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For generic time-reversal-invariant systems with spin-orbit couplings, we clarify a close relationship be-
tween the Z2 topological order and the spin Chern number �SChN� in the quantum spin-Hall effect. It turns out
that a global gauge transformation connects sectors with different SChNs �even integers� modulo 4, which
implies that the SChN and Z2 topological orders yield the same classification. We present a method of
computing the SChN and demonstrate it in single and double planes of graphene.
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Topological orders1,2 play a crucial role in the classifica-
tion of various phases in low-dimensional systems. The inte-
ger quantum Hall effect �IQHE� is one of the most typical
examples,3,4 in which the quantized Hall conductance is
given by a topological invariant, the Chern number �ChN�,
due to the Berry potential induced in the Brillouin zone.
Such a topological feature should be more fundamental,
since it has a close relationship with the parity anomaly of
Dirac fermions.5–7

Recently, the spin-Hall effect8–11 has been attracting much
current interest as a new device of so-called spintronics. In
particular, Kane and Mele12,13 have found a new class of
insulator showing the quantum spin-Hall �QSH� effect14–16

which should be realized in graphene with spin-orbit cou-
plings. They have pointed out13 that the QSH state can be
specified by a Z2 topological order which is inherent in time-
reversal- �T-� invariant systems. This study is of fundamental
importance, since the Z2 order is involved with the Z2
anomaly of Majorana fermions.17,18

On the other hand, Sheng et al.19 have recently computed
the spin-Hall conductance by imposing a spin-dependent
twisted boundary condition �BC�, generalizing the idea of
Niu et al.2,20 They have shown that it is given by a ChN
which is referred to as SChN below. This is very natural,
since the QSH effect is a spin-related version of the IQHE.
The SChN for graphene computed by Sheng et al. indeed has
a good correspondence with the classification by Z2. A more
general BC has been also discussed by Qi et al.21 However,
the ChN is specified by the set of integers Z, not by Z2.
Although the studies by Sheng et al.19 suggest a close rela-
tionship between two topological orders, natural questions
arise: How does the concept Z2 enter into the classification
by ChNs or, otherwise, does the SChN carry additional in-
formation?

In this Rapid Communication, we clarify the relationship
for the generic T-invariant systems. We show that while the
two sectors in the Z2 classification are separated by topologi-
cal changes due to bulk gap-closing phenomena, each of
these sectors is further divided into many sectors by
boundary-induced topological changes in the SChN classifi-
cation. The latter is an artifact which is due to broken trans-
lational invariance and broken T invariance at the boundary.
Therefore, the different SChN in each sector of Z2 describe

the same topologically ordered states of the bulk.
Consider generic electron systems on a lattice with T

symmetry, described by the Hamiltonian H. Denote the elec-
tron creation operator at the jth site as cj

†= �c↑j
† ,c↓j

† �. Then,
the T transformation is defined by cj→Tcj with T� i�2K,
where the Pauli matrix �2 operates the spin space and K
stands for the complex conjugation operator. Let H�k� be the
Fourier-transformed Hamiltonian defined by H
=�kc

†�k�H�k�c�k� and let �n�k�� be an eigenstate of H�k�.
Assume that the ground state is composed of an
M-dimensional multiplet of degenerate single-particle states
which is a generalized noninteracting Fermi sea.2 Kane and
Mele13 have found that the T-invariant systems have two
kinds of important states belonging to “even” subspace and
“odd” subspace: The states in the even subspace have the
property that �n�k�� and T�n�k�� are identical, which occurs
when TH�k�T−1=H�k�. By definition, the states at k= �0,0�,
�0,��, �� ,0�, and �� ,�� always belong to this subspace. The
odd subspace has the property that the multiplet �n�k�� is
orthogonal to the multiplet T�n�k��. These special subspaces
can be detected by the Pfaffian pKM�k��pf�n�k��T�m�k��.
Namely, pKM�k�=1 in the even subspace and 0 in the odd
subspace. Kane and Mele �KM� have claimed that the num-
ber of zeros of pKM�k� which always appears as T pairs ±k*

with opposite vorticities is a topological invariant for
T-invariant systems. Specifically, if the number of zeros in
half the Brillouin zone is 1 �0� mod 2, the ground state is in
the QSH �insulating� phase.

