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The spinless resonant level model is studied when it is coupled by hopping to one of the arbitrary numbers
of conduction-electron channels. The Coulomb interaction acts between the electron on the impurity and in the
different channels. In the case of a repulsive or attractive interaction the conduction electrons are pushed away
or attracted to ease or hinder the hopping by creating unoccupied or occupied states, respectively. In the
screening of the hopping orthogonality catastrophe plays an important role. At equilibrium in the weak- and
strong-coupling limits the renormalizations are treated by perturbative, numerical, and Anderson-Yuval Cou-
lomb gas methods. In the case of two leads the current due to applied voltage is treated in the weak-coupling
limit. The presented detailed study should help to test other methods suggested for nonequilibrium transport.
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I. INTRODUCTION

In recent years the quantum impurity problem out of equi-
librium has attracted great interest. The most relevant real-
izations are quantum dots connected to at least two metallic
leads1 and short metallic wires containing magnetic
impurities.2 In the impurity problem exact methods play dis-
tinguished roles especially the Bethe ansatz and conformal
invariance. The generalization of these methods to out-of-
equilibrium situations is the most challenging new direc-
tions. Mehta and Andrei are aiming to solve the Kondo prob-
lem on a dot with two contacts attached. First a simple
resonant level without spin was studied to test the new gen-
eralization of the Bethe ansatz method.3 Their elegant sug-
gestion is very provocative. In order to test this kind of new
methods we perform a detailed study of that problem using
different weak-coupling perturbative methods combined with
the renormalization group �NRG�. As the final goal we cal-
culate the current flowing through the impurity when a finite
voltage is applied on the contacts. The most challenging
claim of Mehta and Andrei is that the current is a nonmono-
tonic function of the strength of the Coulomb coupling be-
tween the electron on the dot and conduction electrons in the
two leads.

In order to make the comparison more explicit we gener-
alize the time-ordered scattering formalism for nonequilib-
rium in the next-leading logarithmic order. In this way the
current is calculated as a function of the applied voltage and
the Coulomb coupling strength. Increasing the Coulomb cou-
pling strength we find also a nonmonotonic feature but the
order of increasing and decreasing regions is the opposite to
the finding of Mehta and Andrei.3

The model to be treated is the following: A single-
impurity orbital is coupled to two reservoirs of Fermi gas via
hopping but the two reservoirs have different chemical po-
tentials �L and �R on the left and right of the impurity in a
one-dimensional model. �L−�R=eV is determined by the
applied voltage V �e is the electronic charge�. The Coulomb
interaction acts between the electron on the impurity level

and the conduction electrons at the impurity position. Thus
the Hamiltonian has the form

H = H0 + H1 + H2, �1�

with

H0 = �
�=L,R

k

�k − k��vFak�
† ak� + �dd†d , �2�

where k�0 and kL−kR=eV /vF, vF is the Fermi velocity, and
ak�

† is the creation operator of the spinless Fermion in lead
�=L /R, while �d is the energy of the local level and d† is the
creation operator for the electron on that site. The interaction
term is

H1 = U�d†d −
1

2
�� �

�=L,R
a�

†a� −
1

2� , �3�

where U is the Coulomb coupling which in a physical case
U�0, a�= 1

�L
�kak�, and L is the length of the chain. The

existence of the substraction of 1 /2 is not essential; it can be
omitted and then �d is shifted as �d−U /2 and a local poten-
tial − 1

2U is acting on the electrons, but the latter one can be
taken into account by changing the electron density of states
in the leads at the position of the impurity.

The hybridization between the lead electrons and the lo-
calized electron is described by

H2 = V��
�

�d†a� + a�
†d� , �4�

where V� is the hybridization matrix element.
In the case of equilibrium it is useful to generalize the

model to N reservoirs instead of L, R, and then � runs
through �=0,1 , . . . ,N−1 and ��=�. Then the hybridization
term in H2 is chosen in a specific form

H2 = V0�d†a0 + a0
†d� , �5�

indicating that only the electrons with �=0 are hybridizing
while the others are taking part only in the Coulomb screen-
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ing. Namely, only those electrons are hybridizing which have
the symmetry of the localized orbital �s-like�. As a result of
the screening the electron gas is polarized depending on the
occupation of the localized state and those polarizations lead
to orthogonality catastrophe.4

