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We present a perturbative treatment of Jastrow-type correlation factors which focus on an accurate descrip-
tion of short-range correlations. Our approach is closely related to coupled cluster perturbation theory with the
essential difference that we start from a variational formulation for the energy. Such kind of perturbation theory
is especially suited for multiscale bases, such as wavelets, which provide sparse representations for Jastrow
factors. Envisaged applications in solid-state physics are confined many-particle systems such as electrons or
multiexcitons in quantum dots. The resulting Jastrow factors can be further used as trial wave functions in
quantum Monte Carlo calculations for these systems. First applications to a screened homogeneous Fermi gas
model demonstrate that first-order Jastrow factors already recover 95% of the correlation energy in variational
Monte Carlo calculations over a fairly large range of densities and screening parameters. The corresponding
second- and third-order perturbation energies turned out to be more sensitive to the specific choice of the model
parameters. Furthermore, we have compared our first-order Jastrow factors with those obtained from Fermi
hypernetted chain calculations, where excellent agreement at short and intermediate interparticle distances has
been observed.
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I. INTRODUCTION

The determination of ground-state properties for interact-
ing many-particle systems is a central topic in condensed
matter physics and quantum chemistry. It can be either
treated by density-functional theory �DFT�, or through a
more direct approach based on certain kinds of many-particle
wave functions. Within DFT, the original many-particle
problem is mapped, via the Kohn-Sham equation,1 into an
effective one-particle problem and thus considerably reduces
the computational effort. Despite the great success of DFT
for a large variety of systems, it has the basic drawback that
there exists no systematic way to improve the exchange-
correlation potential in the Kohn-Sham equation. On the con-
trary, various schemes for a systematic improvement of
many-particle wave functions exist. We just want to mention
the coupled cluster �CC� theory2,3 and the Fermi hypernetted
chain �FHNC� method.4,5 By construction, CC theory is aim-
ing toward a direct approximation of the exact wave func-
tion, while the FHNC method deals with a more restricted
class of Jastrow-type wave functions, which is supposed to
be very close to the exact one. A common feature of both
methods is the ansatz

��x1,x2, . . . ,xN� = F��x1,x2, . . . ,xN� , �1�

where a correlation operator F acts on a single Slater deter-
minant �. Here and in the following, xiª �ri ,�i� denotes the
combined spatial and spin coordinate of a particle. Their dis-
tinguished role in condensed matter physics is due to the fact
that both methods provide the correct asymptotic behavior
for short- and long-range correlations. The latter, however,

inevitably lead to certain types of nonlinearities which make
these methods considerably more complicated than standard
many-body perturbation theory �MBPT�. Concerning com-
putational complexity, the CC method appears to be better
tractable, however, for the price of a rather special ansatz for
the correlation operator. This excludes, e.g., the Jastrow an-
satz,

F�r1,r2, . . . ,rN� = exp��
i

u�1��ri� + �
i�j

u�2��ri,r j�¯� ,

�2�

where the correlation operator simply consists of a symmet-
ric function of the spatial electron coordinates. In this con-
text, we have to mention the generalized CC method of Noga
and Kutzelnigg,6 which incorporates a spatial function which
depends explicitly on the interelectron distance. Such kind of
term describes the wave function near the interelectron cusps
and improves convergence with respect to the size of the
basis set.

Jastrow factors provide the starting point for the FHNC
method and are particularly interesting, concerning possible
applications in quantum Monte Carlo �QMC� calculations.7

Within variational Monte Carlo �VMC�, the expectation
value of the energy is calculated for Jastrow-type wave func-
tions using various variants of the Metropolis algorithm. The
diffusion Monte Carlo �DMC� method enables an exact so-
lution of Schrödinger’s equation within the fixed-node ap-
proximation. This method requires Jastrow factors as accu-
rate trial wave functions for an efficient reduction of the
statistical variance of the energy. Herewith, it is the short-
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range behavior of the Jastrow factor near the coalescence
points of particles that gives the dominant contribution.
QMC methods enable a compact representation of the
k-particle correlation functions u�k� in terms of rational func-
tions of the interparticle distances.8,9 Because of the compu-
tational complexity of the FHNC method, it became common
practice to use stochastic approaches for the optimization of
these Jastrow factors.8–13 Either variance-minimization
techniques8–11 or methods for a direct minimization of the
energy12,13 were employed. These optimization techniques
yield wave functions which typically recover between 70%
and 95% of the correlation energy with amazingly small
numbers of parameters compared to other many-particle
methods of similar accuracy. A potential drawback of sto-
chastic approaches, however, is the multitude of local
minima that are encountered during the optimization. The
resulting Jastrow factors, therefore, typically correspond to
local minima which might depend on the initial guess for the
parameters. Such kind of ambiguity has only minor effects
concerning the total energy of a system; however, it hampers
an unbiased calculation of energy differences.