We now turn to the SChN proposed by Sheng et al.19

According to their formulation, we impose spin-dependent
�-independent� twisted BC along the 1- �2-� direction:

cj+L11̂ = ei�1�3
cj, cj+L22̂ = ei�2cj , �1�

where a set of integers j��j1 , j2� specifies the site and 1̂ and

2̂ stand for the unit vectors in the 1- and 2-directions, respec-
tively. Let H��� denote the twisted Hamiltonian, and let
�n���� be corresponding eigenstate. The torus spanned by � is
referred to as twist space. It follows from Eq. �1� that T
transformation induces TH��1 ,�2�T−1=H��1 ,−�2�, and
therefore we can always choose �n��1 ,−�2��=T�n��1 ,�2�� ex-
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cept for �2=0 ,�. The states on the lines �2=0 ,� belong to
the even subspace. The BC �1� enables us to define the
SChN, but the cost we have to pay is broken translational
invariance as well as broken T invariance at the boundary.
The former implies that while the twist into the j2 direction
just shifts the momentum k2→k2+�2 /L2 after a gauge trans-
formation �GT�, the twist into the j1 direction cannot be de-
scribed by such a shift of k1. The latter may be important to
computing the SChN, since experimentally observed spin ac-
cumulation at the boundaries of samples10,11 is also due to
broken T invariance.

Let us define a Pfaffian for the present twisted system as a
function of the twist angles:

p��� � pf�n����T�m����, n,m = 1, . . . ,M , �2�

where M �even� is a number of one-particle states below the
Fermi energy. Here, we assume that these states are separated
from others by a finite gap. Since the lines �2=0 ,� belong to
the even subspace, the zeros of the Pfaffian in the �2�0 or
�0 twist space can move only among the same half twist
space keeping their vorticities and never cross the �2=0 ,�
lines. Therefore, only one T pair of zeros cannot be annihi-
lated, like those of the KM Pfaffian pKM�k�. Furthermore, the
two zeros in the same half twist space are never annihilated
unless they have opposite vorticities. This is a crucial differ-
ence between the KM Pfaffian and the twist Pfaffian. The
number of zeros in the twist Pfaffian may be classified by
even integers.

Are these Pfaffians topologically different quantities? The
answer is no. To show this, let us consider a global GT cj
→g���cj, where

g��� � ei�2� = cos � + i�2 sin � . �3�

This GT replaces the the Pauli matrices in the spin-orbit
couplings into gt����g���= �cos 2��1

−sin 2��3 ,�2 ,cos 2��3+sin 2��1�. On the other hand,
since Eq. �3� is an orthogonal transformation, the one-
parameter family of transformed Hamiltonian, denoted by
H� or H���� below, is equivalent. The Pfaffian �2� is also
invariant. Therefore, when we are interested in the bulk
properties, we can deal with any Hamiltonian H�. So far we
have discussed the bulk properties. However, if we consider
finite periodic systems like Eq. �1�, a family of the Hamil-
tonian H� behaves as different models. It follows from Eq.
�1� that the GT �3� is commutative with ei�2, but not with
ei�1�3

. This tells us that the spin-dependent twisted BC is not
invariant under the GT �3� and breaks the gauge equivalence
of the Hamiltonian H� which the bulk systems should have.

To understand this, the following alternative consideration
may be useful: If we want to study the bulk properties of
T-invariant systems, we can start with any of H�. For one H�

with � fixed, let us impose the twisted BC �1�. After that, we
can make the GT �3� back to H0. Then, we can deal with the
same Hamiltonian H0, but with a gauge-dependent twisted
BC for the 1-direction:

cj+L11̂ = ei�1�cos 2��3−sin 2��1�cj . �4�

Namely, the gauge equivalence is broken only by the BC in
the 1-direction. Now, imagine a situation that at �=0 the

Pfaffian �2� has one T pair of zeros. We denote them as
��1

* , ±�2
*� with vorticity ±m. Let us change � smoothly from

0 to � /2. Then, it follows from Eq. �4� that at �=� /2 the
coordinate of the torus is changed from ��1 ,�2� into
�−�1 ,�2� and, therefore, we find the zeros at �−�1

* , ±�2
*� with

vorticity �m. Namely, the zero in the �2�0 ��0� space
moves into the �2�0 ��0� space, and thus the zeros can
move in the whole twist space like those of the KM Pfaffian.
During the process, there should occur a topological change,
but it is attributed to the boundary—i.e., an artifact of broken
translational invariance—and a number of the zeros of the
twist Pfaffian should be also classified by Z2, by taking into
account the GT �3�.

Using this Pfaffian, we next show that its zeros can be
detectable by computing the SChN. The SChN19 is defined
by cs= 1

2�i �d2�F12���, where F12�����1A2���−�2A1��� is
the field strength due to the U�1� part of the �non-Abelian�
Berry potential,2 A	���� tr�n�����	�m����, with �	=� /��	.
First, we will show the relationship between the zeros of the
twist Pfaffian and the SChN cs. For the time being, we fix �.
The degenerate ground state as the M-dimensional multiplet
has a local U�M� gauge degree of freedom, �n����
→�m�m����Vmn���, where V��� is a unitary matrix.2 Let us

denote V���=ei
���/MṼ���, where det Ṽ�k�=1. This transfor-
mation induces A	���→A	���+ i�	
��� to the Berry poten-
tial. If one can make a gauge-fixing globally over the whole
twist space, the ChN is proved to be zero. Only if the global
gauge-fixing is impossible can the ChN be nonzero.