The model with N=1 is known as a resonant level model
and has been studied in great detail5,6 and the one with N
�1 has been introduced to study finite- range interactions in
three dimensions �3D�.7

The goal of the present paper is to provide weak-coupling
results for V�0. But before doing that the V=0 equilibrium
case is studied in the weak-coupling limit by the diagram
technique. Then to extend the results are extended for stron-
ger couplings of Wilson’s numerical NRG8 and Anderson-
Yuval Coulomb gas method9 is used in order to check the
validity of weak-coupling results concerning a specific be-
havior. Namely, at some stage of the calculation in the expo-
nent of the renormalized quantities a combination

− �0U +
1

2
N��0U�2 �6�

appears. For U�0 this is changing sign at �0U= 2
N and this

leads in changing the increasing to decreasing behavior but
this crossover is well beyond the validity of the perturbation
theory at least for N=2.

In order to judge the real situation, an NRG study will be
performed including the weak- ��0U�1� as well as strong-
coupling regions ��0U�

2
N

� to get insight into whether the
crossover indicated above is expected or is likely an artifact
of the weak-coupling theory. We also map the problem to a
one-dimensional Coulomb model closely following the work
of Anderson and Yuval, where the screening can even be in
the strong-coupling limit. All of these methods suggest a
coherent picture of the crossover, and they agree very well
especially for N=4.

The study of such a crossover is especially relevant as in
the work of Mehta and Andrei3 such a crossover is suggested
in the current flowing in the nonequilibrium case V�0 at
�0U�2. If we could find the crossover already in equilib-
rium, then it is obvious to expect the same in the nonequi-
librium situation.

The paper is organized in the following way: In Sec. II we
provide the analytical perturbative method up to next-to-
leading logarithmic order, introducing extra channels for
screening, where the nonmonotonic competion of the vertex
and self-energy correction is already demonstrated in equi-
librium. In Sec. III the equilibrium calculation is extended to
strong coupling by using Wilson’s numerical renormalization
group technique and the result is compared to that of the
analytical calculation. In Sec. IV the Anderson-Yuval method
is presented. In Sec. V the time-dependent scattering method
is applied for nonequilibrium closely following the general-
ized version of Anderson’s poor man’s scaling in the next to
leading order and the current is calculated. In Sec. VI the
results are summarized. In the Appendix some cancellation
due to Ward indentities are discussed.

II. PERTURBATION THEORY: WEAK-COUPLING LIMIT

The resonant level model is given by Eqs. �1�, �2�, and
�4�. It does not contain noncommuting terms; thus, Kondo
behavior is not expected in the weak-coupling limit. In the
strong-coupling limit the model, however, can be mapped to
an anisotropic Kondo model5–7 but such mapping is not con-
sidered here. The model shows strong similarities to the
x-ray absorption,10,11 as the strength of the interaction �in-
variant charge� between conduction electrons and the elec-
tron on the impurity level is scale invariant. The system
shows scaling in terms of the reduction of the conduction-
electron bandwidth D. In the case N=1 the scaling equations
were derived by Schlottmann6 and those can be easily ex-
tended for arbitrary N.

There are two different kinds of vertex corrections de-
picted in Figs. 1�a�–1�c�, where the solid lines stand for con-
duction electrons, the dotted line for electrons on the impu-
rity level, and the interactions are indicated by dots �U� and
crosses �V�. In case of conduction electrons the channel in-
dices are also indicated. The Hartree-Fock energy shift can
be incorporated by �d. The self-energy of the electron on the
impurity is depicted in Fig. 1�d�. In the calculation of the
self-energy counterterms are introduced to eliminate the con-
stant terms to keep �d=0 unrenormalized. Closely following
the earlier works,6,12,13 the invariant charge for the Coulomb
interaction takes the form

Uinv = ���/D�d��/D� , �7�

where � is the vertex function and

d��/D� = G��,D��� − �d�

can be determined perturbatively starting with 1 where G is
the renormalized one-electron Green’s function. The func-
tions ���� and d��� are

���� = 1 + N�0
2U2 ln�D

�
� + ¯ ,

FIG. 1. Vertex diagrams �a�, �b�, �c� and the impurity self-energy
�d�. Solid lines stand for conduction-electron propagators while the
dotted line for those of electron on the impurity level. The interac-
tions are indicated by dots �U� and crosses �V�. In the case of
conduction electrons the channel indices are also indicated.
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d��� = 1 − N�0
2U2 ln�D