An alternative representation for Jastrow factors can be
obtained from wavelet-based multiresolution analysis. This
approach takes into account the multiscale character of
many-particle systems and provides sparse approximations
for correlation functions u�k� in terms of hierarchical tensor
product wavelets,14–17 which can be adapted to the specific
length and energy scales of the system under consideration.
Multiscale representations are also of potential interest for
QMC calculations because of the local character of wavelet
bases. In a previous paper,16 we have studied the computa-
tional complexity of wavelet approximations for the local
ansatz of Stollhoff and Fulde,18 cf. Ref. 19, using diagram-
matic techniques from FHNC theory. Within the present
work, we consider a more general approach based on stan-
dard perturbation theory. It turns out that our approach is
closely related to the coupled cluster perturbation theory
�CCPT� presented in Ref. 2. Furthermore, we have to men-
tion the huge amount of work devoted to linked-cluster ex-
pansions for Jastrow-type wave functions in nuclear physics
during the late 1960s and early 1970s of the last century,
which finally culminated into the development of FHNC
theory �see, e.g., Ref. 20 for a comprehensive discussion of
this subject�. We just want to refer to Talman’s approximate
variational treatment of Jastrow factors21,22 that agrees in
lowest order with our approach. Except for homogeneous
systems, these methods become very costly from the compu-
tational point of view. Therefore, standard perturbation
theory turns out to be an interesting alternative at the ex-
pense of an accurate treatment of long-range correlations.
For our envisaged applications in solid state physics, such as
electrons or multiexcitons confined to a quantum dot and
quantum chemistry, this is perfectly justified. Otherwise, it is
possible to combine our perturbative approach with a re-
cently developed random phase approximation �RPA� for in-
homogeneous systems by Gaudoin et al.23 that provides an
accurate description of the long-range behavior of Jastrow
factors.

The paper is organized as follows. In Sec. II, we present a
perturbation analysis of Jastrow factors, where linear and

exponential perturbation expansions for correlation factors
are derived in Secs. II A and II B, respectively. Applications
to a screened Fermi gas model with periodic boundary con-
ditions are discussed in Sec. III. A qualitative study of per-
turbative Jastrow factors through comparison with FHNC
calculations is presented in Sec. III A. The second- and third-
order correlation energies are compared with results from
QMC calculations in Sec.III B. Finally, in Sec. IV we make
some concluding remarks.

II. PERTURBATION ANALYSIS OF JASTROW FACTORS

We consider a general product ansatz for the wave func-
tion

��x1,…,xN� = F�x1,…,xN���x1,…,xN� , �3�

where the correlation factor F is a symmetric function of the
electron coordinates. The corresponding variational problem
consists of minimizing the expectation value of the energy,

E = min
F

� d3x1, . . . ,d3xNF�*�x1, . . . ,xN�HF��x1, . . . ,xN�

� d3x1, . . . ,d3xNF�*�x1, . . . ,xN�F��x1, . . . ,xN�
,

�4�

with respect to the correlation factor F for a fixed reference
wave function �. Two different perturbation schemes for this
variational problem are discussed below. The first scheme
utilizes a linear representation for the correlation factor,
whereas the second scheme is based on the exponential
Jastrow-type ansatz �Eq. �2��. Both schemes employ sym-
metric many-particle basis functions of the form

U�0��X� = 1, U�
�1��X� = �

i

u�
�1��xi� ,

U�
�2��X� =

1

2�
i�j

u�
�2��xi,x j� ,

… , �5�

where u�
�k��xi1

,xi2
, . . . ,xik

� denote symmetric k-particle basis
functions with indices ���k taken from conveniently de-
fined index sets. In the following, we refer to k as the degree
of the basis functions. For notational convenience, we have
introduced the short-hand notation Xª �x1 ,x2 , . . . ,xN� to
represent the combined vector of all electron coordinates.
The computational complexity increases substantially with
the degree of the basis functions. Therefore, it is essential to
truncate the basis at a certain degree. It turns out that both
perturbation schemes discussed below provide such trunca-
tions in a natural way.

Obviously, there are certain redundancies in our many-
particle basis. According to definition �5�, one-particle basis
functions can be expressed, e.g., in terms of two-particle
functions, etc., which means that the basis is overcomplete
without further restrictions. Such kind of restrictions can be
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imposed in various ways. For example, it is possible to de-
rive a suitable basis from multiresolution analysis. Neglect-
ing spin degrees of freedom, a many-particle basis can be
defined via wavelet tensor products,

u�
�1��ri� = 	��ri� ,

u�,�
�2� �ri,r j� = 	��ri�	��r j� + 	��r j�	��ri� ,

… , �6�

where a k-particle basis function corresponds to a k-fold ten-
sor product of 3d wavelets 	�. The multivariate wavelets 	�

themselves consist of threefold mixed tensor products of
univariate wavelets and scaling functions, at which each ten-
sor product contains at least one univariate wavelet. For fur-
ther details and applications, we refer to our previous
publication.14,16 By definition, these 3d wavelets span the
so-called homogeneous function spaces24 that do not contain
constant functions. Thereby, this ansatz largely avoids pos-
sible redundancies within the many-particle basis. Wavelet
tensor products enable an adaptive approximation of electron
correlations,14 where the size of the k-particle basis increases
almost linearly, i.e., O�M log�M�k−1�, with the number M of
3d wavelets. Furthermore, tensor product structures consid-
erably simplify the evaluation of matrix elements.16,25