Among various kinds of gauge fixing, we can use the
gauge that p��� is real positive, because p���
→p���det V���= p���ei
���. This rule can fix the gauge of the
Berry potential except for p���=0. Therefore, nontrivial
SChN is due to an obstruction22 to the smooth gauge fixing
by the twist Pfaffian. This correspondence also proves that
the SChN is an even integer, since the Pfaffian �2� always has
the T pair zeros and since F12��1 ,−�2�=F12��1 ,�2�.

Let us now change �. At �=0, we obtain some integer cs.
Remember that at �=� /2, the coordinate of the torus is
changed into �−�1 ,�2�. Therefore, we have a mapping
cs→−cs for ��1 ,�2�→ �−�1 ,�2�. As in the case of the Pfaffian
�2�, we expect topological changes along the mapping. How-
ever, as stressed, these changes are accompanied by no gap
closing in the bulk spectrum, just induced by the symmetry-
breaking boundary term which is an artifact to define the
ChN. Therefore, the states with ±cs should belong to an
equivalent topological sector. Since the minimum nonzero
SChN is 2, we expect cs mod 4 �if we define the SChN in
half the twist space, mod 2� to classify the topological sec-
tors.

So far we have discussed the Z2 characteristics of the
SChN cs. We next present several examples. To this end, we
employ an efficient method of computing ChNs proposed in
Ref. 23 based on recent developments in lattice gauge
theories.24 We first discretize the twist space 	0,2�

� 	0,2�
 into a square lattice such that �	=2�j	 /N	, where
j	=1, . . . ,N	.25 We denote the sites on this lattice as �� with
�=1,2 , . . . ,N1N2. We next define a U�1� link variable asso-
ciated with the ground-state multiplet of dimension M,
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U	����= �det U	�����−1 det U	����, where U	����mn

= �m�����n���+ 	̂�� with n ,m=1, . . . ,M denotes the �non-
Abelian� Berry link variable. Here, 	̂ is the vector in 	 di-
rection with �	̂�=2� /N	. Next define the lattice field

strength F12����=ln U1����U2���+1̂�U1
−1���+2̂�U2

−1����,
where we choose the branch of the logarithm as �F12�����
��. Finally, the manifestly gauge invariant lattice SChN is
obtained:

cs =
1

2�i
�

�

F12���� . �5�

As shown in Ref. 23, the SChN thus defined is strictly inte-
gral. To see this, let us introduce a lattice gauge potential
A	����=ln U	���� which is also defined in �A	�������. Note
that this field is periodic, A	���+N	�=A	����. Then, we
readily find F12����=�1A2����−�2A1����+2�in12����, where
�	 stands for the difference operator and n12���� is a local
integral field which is referred to as the n-field. Finally, we
reach cs=��n12����. This completes the proof that the SChN

is integral. While the n-field depends on a gauge, the sum is
invariant. For the T-invariant systems, the Pfaffian (2) is very
useful for the gauge fixing also for the lattice computation. In
the continuum theory, we have stressed that the zeros of the
Pfaffian play a central role in the Z2 classification. Since
such zeros occur at several specific points in the twist space,
it is very hard to search them numerically.

Contrary to this, we can detect the zeros in the lattice
approach as follows: Suppose that we obtain the exact SChN
using Eq. �5� with sufficiently large N	. Since the lattice
SChN is topological �integral�, which implies that even if we
slightly change the lattice �e.g., change the lattice size or
infinitesimally shift the lattice�, the SChN remains un-
changed. Next, let us compute the n-field in the gauge that
the Pfaffian is real positive. If the zeros of the Pfaffian hap-
pen to locate on sites of the present lattice, we cannot make
gauge fixing. Even in such cases we can always avoid the
zeros of the Pfaffian by redefining the lattice with the SChN
kept unchanged. Thus we can always compute the well-
defined n-field configuration. If the SChN is nonzero, there
exist nonzero n-fields anywhere in the twist space. These
nonzero n-fields occur in general near the zeros of the Pfaff-
ian: Thus, without searching them in the continuum twist
space, we can find the zeros by the nonzero n-fields on a
lattice.