�
� + ¯ , �8�

where �0 is the conduction-electron density of states for
spinless electrons in one of the channels n=1, . . . ,N−1. As
the Coulomb interaction is independent of n, the factor N
occurs. As the consequence of the Ward identity relating the
vertex correction and the self-energy depicted in Figs. 1�c�
and 1�d� cancel out in Uinv,

6,10,11,13

d

d���
	����d���
 =

d

d���
Uinv��� = 0; �9�

thus, Uinv=U. The renormalization group gives

d��� = ��

D
�N�0

2U2

�10�

for arbitrary n.
The hybridization contains the vertex correction for n=0

�Fig. 2�,

V��� = V�1 + U�0 ln
D

�
+ ¯ � , �11�

but it does not contain linear contribution in ln�D /�� in the
order of U2. The relevant invariant charge Vinv��� is

Vinv��� = V���d1/2��� �12�

as the interaction is connected by only one impurity line.
Thus the terms linear in ln�D /�� are

Vinv��� = V�1 + �0U ln
D

�
−

1

2
N��0U�2ln

D

�
+ ¯ � .

�13�

The result of the renormalization equation is

Vinv��� = V��

D
�−�0U+N�0

2U2/2

. �14�

The second term in the exponent appears as reduction of
Vinv��� describing the Coulomb screening in the N channels.

For U�0 the Vinv��� interaction is always decreasing as
� is reduced but for U�0 it depends on the strength of U.
For large enough U the screening dominates thus:

Vinv��� =�
decreasing for U�0 � 0,

increasing for 0 � U�0 �
2

N
,

decreasing for U�0 �
2

N
.

. �15�

This behavior will be further discussed in Sec. VI.

The scaling regions, however, are not unlimited as the
impurity level has its own width �imp. There are two contri-
butions to the level width �imp.

The hybridization broadens the impurity level just in case
of the Anderson model and that is in second order in V:

�imp��� = 	�0V2��� = 	�0V��

D
�−2�0U+N��0U�2

, �16�

where also the effect of renormalization is taken into ac-
count. There is also a Korringa-like broadening due to the
creation of electron-hole pairs and thus �Korringa�U2�,
where � comes from the phase space. That is important only
for large � where everything is smooth and thus the broad-
ening is not effective.

The broadening due to the hybridization cuts off the
renormalization procedure at energy ���imp���. Combining
Eqs. �14� and �16� and inserting the condition given above
provides the final Vren value as

Vren

V
= �V2�0	

D
�	−�0U+N��0U�2/2
/	1+2�0U−N��0U�2


. �17�

As shown in Fig. 3, for U�0 Vren /V�1 renormalizes
downwards and for even more negative U down to zero. For
U�0 and �0U�2/N first Vren increases with increasing U
but for �0U�2/N it starts to decrease and tends to zero
again. The intermediate maximum appears at �0U=1/N. For
N=2 that maximum is, however, already outside the weak-
coupling limit, where the calculation cannot be trusted. The
question still remains unanswered whether the nonmonotonic
behavior for U�0 can be traced in strong-coupling calcula-
tions or not. The conclusions for the crossover might be
trusted only for large N�1, which does not have physical
relevance.

III. NRG APPROACH FOR V=0

In order to determine the region of validity of the weak-
coupling approach in equilibrium, we have performed a nu-
merical �NRG�8 analysis for the N=2 and N=4 cases.

In Wilson’s NRG technique—after the logarithmic dis-
cretization of the conduction band—one maps the original

FIG. 2. Vertex correction to the hybridization.

FIG. 3. �Color online� The renormalized hybridization as a func-
tion of �0U for different channel numbers. The intermediate maxi-
mum can diverge only for �0U=1; in all the other cases, the in-
creases are also rather moderate.
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Hamiltonian of an impurity problem to a semi-infinite chain
with the impurity at the end of the chain. As a consequence
of the logarithmic discretization the hopping amplitude along
the chain decreases exponentially as tn�
−n/2 where 
�1
is a discretization parameter �we have used 
=2 throughout
the calculations� while n is the site index. The separation of
energy scales provided by the exponentially vanishing hop-
ping amplitude allows us to diagonalize the Hamiltonian it-
eratively to approximate the ground state and the excitation
spectrum of the full chain. Since we know the eigenenergies
and eigenvectors of the Hamiltonian, we can calculate dy-
namical quantities such as the density of states using the
Lehman representation of the spectral function.8