Second quantization provides another possibility to im-
pose further restrictions on the many-particle basis �Eq. �5��.
Stollhoff and Fulde,18 cf. Ref. 19, have suggested taking only
the normal ordered part of the basis functions �Eq. �5�� which
removes all contributions with degree �k from U�

�k�. Further-
more, second quantization introduces additional flexibility
into the perturbation analysis. This can be used to reduce the
computational complexity which is essential for practical ap-
plications. In order to illustrate our assertion, we consider an
arbitrary two-particle basis function as an operator in second
quantization,

U�
�2� 	 Û�

�2� =
1

2 �
pqrs


pq�u�
�2��rs�cp

†cq
†cscr, �7�

where cp
† and cs denote the creation and anihilation operators

for the corresponding orbitals 
p and 
s of a single-particle
Hamiltonian H0. In the following, we denote virtual orbitals
by a ,b ,…, occupied orbitals by i , j ,…, and arbitrary orbitals
by p ,q ,…. Using standard diagrammatic notation,26 we can
express two-particle operators in terms of Goldstone dia-
grams. These diagrams are depicted in Fig. 1, where horizon-
tal dashed lines represent two-particle integrals 
pq�u�

�2��rs�
and upward and downward pointing solid lines denote “par-
ticle” �virtual orbitals� and “hole” states �occupied orbitals�,
respectively. We want to mention that virtual orbitals 
a� are
introduced for purely formal reasons and that for diagram-
matic calculations only occupied orbitals 
i� are required.
This is due to the fact that the underlying basis �Eq. �5��
consists of simple functions which allows us to use the iden-
tity

�
a


a�x1�
a
*�x2� = ��r1 − r2���1,�2

− �
i


i�x1�
i
*�x2� .

�8�

We refer to Ref. 16 for further details. The normal ordered
part of the operator �Eq. �7�� comprises diagrams 1–10. Ac-
cording to the original suggestion of Stollhoff and Fulde,18

only these diagrams should be taken into account. The re-
maining diagrams 11–18 represent one-particle operators;
however, diagrams 11–14 are intrinsically nonlocal and are
therefore not represented by basis functions of degree �2.
To keep all nonlocal diagrams preserves commutativity of
the many-particle basis, which turns out to be essential for
the exponential perturbation scheme. Furthermore, it has the
advantage of being directly applicable in QMC calculations
where only local functions can be used to represent the Ja-
strow factor. The new local basis functions, corresponding to
diagrams 1–14, are given by

Ũ�
�2��X� = U�

�2��X� − �
i
� d3x�u�

�2��xi,x����x��

−
1

2�
i,j

�
ij�u�
�2��ij� − 
ij�u�

�2��ji�� , �9�

where ��x� is the spin density of the reference wave function
�. A more radical approach in the spirit of CC theory is to
keep only the tenth diagram, where the corresponding
cluster-type operator,

Û�
�2,c�

ª

1

2 �
abij


ab�u�
�2��ij�ca

†cb
†cjci, �10�

is of nonlocal character and cannot be immediately applied
in QMC calculations. It turns out that cluster operators sig-
nificantly reduce the computational complexity at higher or-
ders of perturbation theory.

FIG. 1. Goldstone diagrams representing a symmetric two-
particle basis function U�

�2�.
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A. Linear perturbation expansion of the correlation factor

It is instructive to consider first a linear expansion of the
correlation factor in second quantization,

F̂ = �
k=0

N

�
���k

ak�Û�
�k�, �11�

where, e.g., Û�
�2� can be represented by any subset of the

diagrams in Fig. 1. A variation of the Rayleigh quotient �Eq.
�4�� with respect to the coefficients ak� leads to a generalized
eigenvalue problem,


Û�
�k�†ĤF̂� = E
Û�

�k�†F̂� , �12�

in which we use here and in the following 
Ô� to denote
�d3x1 , . . . ,d3xN�*�x1 , . . . ,xN�Ô��x1 , . . . ,xN�. The eigen-
value problem �Eq. �12�� determines the correlated wave

function F̂� up to a normalization constant. In order to fix
this constant, we have chosen the intermediate normalization
condition


F̂� = 1, �13�

which is frequently used in standard MBPT.27

A basic drawback of the variational treatment of the linear
ansatz �Eq. �11�� is that there exists no simple size-consistent
truncation scheme with respect to the degree of the basis
functions �Eq. �5��. However, such a scheme exists for a
perturbative treatment of Eq. �12�. According to a standard
procedure in perturbation theory, we split up the Hamil-
tonian,

Ĥ�� = Ĥ0 + Ŵ , �14�

into a one-particle operator Ĥ0 and a two-particle operator Ŵ
times the coupling constant , where the reference wave
function � solves the ground-state eigenvalue problem,

Ĥ0� = E0� . �15�

Furthermore, we assume that there exist power-series expan-
sions with respect to the coupling constant  for the energy

