modified
hopping [Eq. (102)]. Hence, it has been shown that the (dis-
order) DCA (as well as the usual DCA and also the combined
theory for interacting systems with disorder) can be recov-
ered within the framework of the SFT when starting from a
suitably modified problem. As previously noted,”® however, a
strict rederivation starting from the original system (with ¢)
appears to be impossible.

In this context, an interesting different approximation sug-
gests itself: Starting with the modified hopping # and using
the reference system shown in Fig. 8(d) generate a simplified
(disorder) DCA without bath degrees of freedom. This sim-
plfied DCA is a systematic (controlled by 1/L,) cluster ap-
proximation and gives a translationally invariant self-energy
and propagator. The simplified DCA is related to the peri-
odized VCA in the same way as the DCA is related to the
periodized M-CPA. The analogous formulation of a simpli-
fied DCA for the pure but interacting system represents a
variational extension of a non-self-consistent approximation
(“periodic CPT”) recently introduced by Tran.*¢

XI. SUMMARY AND DISCUSSION

An advantageous feature of the self-energy-functional ap-
proach for systems of interacting electrons is that approxi-
mations are easily specified by choosing a reference system.
The reference system helps to span a space of trial self-
energies which are optimized using an appropriate dynamical
variational principle. Since a reference system must share
with the original system under consideration the same inter-
action part, the number of possible reference systems is se-
verely limited. This leads to a straightforward classification
of approximations which may be called “dynamic” as these
are essentially based on an approximation for the self-energy
or, equivalently, the Green’s function, i.e., quantities charac-
terizing the spectrum of one-particle excitations.

For systems with local interactions, the set of dynamical
approximations includes the dynamical mean-field theory,
which corresponds to a reference system consisting of decou-
pled single-impurity models. Modifying this reference sys-
tem generates DMFT-related dynamical approximations but
does not spoil the main attractive properties of the DMFT, in
particular, its nonperturbative character and its thermody-
namical consistency. This is interesting as it opens up a way
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to construct approximations which (i) are based on simpler
reference systems that can be solved with less numerical ef-
fort or/and (ii) include spatial correlations beyond the local
mean-field concept. In fact, the classification of dynamical
approximations has led to approximations which have suc-
cessfully been employed in the past (see Fig. 6 for pure
systems): The DIA as well as the VCA.

The main idea of this paper has been to translate this story
to the case of disordered (and interacting) systems. The dis-
order is assumed to be local and uncorrelated between dif-
ferent sites. One possible way is to apply the conventional
SFT to treat the interaction part of the problem for any dis-
order configuration and to average subsequently. This proce-
dure treats the disorder part of the problem exactly. Choosing
a decoupled set of effective impurity models as a reference
system yields an extension of the DMFT for systems with
reduced translational symmetries or, after reinterpretation of
the mean-field (Euler) equations as stochastic recursion
equations, to the so-called statistical DMFT. This is feasible
in the case of a Bethe lattice only. Even then and even with
a simpler reference system including a minimum number of
bath sites, however, the statistical SFT remains a numerically
extremely expensive method.

The alternative consists in an approximate treatment of
the disorder on the same footing as the interaction. Techni-
cally, this requires a reformulation of the SFT for interacting
systems within a functional-integral language which, as a
by-product, provides an entirely nonperturbative construc-
tion of the SFT, i.e., avoids formal summations of skeleton
diagrams. The functional-integral framework then allows one
to formulate a disorder SFT in essentially the same way as
for pure interacting systems; the main corners of the theory
are left unchanged: The (averaged) grand potential can be
expressed as a functional of the (disorder) self-energy with
the physical self-energy being a stationary point. The func-
tional still consists of a simple and explicitly known part
depending on the one-particle parameters as well as of a
complicated and basically unknown part which, however, is
“universal,” i.e., depends on the probability distribution only.
Choosing a reference system with the same distribution func-
tion, the universal part can be eliminated, and an exact evalu-
ation of the self-energy functional becomes possible on the
space of trial self-energies generated by the reference sys-
tem. Restricting the search for the stationary point to this
limited subspace generates approximations.