First let us focus on the physically relevant case of U
�0 and N=2. To compare the numerical data with the weak-
coupling results, we have calculated the impurity density of
states for different values of the interaction strength U. The
results are shown in Fig. 4. The numerical data validate the
weak-coupling results for U /D�0.3. In our NRG calcula-
tion we considered a flatband with constant density of states
�0=1/2D, where D stands for the half bandwidth. In the
lower panel of Fig. 4 the renormalized value of the hybrid-
ization, Vren, is shown as a function of the interaction
strength U. In NRG calculations, we have defined Vren from
the finite-size spectrum directly. The finite-size spectrum as a
function of iteration number crosses over from the initial
fixed point to the strong-coupling one characterized by
single-particle phase shifts �=	 /2 at around M*. M* is de-
termined by the renormalized hybridization, ren=	Vren

2 �0

�
−M*/2. We take M =M* when the energy of the first ex-
cited state exceeds 90% of its fixed-point value.

To answer the question whether an intermediate maxi-
mum appears outside the weak-coupling limit or not, we
have performed calculations with very large values of the
interaction strength up to U /D=5.0. The results are shown in
Fig. 5.

Our conclusion is that even for N=2 such a nonmonotonic
behavior is found but the position of the maximum as well as
the shape of the curve for large U differs essentially from
those obtained by weak-coupling calculations. It still remains
a question whether for case of many channels the weak-

coupling calculation is reliable or not. To treat many chan-
nels with NRG is very challenging, but to see the tendency
with increasing channel number, we performed the numerical
analysis of the case N=4. The results are plotted in Fig. 5 as
well. Our data suggest that already for N=4 the position of
the turning point as well as the decay of the curve at large U
is reproduced by the weak-coupling calculation with a much
better accuracy than in case of N=2.

IV. ANDERSON-YUVAL APPROACH

In most of the physical cases the Coulomb interaction U
dominates over the hopping term V0. To overcome that dif-
ficulty, Yuval and Anderson9 introduced a path integral
method for the Kondo problem where the interaction U is
described in terms of phase shifts while the hopping is
treated as perturbation. The similarity between the Kondo
and present problems can be exploited in the following way:
The complex time axis is divided into intervals, and as is
shown in Fig. 6 where the solid line represents the time
interval when the impurity level is occupied and the light
ones stand for unoccupied levels. The conduction electrons
can join the time line at the end points of the intervals where
hopping V0 takes place while they can touch the time line at
any other points due to the Coulomb interaction. Those are

FIG. 4. �Color online� Upper panels: impurity
density of states for V /D=0.015 and U /D
=0, . . . ,0.3 as obtained by perturbative RG and
Wilson’s NRG. The lower panel shows the renor-
malized value of the hybridization, Vren, as a
function of the interaction strength U. The nu-
merical data supports the weak-coupling results
for U /D�0.2.

FIG. 5. �Color online� Comparison between weak-coupling RG
and NRG approaches: the renormalized value of the hybridization,
Vren as a function of the interaction strength U for N=2 and N=4.
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indicated by dashed lines which are labeled according to the
channel indices �i. Thus, the incoming and outgoing
conduction-electron lines should be connected all possible
ways, and finally a summation over all possible configuration
of channel labelings �i must be carried out. Some of the
connections are indicated in Fig. 6 by dotted lines. The final
result for the partition function can be given in analytical
form as in Refs. 9 and 14 where the Kondo or the two-level
system problems were treated. The partition function has the
form of a one-dimensional Coulomb gas with appropriately
defined vector charges C� ��=1, . . . ,N−1�. The scaling
equations are derived by eliminating short time intervals at
the short time cutoff � with its initial value taken as the
inverse bandwidth �0�D−1. The interaction V0 must be also
made dimensionless by a factor ��0

1/2.
The phase shifts for electrons in case of filled and

empty impurity levels are ��=−arctan��0	U� and
��� =−arctan��0	U��, respectively. Only their difference will
appear in the scaling: z�= ���−���� /	. The phase shifts are
limited: ����, ���� � �	 /2. The Friedel sum rule requires
��z�=−1 which expresses that the one-electron difference
between the filled and empty sites must be screened by
charge oscillations formed by the conduction electrons. The
hybridization can be associated with the fugacity:

y = V��0�0�1/2cos �0. �18�

The interaction can be represented by charges at the interac-
tion points as

C�
± = ± �z� + ��0� , �19�

where the index ± labels hopping in and out of the impurity
level assisted by an electron annihilation or creation in chan-
nel 0.