E�� = E0 + E1 + 2E2 + ¯ , �16�

and the correlation factor

F̂�� = F̂0 + F̂1 + 2F̂2 + ¯ . �17�

It follows immediately from the intermediate normalization
condition �Eq. �13�� that

F̂0 = 1 and 
F̂m� = 0 for m � 1. �18�

Actually, F̂ depends on , according to Eq. �11�, via its co-
efficients ak���. These coefficients have formal expansions,

ak��� = �
m

ak�
�m�m, �19�

so that the mth-order correlation factor F̂m in Eq. �17� can be
written as

F̂m = �
k=0

N

�
���k

ak�
�m�Û�

�k�. �20�

Inserting Eqs. �14� and �16� into Eq. �12� and comparing
different powers of , we obtain perturbation equations for
the correlation factor,


Û�
�k�†�Ĥ0 − E0�F̂m�

= − 
Û�
�k�†ŴF̂m−1� + �

p=1

m

Ep
Û�
�k�†F̂m−p�, m = 1,2, . . . .

�21�

These equations resemble Galerkin discretizations of con-
tinuous perturbation equations already mentioned by Møller
and Plesset.28 However, we want to remind the reader that
our test basis U��X�� is generically incomplete in the space
of many-particle wave functions. To a certain extent, our
approach resembles the fixed-node approximation in QMC
calculations because all of our test basis functions in the
Galerkin scheme share the nodes of the reference wave func-
tion �. We should bear in mind this important aspect in the
following, when we obtain expressions which appear similar
to standard perturbation theory. In this respect, our approach
differs from the Gaussian geminal method described in Refs.
29 and 30, where highly accurate solutions of the continuous
perturbation equations have been considered following Si-
nanoğlu’s work.31,32

The underlying variational formulation for correlation
factors �Eq. �4�� is obviously size consistent. Therefore, size
consistency is satisfied for each order of perturbation theory
separately. Furthermore, the sequence of perturbation equa-
tions �Eq. �21�� implies a truncation scheme with respect to
the degree of the many-particle basis �Eq. �5��, which has
already been recognized by Sinanoğlu.32 For example, a

first-order correlation factor F̂1 contains contributions only
from one- and two-particle normal ordered or cluster-type

operators Û�
�k�.

B. Perturbation expansion of the Jastrow ansatz

The linear expansion of the correlation factor is not con-
venient for further usage in QMC calculations. Although the
perturbation energies are size consistent, this is not the case
anymore for a variational treatment of the perturbative wave
function. It is therefore natural to consider a perturbation
theory for the exponential Jastrow ansatz,

F̂ = e�̂ with �̂ = �
k=0

K

�
���k

ak�Û�
�k�, �22�

where we can truncate the expansion with respect to k at any
order K�N without violating size consistency for the varia-
tional energy �Eq. �4��. It is well known that the two-particle

terms Û�
�2� give the dominant contribution to the correlation

energy �cf. Ref. 33 for a discussion of higher-order terms�.
The exponential ansatz incorporates already a lot of essential
physics and therefore considerably reduces the number of
degrees of freedom that have to be taken into account. Varia-
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tion with respect to the coefficients ak� leads to a nonlinear
eigenvalue problem,


Û�
�k�†e�̂†

Ĥe�̂� = E
Û�
�k�†e�̂†

e�̂� , �23�

where we have assumed that the operators Û�
�k� commute

with each other. This is the case for simple functions as well
as for cluster-type operators. According to our previous dis-
cussion, cluster-type operators are much more favorable con-
cerning the diagrammatic evaluation of matrix elements. At
first glance, the exponential Jastrow ansatz �Eq. �22�� closely
resembles the CC approach.3 There is, however, an essential
difference inasmuch as the underlying function basis U�

�k�

does not guaranty the convergence of the product ansatz �Eq.
�3�� to the exact wave function in the complete basis-set
limit. Here, completeness has to be considered in an appro-
priate function space to which the U�

�k� belong. This short-
coming of the Jastrow ansatz manifests itself in the fixed-
node error of DMC calculations. For that reason, we take the
variational energy �Eq. �4�� as the starting point for our per-
turbation analysis instead of the CC energy and projection
equations. The latter assume an exact ansatz for the wave
function and provide the basis for the CCPT presented in
Ref. 2.

For the perturbation analysis, we assume again a
-dependent Hamiltonian �Eq. �14�� which leads to power-
series expansions for the energy �Eq. �16�� and correlation
operator,

�̂�� = �̂0 + �̂1 + �̂22 + ¯ + �̂mm + ¯ . �24�

Analogous to Eq. �11�, different orders of the correlation
operator are represented through expansions in the operator
basis,

�̂m = �
k=0

K

�
���k

ak�
�m�Û�

�k�, �25�

which can be truncated at any order K�N. In order to derive
the perturbation equations for �̂m, we expand the exponential
ansatz in powers of .

e�̂�� = F0
ˆ + F1

ˆ  + F2
ˆ 2 + ¯ + F̂mm + ¯ , �26�

where the constant term F̂0=1��̂0=0� is fixed by the interme-
diate normalization condition �Eq. �13�� and the next lowest-
order terms are given by

F̂1 = �̂1, F̂2 = �̂2 +
1

2
�̂1

2,

F̂3 = �̂3 + �̂2�̂1 +
1

3!
�̂1

3,

F̂4 = �̂4 + �̂3�̂1 +
1

2
�̂2

2 +
1

2
�̂2�̂1

2 +
1

4!
�̂1

4,

… .