It is conceptually very satisfying that within this general-
ized SFT, the coherent-potential approximation for the disor-
der problem takes the place of the DMFT for an interacting
system. Similar to the DMFT, the CPA is a dynamical ap-
proximation for the self-energy and is distinguished by the
fact that it becomes formally exact in the limit of infinite
spatial dimensions. ‘“Replacing interaction by disorder,” any
reference system for the case of an interacting system can
also be considered as a reference system for the disorder
case. This establishes a one-to-one mapping of the respective
approximations, with the DMFT corresponding to the CPA
and the cellular DMFT corresponding to the molecular CPA.
Via this mapping, a disorder DIA and a disorder VCA appear
as different approximations as well as the periodized
M-CPA, namely, the disorder pendant of the periodized cel-
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lular DMFT, when starting from a different but equivalent
functional involving the periodizing functional T. Starting
from the self-energy functional with a suitably modified hop-
ping ¢ —, one also recovers the disorder analog of the dy-
namical cluster approximation. Finally, a simplified DCA
without bath degrees of freedom can be set up.

The case of noninteracting disordered systems could ac-
tually be treated by specialization of a more general func-

tional (Al,! pulS.{%,}] depending on the full and
configuration-dependent interaction self-energies. This is ap-
plicable to interacting and disorderd systems. Though for-
mally more complicated, the unknown part of the functional
is universal, i.e., depends on U and P only. The classification
of dynamical approximations extends accordingly (see Fig.
6).

Summing up, the type of dynamical approximations that
can be constructed for systems with local interactions or/and
local disorder are mean-field and cluster approximations
which differ with respect to the number of local variational
degrees of freedom included in the reference system. All
approximations fulfill the requirements of causality. They are
nonperturbative as, contrary to truncating diagrammatic ap-
proximations, the exact functional form is retained. Thermo-
dynamical consistency is ensured by the existence of an ap-
proximate but explicit expression for the grand potential, i.e.,
for a thermodynamical potential, from which the physical
quantities are derived. Additional but systematic modifica-
tions of the self-energy functional have been shown to gen-
erate (cluster) approximations that respect the symmetries of
the underlying lattice, particularly the translational symme-
tries.

Convergence properties of the different quantum-cluster
schemes with a continuum of bath sites have been discussed
in Refs. 88-91 and apply to the schemes with n,=1 in an
analogous way. For L.— o, local quantities generally con-
verge exponentially fast within the C-DMFT/M-CPA and
within the (disorder) VCA. This has to be compared with the
1/12 behavior obtained within the DCA and within the sim-
plified DCA (with L,=["). For practical purposes, however,
the quality of a given approximation for small L. is more
important and can apparently be estimated a posteriori only.
It is, for example, an open question whether cluster schemes
with or without bath degrees of freedom should be preferred
in this respect (see, however, Ref. 28).

The application of the SFT has been restricted to systems
with local interactions and local disorder. This is consistent
with the spirit of the cluster—mean-field approximations dis-
cussed above. One should note, however, that nonlocal or
even long-ranged interactions or disordered nearest-neighbor
or longer-ranged hopping or spatially correlated disorder in
the on-site energies, for example, pose difficulties. While the
general self-energy functional can be set up as usual, it ap-
pears to be impossible to find a suitable reference system and
thereby usable approximations in most cases: As the refer-
ence system should have the same interaction and disorder, it
is hard to find a decoupling of its degrees of freedom by
modifying the hopping part only. This problem could be
handled either pragmatically by additional mean-field decou-
plings of nonlocal terms connecting different clusters’* or,
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more thoroughly, by considering more complex functionals
involving two-particle correlation functions.”?