The lengthy derivation of the scaling equations closely
follows Refs. 14 and 15 and the final result is

dy

d ln �
= y�1 −

1

2�
�

C�
2� ,

dC�

d ln �
= − 2y2C�, �20�

or expressed in terms of phase z � phase shifts� they are

dy

d ln �
= y�1

2
− z0 −

1

2�
�

z�
2� ,

dz�

d ln �
= 2���0 + z��y2. �21�

Here the scaling is carried out by increasing � to reduce the
electronic bandwidth. The term 1

2 y in the first line of Eq. �21�
originates in the explicit factor �0

1/2 in the definition of y, Eq.
�18�, and disappears from the corresponding scaling equation
of V.

The system of equations �21� must be solved for initial
values y��0��1 but z� can be arbitrary. The fugacity can
either increase or decrease exponentially depending on the
quantity �z0+ 1

2��z�
2 �. Similar expressions were obtained in

Ref. 7 by matching the perturbative results with expression
in terms of phase shifts.

The regions for an attractive interaction and large enough
repulsive one will be treated separately. In the first case
�−z0− 1

2��z�
2 ��0 �U�0,z0�0�. The solution is y /y0

= �� /�0�−z0−��z�
2 /2, and thus y is decreasing; therefore, z� ��

=0, . . . � are slowly varying and thus the � dependence can
be ignored. Thus

Vinv = V0� �

�0
�−z0−�

�
z�
2 /2

. �22�

The situation is different for the repulsive interaction
�z0�0�. There are two regions in that case. In the first one
�−z0− 1

2��z�
2 ��0 and y is increasing. Then Eq. �22� is valid

as far as y�1 is satisfied. There is, however, a crossover
where �−z0− 1

2��z�
2 �=0 to the second region where y de-

creases again and the screening dominates. The larger N, the
stronger the decrease is.

The crossover between the increasing and decreasing re-
gions is at

z0 = −
1

2 � z�
2 .

As z�’s are very slightly renormalized, the unrenormalized
values can be used and �� is independent of � ���0�. Thus
the crossover is at z�=2/N and then

N = 2: � =
	

2
: �0U → � ,

N = 4: � =
	

4
: �0U =

1

	
.

Comparing with the results of NRG in case N=2 the turning
point is at �0U→� and thus the agreement is not complete
but at least it could be argued that it is inside the accuracy of
the scaling equation. The weak-coupling scaling result is
very poor as was expected �see Fig. 4�. For N=4 all the
methods give very similar results.

The general solution of the scaling equations can be
searched in the form C����= �C��initial����. Then

d�

d ln �
= − 2y2� ,

FIG. 6. The solid lines represents the time interval when the
impurity level is occupied, and the light ones stand for unoccupied
levels. The conduction electrons can join the time line at the end
points of the intervals where hopping V� takes place while they can
touch the time line at any points due to the Coulomb interaction.
Those are indicated by dashed lines which are labeled according to
the channel indices �i.
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dy

d ln �
= �1 −

1

2
�2�

�

C�
2�y . �23�

The scaling trajectories are

4y2��� − �2����
�

C�
2 + 4 ln ���� = 4y2�0� − �

�

C�
2 . �24�

During the renormalization y is fast increasing and the scal-
ing is stopped where it reaches unity. Meanwhile, � decreases
slowly and its renormalized value can be extracted from Eq.
�24�. The result in leading order in y reads as

ln ���� = −
y2��� − y0

2

1

2
− z0 −

1

2�
�

z�
2

. �25�

Outside that region the long-time approximation for the
conduction-electron Green’s function cannot be applied.