Perturbation equations for the Jastrow ansatz can be obtained

by inserting Eqs. �16� and �26� into the eigenvalue problem
�Eq. �23�� and comparing the coefficients for fixed powers of
. In the following, we refer to this method as Jastrow per-
turbation theory �JPT�. The first-order equation for the cor-
relation operator �̂1 is given by


Û�
�k�†�Ĥ0 − E0��̂1� = − 
Û�

�k�†�Ŵ − E1�� , �27�

from which we obtain the second-order energy �JPT2�,

E2 = 
Ŵ�̂1� , �28�

with E1= 
Ŵ� and 
�̂1�= 
F̂1�=0 as before. For higher orders,
we have the following general equation:


Û�
�k�†�Ĥ0 − E0�F̂m� = − �

p=1

m−1


Û�
�k�†F̂p

†�Ĥ0 − E0�F̂m−p�

− �
p=0

m−1


Û�
�k�†F̂p

†ŴF̂m−p−1�

+ �
p=1

m

Ep �
q=0

m−p


Û�
�k�†F̂q

†F̂m−p−q� . �29�

From this, we get the second-order equation,


Û�
�k�†�Ĥ0 − E0��̂2�

= − 
Û�
�k�†�Ŵ − E1��̂1� −

1

2

Û�

�k�†�Ĥ0 − E0��̂1
2�

− 
Û�
�k�†�̂1

†�Ĥ0 − E0��̂1� − 
Û�
�k�†�̂1

†�Ŵ − E1�� + E2
Û�
�k�†� ,

�30�

and the third-order energy �JPT3�,

E3 =
1

2

�̂1

†�Ŵ − E1��̂1� + ��̂1
†�Ĥ0 − E0���̂2 +

1

2
�̂1

2��
+ ��Ŵ − E1���̂2 +

1

2
�̂1

2�� + c.c.

=
1

2

�̂1

†�Ŵ − E1��̂1� +
1

2

�̂1

†�Ĥ0 − E0��̂1
2�

+
1

2

�Ŵ − E1��̂1

2� + c.c., �31�

where we have used the relation


�̂1
†�Ĥ0 − E0��̂2� = − 
�Ŵ − E1��̂2� , �32�

which can be easily derived from Eq. �27�. In accordance
with Wigner’s 2m+1 rule,2 the third-order energy requires
only the first-order correction of the wave function. Further-
more, with the second-order wave function, we obtain an
expression for the fourth-order energy �JPT4�,
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E4 =
1

2
���̂2 +

1

2
�̂1

2�†

�Ĥ0 − E0���̂2 +
1

2
�̂1

2��
+ ��̂1

†�Ŵ − E1���̂2 +
1

2
�̂1

2�� − E2
1

2

�̂1

†�̂1�

+ ��̂1
†�Ĥ0 − E0���̂2�̂1 +

1

3!
�̂1

3��
+ ��Ŵ − E1���̂2�̂1 +

1

3!
�̂1

3�� + c.c. �33�

If a cluster-type basis is used, further simplifications of the
second-order �Eq. �30�� as well as of third- and fourth-order
energies �Eqs. �31� and �33�� can be achieved, provided that
the operator basis is closed with respect to multiplication up
to degree of 2 i.e.,

Û�
�1�Û�

�1� = �
	

c	Û	
�2�. �34�

Under this assumption, we can make use of the relation


Û�
�k1�†Û�

�k2�†Û
�k3�†�Ĥ0 − E0��̂1�

= − 
Û�
�k1�†Û�

�k2�†Û
�k3�†�Ŵ − E1�� . �35�

For an operator product Û�
�k1�†Û�

�k2�†Û
�k3�† of degree k1+k2

+k3�2, both sides of the relation vanish since it cannot be

fully contracted by �Ĥ0−E0��̂1 and Ŵ, respectively. In the
remaining cases, relation �35� either directly corresponds to
the first-order equation �Eq. �27�� or can be reduced to it by
applying the closedness assumption �Eq. �34��. Using rela-
tion �35� for a cluster-type operator basis which satisfies the
closedness condition �Eq. �34��, Eqs. �30�, �31�, and �33�
reduce to


Û�
�k�†�Ĥ0 − E0��̂2� = − 
Û�

�k�†�Ŵ − E1��̂1�

−
1

2

Û�

�k�†�Ĥ0 − E0��̂1
2� + E2
Û�

�k�†�

�36�

E3 = 
�̂1
†�Ŵ − E1��̂1� , �37�

E4 =
1

2
���̂2 +

1

2
�̂1

2�†

�Ĥ0 − E0���̂2 +
1

2
�̂1

2��
+ ��̂1

†�Ŵ − E1���̂2 +
1

2
�̂1

2�� −
1

2
E2
�̂1

†�̂1� + c.c.

