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Recent success in making macroscopic graphene samples has stimulated interest in possible unusual electron
physics near the Brillouin zone �BZ� vertex K, notably the prediction of a spin quantum Hall effect. Observ-
ability depends critically on the size of the spin-orbit gap �SO at K. Prior approximate calculations give results
from 1.2 K ��0.1 meV� down to 10 mK ��0.00086 meV�. We report fully first-principles all-electron calcu-
lations of this splitting using large Gaussian basis sets and the Douglas-Kroll-Hess methodology in the density
functional theory fitting function code GTOFF. Our result �SO�0.6 K or 0.05 meV is robust against the choice
of the approximate exchange-correlation functional and against variations of the lattice constant, density of the
BZ scan, basis set enrichment, and key numerical convergence parameters.
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Success in the preparation of macroscopic graphene
samples1 has caused there to be much attention given to the
novel physics offered by the electronic energy levels in the
vicinity of the Brillouin zone vertex K. One category is the
role of spin-orbit �SO� interactions. Suppressed in crystalline
graphite by the relative strength of the interplanar bonding,
SO interactions could alter the linear dependence of the elec-
tron energy upon crystal momentum �Dirac fermion behav-
ior� in critically important ways. Specifically Kane and
Mele2 recently gave model calculations and arguments for
the existence of a low-temperature spin quantum Hall effect
�SQHE� enabled by the SO gap �SO which they estimated as
about 1.2 K ��0.1 meV�. Three subsequent studies gave
much smaller values, all in the range from 0.01 K �Refs. 3
and 4� to 0.0093 K �Ref. 5� ��0.00086 meV�. Those values
would put the Kane-Mele SQHE at infeasibly low tempera-
tures.

None of those three studies used a fully first-principles,
all-electron methodology. Reference 3 used a tight-binding
model with parameters from literature values. Both Refs. 4
and 5 used pseudopotential density functional theory �DFT�
methods, the former with smoothed projector-augmented-
wave pseudo-wave-functions, the latter with noncollinear
magnetism and fully relativistic pseudopotentials.

A direct, all-electron �no pseudopotential� DFT calcula-
tion of �SO is possible in the Gaussian-type orbital fitting
function methodology.6–8 A so-called incomplete Douglas-
Kroll-Hess �DKH� transformation yields a computationally
well-behaved, highly accurate two-component theory in
which the SO contribution can be identified unambiguously.
A systematic, well-validated SO approximation is available:8

the screened nuclear spin orbit �SNSO� approximation. Reli-
ability of the SNSO procedure has been tested primarily on
light actinides �Th–Pu�. For them, calculated atomic volumes
from SNSO agree well with fully relativistic full-potential
linearized augmented plane-wave �APW� calculations as do
atomic spin-orbit splittings.8 The basic methods and algo-
rithms in the code used here, GTOFF, and original references

are reviewed in Ref. 9. Observe that GTOFF handles both
freestanding systems of two-dimensional periodicity without
supercells �the option used here� as well as ordinary three-
dimensional crystals.

In calculating a small quantity such as �SO, one must
assure that the value is not strongly dependent on system
strain and assure stability against matters of choice. Those
include both the DFT exchange-correlation �XC� model and
technical parameters—e.g., basis set size, Brillouin zone
�BZ� scan density, convergence tolerances, etc. Regarding
basis sets �the fitting function methodology uses three�, our
earlier work10–12 focused particularly on two delicate ener-
gies: interplanar binding and relative stability in the aggre-
gation sequence from fullerenes to the graphite crystal. From
those studies there emerged carefully tested, rather rich basis
sets �tabulated in Ref. 11� which we used here. To assess
stability with respect to the DFT XC model, we used both a
venerable form of the local density approximation �LDA�
�Hedin-Lundqvist13 �HL�� and a much-used modern first-
principles-based generalized gradient approximation �Per-
dew-Burke-Ernzerhof14 �PBE��.

Regarding BZ scans, we primarily used a scan with both
the threefold axis �around z normal to the graphene� and
three mirror planes for symmetry, which reduces a regular
18�18 grid to 37 points in the irreducible wedge of the BZ
�IBZ�. For stability testing we used a 12�12 grid with either
all the symmetries �19 points in the IBZ� or only the three-
fold �26 points in the IBZ�.

Since the equilibrium lattice parameter of free graphene
seems not to be known experimentally, we used the calcu-
lated value for the HL XC model from Ref. 11, a=�3aNN
=4.621 a.u. To test for lattice strain effects, we also did cal-
culations at 5% expansion, aP=4.852 05 a.u. and 5% con-
traction aM =4.389 95 a.u. Table I displays the results. Based
on those values and stability tests discussed below, we pre-
dict �SO for graphene at the BZ K point to be
0.05±0.01 meV—i.e., 0.6±0.1 K. Unlike Ref. 5, we find
�SO to be somewhat more sensitive to a given compression
than to the corresponding percentage expansion.
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Observe, from Table I, that the choice of XC model is
irrelevant, an outcome consistent with a simple argument.
Irrespective of the XC model, symmetry dictates the band
connectivity at K without SO splitting. Second, the XC po-
tential does not enter in the incomplete DKH transform used
but this does not matter. Were it to be included, a simple
argument shows that for a nearly spherical potential V, the
SO operator scales as �1/r��V. Because VXC is very smooth,
its effect upon the SO splitting of a valence state would be
negligible compared to the nuclear or electron-electron inter-
actions. Test calculations of the XC splitting in atoms are
consistent with this argument.8 The only remaining differ-
ence between XC models is in the density and orbitals used
to form the approximate diagonal representation of p2 for the
DKH transform. Those differences are known to be quite
small; hence, any reasonable XC model �i.e., one that gives a
reasonable equilibrium lattice constant� should give virtually
the same �SO. Note that this argument would seem to be
inapplicable to relativistic pseudopotential procedures, which
must incorporate XC model differences explicitly. As to the
applicability of the bare Kohn-Sham energy bands from
DFT, we remark that, whatever their deficiencies �e.g., the
underestimate of band gaps�, at least in this problem one
begins with bands which have the correct crossing and den-
sity of states at the K point; see Fig. 1, Ref. 10, for example.