V. WEAK-COUPLING APPROACH FOR OUT OF
EQUILIBRIUM

Considering theoretical methods two ways can be fol-
lowed: the Keldysh Green’s function method or the calcula-
tion of the scattering amplitude by time-ordered perturbation
theory. Here the second method will be followed, where the
initial conduction-electron states can be arbitrary nonequilib-
rium states and for the intermediate and final states the actual
nonequilibrium distributions are taken into account. This
method has been earlier applied in the leading-logarithmic
approximation,16–18 which is a generalization of Anderson’s
poor man scaling.19

Here the extension of that method is presented to next
leading order. For equilibrium first the Kondo model was
treated that way.20 The basic idea is to calculate the develop-
ment of the initial �i� state to the final �f� one, but in second
order the renormalization of the norms of those states must
be corrected also. Thus the scattering matrix element to be
considered is

Tfi� ���

=

f �Hint�
n=0

� � 1

� − H0
Hint�n

�i�

�f ��
n=0

� � 1

� − H0
Hint�n

�f�i��
n=0

� � 1

� − H0
Hint�n

�i��1/2
,

�26�

where � is the initial energy of state �i� and the Hamiltonian
is split as H=H0+Hint. In the present problem the correction
of the normalization occurs for the impurity electron states
while in the Kondo model for the spin states. These normal-
izations appeared in the previous treatment as d1/2��� in Eq.
�12�.

The scaling equation can be obtained after changing the
cutoff D→D−�D by adjusting the coupling constant to keep
Tfi invariant for appropriate �i� and �f�. In the following we
use the original left and right states ��=L ,R� with VL=VR as

a start. In order to derive the scaling for coupling U the
initial and final states should be ak

†d† �0� where �0� is the
nonequilibrium state at applied voltage eV, for which disre-
garding V the state is the noninteracting ground state. Con-
sidering the occupation nd of the d level the occupation prob-
ability in the steady state must be determined in presence of
eV. That value will be nd�=1/2 for �d=0 but in the general
case �d�0 it can depend on eV. The diagrams of the nu-
merator up to �U3 order are shown in Figs. 7�i�–�vi� where
the diagrams should be decorated by the direction of the
lines in all possible ways. The diagram of the self-energy is
shown in Fig. 7�vii�. In logarithmic approximation only the
diagrams linear in ln D

� are contributing to the scaling equa-
tions and thus the relevant vertex corrections are �ii�, �v�, and
�vi� while �iii� and �iv� are not as these provide ln2 D

� . The
type �ii� diagrams with the parallel and antiparallel lines can-
cel each other. As the logarithmic terms in diagrams �v�, �vi�,
and �vii� come from closed electron loops which are inde-
pendent of the actual values of �L and �R, to the logarithmic
term the left and right contacts contribute separately which
should be independent of the applied voltage. That simplifi-
cation is not sustained in higher-order contributions where
the left and right lines simultaneously occur. The self-energy
correction in �vi� contributes by adding it to either of the
incoming and outgoing d lines. One of those corrections is
canceled by the denominator in Eq. �26�. As is well known
from the spinless fermionic case—e.g., the x-ray absorption
problem11,13—the remaining diagram is canceled by �v�.
Thus, the single-logarithmic term does not remain. This is
similar to the equilibrium case 	see Eq. �9�
 and thus the
invariant coupling Uinv=const. �For the details see the Ap-
pendix�.

In the following the renormalization of the hybridization
depicted in Figs. 1�b� and 2 is crucial where, e.g., �i�
=d† �0� and �f�=ak�

† �0�. Keeping terms up to �VU2, after
taking the denominator in Eq. �26� into account the final
form of Tfi is

0�ak�Td†�0� = V��1 + U�0 ln
D − �d

� − �
eV

2
− �d

−
1

2
U2�0

2 ln
D

� − �d� , �27�

where the first correction is due to the vertex depicted in Fig.

FIG. 7. Panels �i�–�vi�: the diagrams up to �U3 order contrib-
uting to the numerator of Eq. �26�. The diagrams should be deco-
rated by the direction of the lines in all possible ways. The diagram
of the self-energy is shown in panel �vii�.
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2, while the second one arises from the self-energy on the leg
of diagram reduced by the denominator by a factor 1/2. This
result agrees with Eq. �13� �N=2� at eV=0. Here taking the
special case �d=0 the voltage eV serves as a low-energy
cutoff.

As has been mentioned earlier considering the d level
there is a steady-state occupation nd. This value is deter-
mined from the balance of the inflow and outflow of the
conduction electrons. To determine it for �d�0 two other
quantities must be known: namely, the changes in the level
position and the spectral function of the d level, �̃d and
�d���, due to the applied voltage. That calculation can be
carried out numerically in a self-consistent way.