�38�

We want to close this section with a remark concerning
the intimate relation between JPT3 and the local ansatz of
Stollhoff and Fulde.18 In Ref. 16, we have discussed the local
ansatz in its simplest variant, namely, for two-particle
normal-ordered operators only. Concerning the local ansatz,
these operators are equivalent to cluster-type operators �Eq.
�10��. In our present notation, the local ansatz corresponds to
the linear equation,


Û�
�2�†�Ĥ0 + Ŵ��̂� − �E0 + E1�
Û�

�2�†�̂� = − 
Û�
�2�†Ŵ� ,

�39�

where the correlation energy is given by

Ecorr = 
Ŵ�̂� . �40�

It is easy to see that a perturbative treatment of the local
ansatz using Eqs. �14�, �16�, and �24� reproduces the first-
and second-order equations �Eqs. �27� and �36�� as well as
the second- and third-order energy expressions �Eqs. �28�
and �37��.

III. PERTURBATIVE JASTROW FACTORS FOR A
HOMOGENEOUS FERMI GAS

In order to test the accuracy of the JPT approach for short-
range correlations, we have studied a homogeneous spin-
unpolarized Fermi gas at various densities. Because of the
well-known shortcoming of finite order perturbation theory
for the homogeneous electron gas, we have chosen, instead
of the bare Coulomb potential, a Yukawa potential,

v�r� =
e−��r�

�r�
, �41�

with screening parameter �. To be consistent with QMC
methods, the calculations have been performed for supercell
models with periodic boundary conditions.7,34 The supercell
Hamiltonian is of the form

Ĥ = −
1

2�
i=1

N

�i +
1

2�
R

�
i�j

v�ri − r j + R� , �42�

where the periodic interaction potential has been taken as a
sum over all lattice vectors R of the supercell. We have
considered two different decompositions of the Hamiltonian

Ĥ= Ĥ0+Ŵ, where Ĥ0 corresponds either to the bare kinetic
energy or to the Fock operator. For homogeneous systems
this makes only a minor difference because the zeroth-order
wavefunction � is already fixed by translational symmetry.
For small values of the screening parameter ���1 bohr−1�,
the Fock operator yields more accurate correlation energies
and pair-correlation functions. It turns out, however, that
with increasing �, this difference becomes marginal. In the
following, we present results only for the Fock operator.

Because of translational symmetry, the first-order Jastrow
factor requires only two-particle basis functions. Adapted to
periodic boundary conditions and translational symmetry, we
have chosen two-particle basis functions of the form

u�
�2��r1,r2� = �

R
g��r1 − r2 + R� with g��r� = exp�− ��r2� ,

�43�

where the exponents of the Gaussian basis set have been
taken from an even-tempered sequence ��=a0b�−1, �
=1, . . . ,n, with appropriately chosen parameters a0=0.03, b
=3, and n=6. Expressed in second quantization, this basis
can be modified by removing the constant diagrams 19 and
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20 from Fig. 1 in order to satisfy the intermediate normal-
ization condition 
�1�=0. Actually, only diagram 10 in Fig. 1
contributes to the first-order equation �Eq. �27��. It makes no
difference with respect to the coefficients a2�

�1� and therefore
for the JPT2 and JPT3 correlation energies, cf. Eqs. �28� and
�31�, whether local basis functions �Eq. �9�� or cluster-type
operators �Eq. �10�� have been chosen as a basis set. For
higher orders in perturbation theory, the two basis sets are
not equivalent anymore.

The matrix elements of the first-order equation �Eq. �27��
require the calculation of the Goldstone diagrams shown in
Fig. 2, where the symbol −X denotes insertion of the Fock
operator. With the first-order Jastrow factor in hand, one can
also calculate the second- and third-order contributions to the
correlation energy. These contributions are expressed in
terms of Goldstone diagrams in Figs. 3 and 4, where dashed
lines represent the first-order correlation operator �1 and
wavy lines represent the interaction potential �Eq. �41��. For

the third-order contribution, we have assumed that Ŵ−E1 is
normal ordered, which is actually the case if H0 corresponds
to the Fock operator. The computational complexity of third-
order diagrams for wavelet bases has been discussed in detail
in Ref. 16.

A. Comparison with Fermi hypernetted chain Jastrow factors

In order to judge the quality of first-order Jastrow factors,
we have performed FHNC//0 calculations4,5 for the homoge-
neous Fermi gas model �Eq. �41��. The FHNC//0 calculations
represent the thermodynamic limit of an infinitely large su-
percell. Due to the finite size of the supercell in our JPT
calculations, Jastrow factors possess a periodic structure with
a small anisotropy due to the lattice sum �Eq. �43�� over
neighboring supercells. In Fig. 5, we present first-order pair-
correlation functions along the �100� direction for different
supercell sizes at density rs=2 and �=1 bohr−1, together
with the corresponding FHNC//0 result. For short-range cor-
relations, good agreement between first-order approxima-
tions and the FHNC//0 Jastrow factor can be observed al-
ready for rather small supercells. With increasing size of the
supercell, first-order JPT converges amazingly well toward
the FHNC//0 result even at intermediate distances where
good agreement cannot be taken for granted.