Thus, the rest of our stability testing is summarized only
for the HL LDA. A change in total energy convergence cri-
teria �absolute value of the iteration-to-iteration difference in
hartree a.u.� from 1.0�10−6 hartree to 1.0�10−7 hartree
made no difference. The 26-point IBZ scan gives the identi-
cal result as the 37-point scan, �SO=0.0504 meV, even
though the enforced symmetry for 26 points is lower. Forc-
ing the Kohn-Sham �KS� band states to have integer occu-
pancy and using histogram BZ integration �rather than linear
analytical triangular, both on the 37 point scan� changes
nothing. Purely to illustrate the insignificant difference, the
two values are 0.050 396 meV for linear analytical triangular
and 0.050 391 meV for histogram. Reduction of the BZ scan
density to 19 points in the IBZ gives an equally insignificant
shift, to 0.050 37 meV.

Because SO splitting depends on the shape of the KS
orbitals near the nuclei, we also probed the effects of basis
set enrichment. In particular, the p-type manifold of the basis
from Ref. 11 is contracted �set in fixed linear combinations�
from six px and py functions and seven pz to three and four,
respectively. Decontraction �i.e., allowing full variational
freedom for all the functions� substantially enriches the KS

basis p manifold in the vicinity of the nuclei therefore. Even
so, at a=4.621 a.u., after decontraction the HL value for
�SO=0.050 91 meV, not a significant shift.

Since relativistic effects in low-Z systems usually are
small, direct validity checks also are important. Again, all are
for the HL XC model. We can compare the BZ center ���
value of �SO from SNSO either to an isolated atom SNSO
calculation or to an isolated atom direct DKH calculation
without SNSO. All the atomic calculations were done with
an enriched basis �one additional function, exponent
0.04 a.u.−2 in each the s and p manifolds� without contrac-
tions. We find �SO,�=7.45 meV versus �SNSO,atom=7.48
meV and �SO,atom=8.16 meV. Given the differences in meth-
odology, our �-point �-orbital splitting also compares re-
spectably with the LDA result reported in Ref. 5, 9.0 meV.

Though the relativistic effects are small, for complete-
ness we report the calculated cohesive energies in Table II.
The relativistic reference atomic energies �EHLLDA
=−75.022 269 8, EPBE=−75.495 417 7 Ry a.u.� were ob-
tained from spin-polarized, scalar relativistic values, cor-
rected by SNSO shifts from the non-spin-polarized atom
�spin-polarized SNSO calculations are not supported in our
current codes�, all with the enriched atomic basis. The non-
relativistic reference energies are −74.960 621 �HL� and
−75.586 385 8 �PBE� Ry a.u. Essentially there is a 0.45
eV/atom relativistic increase in binding irrespective of the
XC model or lattice parameter.

In sum, high-precision, first-principles, all-electron DFT
calculations predict �SO for graphene at the BZ K point to be
0.05±0.01 meV or 0.6±0.1 K. The value is substantially
larger than relativistic pseudopotential results, enough so that
the Kane-Mele SQHE may be observable. Though the SNSO
approximation has not been used on such a low-Z system up
to now, we find no evidence of difficulty with it in this cal-
culation. We speculate that the difference in calculated val-
ues of �SO might occur because the smooth pseudo-orbitals
generated by pseudopotential methods may not satisfy the
required limiting behavior near the origin of the J=1/2 KS
states. If so, such a difference might also be related to the
agreement with Ref. 5 for the splitting in the � manifold at �
but disagreement in the � manifold at K.
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TABLE I. Graphene SO splittings at the BZ point K for the HL
LDA and PBE XC models at three lattice parameters.

Lattice parameter �a.u.� HL-LDA �meV� PBE LDA �meV�

4.621 0.0504 0.0505

4.85205 0.0408 0.0408

4.38995 0.0646 0.0648

TABLE II. Graphene cohesive energies �in eV/atom� for the
relativistic and nonrelativistic HL LDA and PBE XC models at
three lattice parameters �a.u.�. See text for atomic reference total
energies.

Lattice parameter Rel. HL Nonrel. HL Rel. PBE Nonrel. PBE

4.621 −8.35 −8.80 −7.61 −8.08

4.85205 −8.20 −8.65 −7.50 −7.97

4.38995 −8.15 −8.60 −7.36 −7.83
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