The probability of scattering of an electron coming from
the left �L� or right �R� into the d level is denoted by WL/R

+

while the opposite process by WL/R
− . These quantities are

WL/R
+ = �1 − nd�2	�0� VL/R

2 ����d���fL/R���d� �28�

and

WL/R
− = nd2	�0� VL/R

2 ����d���	1 − fL/R���
d� , �29�

where VL/R��� are determined from renormalization group
equations with the appropriate infrared cutoffs and fL/R���
= f��±eV /2� is the Fermi distribution function for the leads
in the presence of the voltage. Those will be taken at zero
temperature T=0.

The steady state is determined by

d

dt
nd = WL

+ + WR
+ − WL

− − WR
− = 0. �30�

This equation combined with Eqs. �28� and �29� gives

nd =
� �d���	VL

2���f�� + eV/2� + VR
2���f�� − eV/2�
d�

� �d���	VL
2��� + VR

2���
d�

.

�31�

If electron-hole symmetry holds, �d=0, and then nd=1/2.
The next step is to determine the self-energy of the d elec-
tron. The d-electron propagator is

0�dH1
1

� − H0
H1d†�0� ,

which can be simply developed because the occupied d level
determines the time flow. The self-energy corrections appear
also in the normalization. The effect of hybridization is just
to give an extra broadening of the d level to be considered
later. Without hybridization the self-energy is

��� + i�� = U2�0
2�

−D+�

D+�

d���
−D+�

D+�

d��	1 − f����
f����

�
1

� + �� − �� − �d + i�
, �32�

which can be evaluated as

Re ���� = U2�0
2��� − �d�ln

�� − �d�
D

+ 2D ln 2� , �33�

and

Im ���� = 	U2�0
2�� − �d���� − �d� . �34�

In the equilibrium calculation the term proportional to �� is
contributing to the function d��� in Eqs. �8� and the last
constant term �2D ln 2 is eliminated by the applied counter-
term to keep �d unrenormalized while Im ���� is a Korringa
type of relaxation. It is to be noted that the voltage does not
occur as the energy goes directly into the electron-hole cre-
ation of the same electrode. As we mentioned at the end of
Sec. II, this broadening is less important at small energies.
The hybridization of the d level gives the essential part of the
broadening just like in the Anderson impurity model

���� = 2	�0	VL
2��� + VR

2���
 , �35�

where the voltage-dependent hybridization strength must be
used.

The d-electron spectral function is

�d��� =
1

	

����/2
�� − �d�2 + 	����/2
2 . �36�

With the help of these quantities we are ready to calculate the
current through the impurity:

I =
1

2

d

dt
�NR − NL� = WR

− + WL
+ − WR

+ − WL
−. �37�

Combining this equation with the expression of WL/R
± given

in Eqs. �28� and �29� the current takes the form

I = nd2	�0� 	VR
2��� − VL

2���
�d���d� − 2	�0

�� 	f�� − eV/2�VR
2��� − f�� + eV/2�VL

2���
�d���d� .

�38�

The numerical calculation goes as follows: for a fixed value
of eV we discretize the energy interval �i� 	−D+� ,D+�

and calculate the renormalized hybridization VL/R�eV ,�i� and
the impurity self-energy. The latter is evaluated in such a
way that the renormalized d-level position zero �̃d=0. By
performing a sum over �i we can calculate at the level oc-
cupation nd�eV� and the current I�eV� for the given value of
the voltage. The result is shown in Fig. 8 for U /D
=0, . . . ,0.10.

In that regime of U the weak-coupling RG gave good
results in equilibrium �presented in Sec. III� and therefore
one expects reliable results in out of equilibrium as well. As
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is shown in Fig. 8, the current increases with increasing in-
teraction strength. The results can be interpreted as follows:
with increasing U the impurity spectral function gets broad-
ened since the hybridization is enhanced. In the linear regime
�eV�� the U dependence drops out since the increase of
coupling to the leads ��eV ,U� is canceled by the decrease of
the height of the d level spectral function which scale as
�d��=0��1/��eV ,U�. For larger values of the voltage eV
� the d level is experienced not only at the peak of the
spectral function 	�0��=0�
 and thus the current is not linear
in eV any more. For eV� the complete d level contributes
to the current and thus it saturates and the asymptotic value
is proportional to ��eV ,U�.

VI. CONCLUSION

The resonant level model studied has very different be-
havior for attractive and repulsive interaction. This differ-
ence can be understood using the site representation for con-
duction electrons in the strong-U limit by the following
argument.