Since our focus is on short-range correlations, we have
chosen in the following a fixed supercell with N=54 par-

ticles. Different values of the screening parameter �, at fixed
density rs=2, have been considered in Fig. 6�a�. It turns out
that there is close agreement between first-order JPT and
FHNC//0 pair-correlation functions for the whole range of
parameters. To avoid computational artifacts, we have plot-
ted the JPT pair-correlation functions only up to 0.1 bohr
because our Gaussian approximation �Eq. �43�� does not pro-
vide a resolution of the cusp beyond this scale. For compari-
son, Fig. 6�b� shows the behavior at different densities and
fixed �=1 bohr−1. From this figure, we observe a discrep-
ancy between first-order JPT and FHNC//0 pair-correlation
functions at low densities and intermediate interparticle dis-
tances �1 bohr. This is because in the low-density regime,
correlations are getting stronger and perturbation theory, in
general, becomes less accurate.

In our previous calculations, we have not distinguished
between pairs with parallel and antiparallel spins. By a slight
modification of the formalism, however, it is possible to cal-
culate spin dependent Jastrow factors. The resulting first-
order pair-correlation functions for �=1 bohr−1, rs=2, and
N=54 are shown in Fig. 7. It is interesting to compare the
slopes at short interparticle distances with Kato’s cusp
condition.35,36 For this, we have used a slightly enlarged ba-
sis containing 14 even-tempered Gaussians. The value of the

FIG. 4. Diagrammatic representation of E3= 
�̂1
†�Ŵ−E1��̂1�.

FIG. 5. First-order JPT pair-correlation functions �dashed lines�
for a homogeneous Fermi gas at density rs=2 and screening param-
eter �=1 bohr−1 for different sizes of the supercell. For compari-
son, the FHNC//0 result for the infinite system �solid line� is shown.

FIG. 2. Diagrams required for the calculation of matrix elements


Û�
�2�†�Ĥ0−E0�Û�

�2��.

FIG. 3. Diagrammatic representation of E2= 
Ŵ�̂1�.
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averaged slope in the interval �0.1, 0.2� is 0.23 and 0.46 for
parallel and antiparallel spins, respectively. This compares
favorably with Kato’s cusp condition which requires spheri-
cally averaged derivatives of 0.25 and 0.5 at the interparticle
cusp.

B. Correlation energies

With first-order Jastrow factors at hand, we have calcu-
lated JPT2 and JPT3 correlation energies for the homoge-
neous Fermi gas model. Due to momentum conservation, the
diagrams with two external lines in Fig. 1 do not contribute
to Eq. �27�. Therefore, we can immediately identify correla-
tion operators �̂1 with ordinary two-particle correlation func-
tions in Jastrow factors. In order to judge the quality of our
results, we have performed VMC and pure diffusion quan-
tum Monte Carlo �PDMC� calculations37,38 for the Hamil-
tonian �Eq. �42�� using these Jastrow factors as trial wave
functions. The VMC method directly calculates the energy
expectation value �Eq. �4�� for a given trial wave function
and therefore provides a measure for the quality of the Ja-

strow factors. Despite small fixed node errors, PDMC pro-
vides fairly accurate benchmark values for the correlation
energy of a homogeneous Fermi gas. Furthermore, we com-
pare it with standard second-order Møller-Plesset �MP2� per-
turbation theory,27 which can be expressed as a sum over
momentum vectors kp and corresponding eigenvalues �p of
spatial Hartree-Fock �HF� orbitals,

E�2� = �
ijab

2
ij��ab�
ab��ij� − 
ij��ab�
ab��ji�
�i + � j − �a − �b

, �44�


ij��ab� =
1

�s

4�

�ka − ki�2 + �2�ki+kj,ka+kb
, �45�

where �s denotes the volume of the supercell and indices i,
j, a, and b have the same meaning as in Sec. II.

According to our discussion in Sec. III A, we first con-
sider the size dependence of JPT2, MP2, VMC, and PDMC
correlation energies. These are shown in Fig. 8 for different

FIG. 7. First-order JPT pair-correlation functions for parallel
and antiparallel spins. The homogeneous Fermi gas has been con-
sidered at density rs=2 and �=1 bohr−1 for a supercell with N
=54 particles.

FIG. 8. Correlation energy per particle �mhartree� of a homoge-
neous Fermi gas at density rs=2 and �=1 bohr−1 for different sizes
of the supercell.

FIG. 6. Comparison of first-order JPT �dashed lines� and
FHNC//0 �solid lines� pair-correlation functions for various screen-
ing parameters and densities. �a� Fixed density rs=2 and different
screening parameters ranging from �=0.5 to 4 bohr−1. �b� Fixed
screening parameter �=1 bohr−1 and different densities ranging
from rs=1 to 8. The JPT results have been calculated for a supercell
containing N=54 particles.
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sizes of the supercell in the case of a homogeneous Fermi
gas at density rs=2 and �=1 bohr−1. The JPT2 and VMC
calculations have been performed for spin-independent and
spin-dependent �JPT2* and VMC*� Jastrow factors. It can be
seen that the different methods yield almost parallel curves,
where the correlation energies turned out to be fairly stable
already for a small number of particles �N�54�. Both JPT2

and JPT2* overestimate the correlation energy by roughly
9% and 14%, respectively. By comparison with the corre-
sponding VMC calculations, we observed that the first-order
perturbative Jastrow factors are actually significantly better
and recover 93% and 96% of the PDMC correlation energy,
respectively. These results have to be compared with stan-
dard MP2 calculations which overestimate the correlation
energy by about 28%.