Now let us study a graphene model12,13,19

H = − t�
�i,j�

ci
†cj +

2i
�3

Vso �
��i,j��

ci
†� · �dkj � dik�cj

+ iVR�
�i,j�

ci
†�� � dij�3cj + vs�

j

sgn jcj
†cj . �6�

Analyzing the KM Pfaffian, Kane and Mele12 have derived
the Phase diagram: It is in the QSH phase for �6�3Vso−vs �
��vs

2+9VR
2 and in the insulating phase otherwise. Sheng et

al.19 have computed the SChN cs=2 in the QSH phase and 0
in the insulating phase.

For numerical computations, it is convenient to use the
momentum k2 instead of �2 �Ref. 19� because of the transla-
tional invariance along this direction even with the BC �1�.
First, we show in Fig. 1 the spectrum at �1=0 as a function
of k2. The left belongs to the QSH phase with cs=2, whereas
the right to the insulating phase with cs=0. This topological
change is due to the gap closing in the bulk spectrum, as
shown in the middle figure in Fig. 1. Therefore, the phase
with cs=2 is topologically distinguishable from the phase
with cs=0.

FIG. 2. Upper left: spectrum for nonzero �=� /4 as a function
of k2 at �1=� /2. Other parameters are the same as those of the left
in Fig. 1. Upper right: the amplitude �
 j1

�2 of the wave functions at
k2=0.8� indicated by arrow. The solid, dotted, and dashed lines
correspond to the first, second, and third states from the zero energy
into negative energy, respectively. Lower left and right: the n-field
configuration corresponding to the left in Fig. 1. The left �right� is at
�=0 �� /2�. The white �black� circle denotes n=1�−1�, while the
blank means n=0. We used the meshes N1=N2=10.

FIG. 1. Spectrum for �1=0 as
a function of k2. Parameters used
are Vso=0.1t, vs=0.3t, and VR

=0.1t �left�, VR=0.225207t
�middle�, and VR=0.3t �right�.
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Contrary to this, how about the phases with cs= ±2? As
we have mentioned, the phase with cs changes into −cs when
we vary � from 0 to � /2. In this process, boundary-induced
topological changes must occur. We show in Fig. 2 the spec-
trum cut at �1=� /2 for �=� /4. We indeed observe a gap
closing at finite �1, and the SChN cs=2 for 0���� /4 is
changed into cs=−2 for � /4���� /2. As stressed, this
change is attributed to the boundary �edge states in Fig. 2�:
Because of the spin-dependent twisted BC, some states can
be pinned around j1=1 and L1 lines. We refer to such midgap
states as edge states. The wave function denoted by the solid
line in Fig. 2 is indeed localized around j1=1 and L1=50, not
to the bulk, and we conclude that the phase cs= ±2 is classi-
fied as the same QSH phase. These SChNs cs= ±2 are well
visualized by the n-field. In Fig. 2, we also show the n-field
for �=0 and � /2 cases in the QSH phase. The points of the
nonzero n-field are closely related with the positions of the
Pfaffian zeros.

Next, let us study a bilayer graphene. Suppose that we
have two decoupled sheets of graphene described by H�i

with i=1,2 whose lattices include A, B sites and Ã, B̃ sites,
respectively. For simplicity, we take into account only the

interlayer coupling �1 between Ã and B �Ref. 26�: V12

=�1� jc1Ã,j

†
c2B,j +H.c., where i=1,2 in ci,j indicate the ith

sheet. Now make GT �3� separately for each sheet to obtain

the same H0 as Eq. �6�. Then, we have an identical bilayer
system H0 � H0 coupled by V12=�1� jc1Ã,j

†
g��1�gt��2�c2B,j

+H.c. with two independent BCs ci,j+L11̂

=ei�1�cos 2�i�
3+sin 2�i�

1�ci,j.
For the same parameters as those of the left in Fig. 1, the

SChN is, of course, cs=2+2=4 in the limit �1=0. This
SChN remains unchanged for small but finite interlayer cou-
pling �1. However, taking into account the GT g��i�, it
changes. In Fig. 3, we show examples of the n-field for �1

=0.1t. We have the SChNs 4, 0, and −4 �see the figure cap-
tion�: All of them are denoted as cs=0 mod 4, which belong
to the insulating phase.27 A detail analysis of this model in-
cluding the interlayer coupling �3 will be published else-
where.

Finally, we mention that Fu and Kane28 and Moore and
Balents29 have recently discussed the relationship between
the Z2 order and the SChN and reached a similar conclusion.
The Z2 classification in 3D has been also discussed in Refs.
29–31.
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FIG. 3. The n-field configuration for �1=0.1t.
Other parameters are same as those of the left in
Fig. 1. Left: �1=0 and �2=0 �cs=4�. Middle:
�1=� /2 and �2=0 �cs=0�. Right: �1=� /4 and
�2=−� /4 �cs=0�. In the case �1=� /2 and �2

=� /2 we have the same figure as the left but with
black circles �cs=−4�. We used the meshes N1

=N2=10.
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