One should be aware that the various local approxima-
tions and their different cluster extensions all neglect long-
range correlations beyond the linear scale of the cluster. This
is typical for any cluster—-mean-field approach. To our knowl-
edge, there is no possibility to systematically restore long-
range correlations by a suitable embedding of an isolated
cluster in the environment within the presented formalism
(apart from simply enlarging the cluster). The same holds for
cluster schemes formulated within reciprocal space.

This implies that a proper description of transport proper-
ties is hardly possible. Effects like Anderson localization, for
example, cannot be captured within a mean-field approach
like CPA and are obviously difficult to restore by cluster
schemes extending CPA (see Ref. 44, for an example). Any-
way, it is basically impossible to access two-particle correla-
tion functions, and the conductivity in particular, within an
approach that places one-particle excitations in the center of
interest. The statistical DMFT (statistical SFT) represents an
exception as here the full distribution of the (one-particle)
density of states can be used to discriminate between ex-
tended and localized states, for example.

Besides the spectrum of one-particle excitations, however,
the SFT derives an approximate but explicit expression for a
thermodynamical potential and thus provides a consistent
picture of the entire thermodynamics and of static expecta-
tion values. This includes spontaneous symmetry breaking,
i.e., the determination of order parameters. The formal
framework presented here should therefore be ideally suited
to study the effects of disorder on different types of long-
range order, such as magnetism or superconductivity. For
different material classes, such as diluted magnetic semicon-
ductors, cuprate-based high-temperature superconductors,
manganites, rare-earth compounds, etc., these are central
questions.
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APPENDIX A: DISORDER IN THE INTERACTION

It is formally straightforward to extend the theory to the
case of disorder in the interaction part of the Hamiltonian.
The theory can be constructed without major modifications.

Consider a system with Hamiltonian H=H(t)+H (%)
+H;,(U), where H(t) and H;,(U) describe the one-particle
and the interaction part as before, while

1
Hgi(n) = 5 > nagayCZCECyc,s (A1)

afys
is an interaction term with random parameters 2 distributed
according to some P(#). The definition of the free Green’s
function [Eq. (11)], the interacting Green’s function [Eq.
(13)], and the averaged Green’s function [Eq. (16)] is for-
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mally unchanged. The self-energies are defined as

Stpu= t_,(l),() - Ft_,ll’,U' (A2)
The reasoning in Sec. IIl is unchanged. The functionals

AU,r/,‘fg*[Gal]’ QU,W[Gal]’ gU,n[G(_)]]’ GU,”[E]’ and FU,ﬂ[E]’
however, additionally depend on the parameter 7. The same
holds for Sec. VI except for Eq. (47), which has to be re-
placed by

_ -l -1
2"t,rl,U_ 10,0~ Y, 9U>

1
<ﬁ>r (A

The final self-energy functional thus reads

~ 1 .
Q pylS.2,]=Trln Gl s TrinI'p[S.%,]

10,0
1
+{ Trln —
Lp[S.3,1'+8-%,/p
+ <]::‘U,1/[2 r[]>P‘ (A4)

Approximations are constructed in the same way as de-
scribed in Sec. VII by making contact with a reference sys-
tem with the same interaction and disorder.

APPENDIX B: THERMODYNAMICAL CONSISTENCY

Here, we briefly discuss the thermodynamical consistency
of approximations within the SFT generalized to disordered
systems. To be definite, we concentrate on the particle num-
ber as an example. The reasoning closely follows Ref. 61.

There are two ways by which the configurational average
of the quantum-statistical expectation value of the particle
number

Nepu= f dn P(p)N, ,uv= f dn P(n)tr(p, ,yN) (B1)

can be obtained: (i) N, pp is calculated on the “zero-particle
level” as the u derivative of the averaged grand potential

Ky py
9

o (B2)

Nipv=-
or (ii) N, py is calculated on the “one-particle level” by fre-
quency integration of the one-particle averaged retarded
Green’s function:

1 o0
Nipy=-— —J dw f(@)Im Tr T, p y(w +i0%), (B3)
T

—oo

where f(w)=1/(e“"+1) is the Fermi function. Thermody-
namical consistency means that both ways must yield the
same result. This is not clear a priori as within the SFT
QO py and I'; p y are approximate quantities.