�i� In the case of attractive interaction the particle on the
d level attracts electrons to pile up around the impurity oc-
cupying the next site and thus the electron on the d level is
blocked for hopping to the conduction band.

�ii� In the case of repulsive interaction the site next to the
occupied d level is empty and thus that electron can easily
jump to the conduction band.

All the methods predict that increasing the strength of an
attractive interaction the hopping rate V is reduced and for
strong enough coupling it even goes to zero �see Fig. 5 for
U�0�−0.25�. The effect of orthogonality catastrophe reduc-
ing the hopping is less relevant because that have been al-
ready reduced by the vertex correction.

In the repulsive case for large U the orthogonality catas-
trophe �self-energy correction� is reducing essentially the
hopping rate. Thus the effective hopping Veff is first en-
hanced by the effect described above and can reach a maxi-

mum which is followed by a reduction due to the orthogo-
nality catastrophe. The position of the maximum can be
pushed to lower energies by increasing the number of the
screening channels, N, and thus the perturbative result be-
comes more and more reliable. In case of N=2 the latter
method leads to a pronounced maximum but the NRG indi-
cates only a slowly varying bump. In the Anderson-Yuval
approach the maximum is even pushed to infinity. Thus the
existence of the maximum is supported only by the NRG.

Considering the time-ordered scattering formalism the re-
sults are in accordance with the expectation of the weak-
coupling result for N=2. The increasing U results in increas-
ing current as first V is increased but for larger U due to the
orthogonality catastrophe the current is essentially reduced
�see Fig. 9�. As the NRG does not give a sharp crossover for
the hopping rate Veff, the corresponding effect in the current
must be less pronounced in reality. Of course, for N�2 the
crossover must clearly exist. Unfortunately, in the work of
Mehta and Andrei the crossover is in the range of the re-
duced current, which is just the opposite of what is expected
on the grounds of the physical picture established and results
obtained by different methods for the hopping rate.

Very detailed further studies of the Bethe ansatz method
are needed to understand and resolve the origin of the pre-
sented discrepancies.
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APPENDIX: CANCELLATION OF THE LOGARITHMIC
TERMS IN THE RENORMALIZATION OF THE

COULOMB INTERACTION

The diagrams of the numerator of Eq. �26� up to �U3

order are shown in Figs. 7�i�–�vi� and the diagram of the

FIG. 8. �Color online� Current obtained by weak coupling RG
for  /D=0.1 and U /D=0,0.005,0.03,0.05,0.10. For this range of
interaction strength the weak-coupling method was reliable in
equilibrium.

FIG. 9. �Color online� Current obtained by the scattering for-
malism for  /D=0.1 and U /D=0,0.10,0.20,0.30,0.50,0.60,0.85.
Note that the weak-coupling result is reliable for U /D�0.2 only.
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self-energy is shown in Fig. 7�vii�. As noted earlier, the loga-
rithmic terms come from diagrams �v�, �vi�, and �vii�. Note
that the self-energy correction in �vi� 	see also Fig. 10�b�

contributes by adding it to either of the incoming or outgoing
d lines. One of those corrections is canceled by the diagram
shown in Fig. 7�vii� in the denominator in Eq. �26�. There-
fore the two relevant diagrams are those depicted in Fig. 10.
The contribution of Fig. 10�b� can be written as

1

� − �d
U2�0

2�
−D+�

D+�

d���
−D+�

D+�

d��	1 − f����
f����

�
1

� + �� − �� − �d
. �A1�

To get the purely logarithmic term we can now expand the
integral in linear order in ���−�d� and get the form

U2�0
2�

−D+�

D+�

d���
−D+�

D+�

d��	1 − f����
f����
1

�� + �� − �� − �d�2 .

�A2�

On the other hand, the contribution of Fig. 10�a� for small
frequencies can be evaluated and the d-electron lines indi-
cated by arrows occur twice just like the denominator
squared in Eq. �A2�. This Ward identity ensures the cancel-
lation of the diagram shown in Fig. 7�v� by one of the leg
ones in Fig. 7�vi�. This means that no logarithmic term sur-
vives in second order and thus the invariant coupling Uinv
=const.
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FIG. 10. �Color online� The two relevant diagrams up to �U3

contributing to the numerator of Eq. �26�. A Ward identity ensures
the cancellation of these diagrams for small frequencies, meaning
that no logarithmic term survives in second order and thus the in-
variant coupling Uinv=const.
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