In order to study the homogeneous Fermi gas model for a
larger range of densities and screening parameters, we re-
stricted ourselves to a fixed supercell size with N=54 par-
ticles. Since we compare our results with PDMC benchmark
calculations for the same supercell size, possible finite-size
errors can be ignored. Correlation energies for a homoge-
neous Fermi gas at density rs=2 and different screening pa-
rameters � are listed in Table I. It can be seen that JPT2
overestimates, whereas JPT3 underestimates the correlation
energy. The JPT3 results are in better agreement with VMC
calculations than the corresponding JPT2 energies. Except
for very small values ��1 bohr−1, the relative errors of
JPT3 and VMC calculations remain almost constant with re-
spect to variations of the screening parameter, as it is shown
in Fig. 9�a� for spin-dependent Jastrow factors. In contrast to
this, the JPT2 relative errors decrease with increasing values
for the screening parameter, which has to be expected be-
cause short-range correlations become increasingly impor-
tant. These observations once again suggest that the first-
order Jastrow factor is more accurate than the corresponding
perturbative correlation energies. A similar behavior has been
observed for a fixed screening parameter �=1 bohr−1 and
different densities which can be seen from Table II and Fig.
9�b�.

It turns out that the second-order correlation energies for
rs=2 and �=0.5, 1, 2, and 4 bohr−1 are quite close to those
for �=1 bohr−1 and rs=1, 2, 4, and 8, respectively. Actually

they should be exactly the same if Ĥ0 contains only the ki-
netic energy. By rescaling the electron coordinates ri�=ri /rs
for i=1, . . . ,N, it can be seen that rs serves as a coupling
constant in the Schrödinger equation,

�−
1

2�
i=1

N

�i� + rs�
i�j

e−�rs�ri�−rj��

�ri� − r j��
�� = rs

2E� = E�� . �46�

It follows from the perturbation series for the energy

FIG. 9. Relative errors �Ecorr−Ecorr
PDMC� / �Ecorr

PDMC� of JPT2, JPT3,
and VMC correlation energies for different densities and screening
parameters. The results are for spin-dependent Jastrow factors and
supercells with N=54 particles. �a� Fixed density rs=2. �b� Fixed
screening parameter �=1 bohr−1.

TABLE I. Correlation energy per particle �mhartree� of a homogeneous Fermi gas at density rs=2 and
different screening parameters �. JPT2, JPT3, and VMC results have been obtained from first-order spin-
independent and spin-dependent ��� Jastrow factors. The VMC method corresponds to a direct evaluation of
the energy expectation value for first-order wave functions, whereas PDMC provides almost exact energies
within the fixed-node approximation which do not depend on the Jastrow factor. For comparison, MP2
correlation energies have been stated. A supercell containing N=54 particles has been used in all calculations.

� JPT2 JPT3 VMC JPT2* JPT3* VMC* MP2 PDMC

0.5 −21.52 −15.66 −17.69�2� −22.12 −16.19 −18.12�2� −24.20 −18.70�3�
1 −8.91 −7.22 −7.63�2� −9.33 −7.55 −7.94�2� −10.35 −8.23�3�
2 −2.36 −2.03 −2.08�1� −2.53 −2.15 −2.20�1� −2.79 −2.31�2�
4 −0.450 −0.407 −0.415�4� −0.480 −0.431 −0.435�4� −0.525 −0.461�6�
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E� = E0� + rsE1� + rs
2E2� + ¯ → E = E0�/rs

2 + E1�/rs + E2� + ¯

�47�

that the second-order correlation energy depends only on the
product �rs.

IV. CONCLUSIONS

We have presented a perturbation scheme for Jastrow-type
correlation functions. From a computational point of view,
this scheme is simple enough to be of practical significance
for the determination of accurate trial wave functions to be
used in QMC calculations. Although essentially limited to

short-range correlations, JPT can be applied to the model
Hamiltonian of the inhomogeneous RPA method in Ref. 23
in order to obtain Jastrow factors for metalic systems, where
long-range correlations become important. Our applications
to a screened homogeneous Fermi gas suggest that first-order
Jastrow factors are fairly accurate for short-range correla-
tions and provide significantly better results in VMC calcu-
lations than it could be expected on the basis of second- and
third-order correlation energies. It remains to develop an ef-
ficient implementation for inhomogeneous systems. For this,
we have proposed multiscale bases,16 such as wavelets,
which provide sparse representations for two-particle corre-
lation functions and a favorable computational complexity
concerning the evaluation of Goldstone diagrams.
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