As in Ref. 61, however, it can be argued that there is a
twofold u dependence of ), p i an explicit u dependence
which in Eq. (60) is due to the free Green’s function G
=w+pu—t and an implicit u dependence due to the u depen-
dence of the disorder self-energy at the stationary point.
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Now, if and only if an overall shift &’ of the on-site energies
in the reference system is treated as a variational parameter,
the derivative with respect to the implicit u dependence van-
ishes, and one is left with the explicit one:

Kypy _ pu _

Npy=-
Lru (9/1’ &Mexpl.
d 1
- TrIn (B4)
0-'1u’exp]. w+ Mexpl. — - St’,P,U

according to Eq. (60). Carrying out the differentiation and
using Ft,P,U=(Gt_,(l),()_st’,P,U)_l’ one immediately arrives at
Eq. (B3), which proves the equivalence with Eq. (B2).

Typically, only a distinguished set of parameters are
treated as variational parameters in a practical calculation.
The argument shows the necessity to include &’ in the set of
variational parameters if thermodynamical consistency is re-
quired for the particle number. The argument straightfor-
wardly generalizes to all one-particle operators coupling lin-
early with a parameter N’ to the reference-system
Hamiltonian.

APPENDIX C: CAUSALITY

The causality of all (approximate) dynamical quantities
(configuration-dependent as well as averaged Green’s func-
tions and configuration-dependent and or independent self-
energies) is inevitable for having well-defined self-energy
functionals and expressions involving TrlIn(:---), in particu-
lar. A frequency-dependent quantity is termed to be causal if
it is analytical in the entire complex w plane except for first-
order poles on the real axis with positive residues. Equiva-
lently, we can demand that after retardation w— w+i0" (w
real), the imaginary part be negative definite.

Causality is easily verified, for example, for all quantities
which appear in the self-energy functional Eq. (51) when
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evaluated on its domain (see Sec. VIII). The last three terms
on the rhs only involve exact and therewith causal quantities
as arguments of TrIn(---) (as these are taken from the refer-
ence system). Note that the configuration average of a
configuration-dependent exact quantity is causal

Let G(w) be the exact Green’s function of a model H. We
have the Lehmann representation' G(w)=Qg(w)Q" with
w-independent matrices Q (Q not quadratic, see Ref. 93) and
a diagonal matrix g(w) with elements g,,(w)=1/(w-w,),
where w, are the poles of G. Consider I'(w)=(G(w)) aver-
aged over only two configurations, for simplicity, i.e., con-
sider I'(w) =P1Q1§1@QI+&Q£2(M)Q; with py,p,=0,p,
+p,=1. With Q= (\p,0Q,,\p,Q,) and

_ gi(w) O )
Y(“’)_( 0 g0

we then immediately have the representation I'(w)
=0¥(w)Q" from which the causality of I'(w) is easily veri-
fied.

The only possible source of causality violation is left for
the first term on the rhs of Eq. (51). However, it is easily
shown that (i) a causal I''(w) (the exact averaged Green’s
function of the reference system) implies a causal S(w). The
main point is that the retarded quantity S(w+i0")=w+u
—t'-T""(w+i0*)"! has a negative definite imaginary part
since the imaginary part of I'"(w+i0*)~! is positive definite
according to a lemma given in Ref. 27. Furthermore, (ii) it
can be shown that the causality of S(w) implies the causality
of I'(w)=[Gy(w)'=S(w)]"! for arbitrary Gy=(w+u—1t)".
Namely, with S(0)=G)\(0)"'-T"(0)™" and TI'(w)
=0'y'(w)Q'", we have the representation I'(w)
=1/{{Q" v (w)Q'TT'=(¢t-¢t')} and thus (see Ref. 93) I'(w)
=Q'[v(0)'=Q'T(t-t")Q'T'Q'" from which it is obvious
that I'(w) is analytical with the exception of first-order real
poles with positive residues.
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