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The topological invariants of a time-reversal-invariant band structure in two dimensions are multiple copies
of the Z2 invariant found by Kane and Mele. Such invariants protect the “topological insulator” phase and give
rise to a spin Hall effect carried by edge states. Each pair of bands related by time reversal is described by one
Z2 invariant, up to one less than half the dimension of the Bloch Hamiltonians. In three dimensions, there are
four such invariants per band pair. The Z2 invariants of a crystal determine the transitions between ordinary and
topological insulators as its bands are occupied by electrons. We derive these invariants using maps from the
Brillouin zone to the space of Bloch Hamiltonians and clarify the connections between Z2 invariants, the
integer invariants that underlie the integer quantum Hall effect, and previous invariants of T-invariant Fermi
systems.
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In a remarkable pair of papers, Kane and Mele1,2 pro-
posed a Z2 topological invariant of time-reversal-invariant
insulators in two dimensions, showed that the nontrivial “to-
pological insulator” phase created by spin-orbit coupling has
an intrinsic spin Hall effect distinct from earlier proposals,3,4

and discussed graphene as a candidate system for this effect.
Here Z2�Z /2Z is the cyclic group of two elements �“even”
and “odd”�; it was argued that every band insulator in two
dimensions belongs to either the even class or the odd class,
where the even class describes ordinary insulators and the
odd class describes topological insulators.

Both spin-orbit coupling and breaking of inversion sym-
metry are required to generate a topological insulator. A di-
rect and experimentally relevant characterization of the in-
variant was given in terms of edge states at the boundary of
a two-dimensional �2D� insulator: the topological insulator
has an odd number of Kramers pairs of edge modes, while
the ordinary insulator has an even number. Two explanations
for the invariant as a property of the bulk band structure with
spin-orbit coupling were also given.

The goals of this paper are to explain how Z2 invariants
arise in terms of the Thouless–Kohmoto–Nightingale–den
Nijs �TKNN� integers5,6 or “Chern numbers” familiar from
the ordinary quantum Hall effect, and then to generalize the
results to an arbitrary multiband band structure in two or
three spatial dimensions. In the derivation below, we stress
analogies to previous work6 on understanding the integer
quantum Hall effect �IQHE� via topological invariants of
band structures in a commensurate magnetic field. Time-
reversal-invariant �T-invariant� 2D insulators are shown to
have multiple Z2 invariants that are analogous to the band
TKNN integers or Chern numbers in IQHE and can be un-
derstood using similar methods. This derivation differs from
the two original descriptions of a single bulk Z2 invariant,
which do not follow the standard homotopy paradigm of
most topological invariants in condensed-matter physics, and
whose connection to the IQHE is opaque. Intuitively, our
results suggest that the topological insulator can be thought
of as an IQHE that exists without a magnetic field or other T
breaking.

Bands in a time-reversal-invariant fermion band structure
come in pairs related by time reversal, with twofold Kramers
degeneracies at certain special points of the Brillouin zone.
We find that there are multiple Z2 invariants in such systems,
associated with band pairs rather than individual bands, and
perhaps most interestingly, four invariants per band pair in
three dimensions. In two dimensions, the physical signifi-
cance of these invariants is straightforward: just as two
IQHE states with the same sum of Chern numbers for occu-
pied bands are adiabatically connected, two T-invariant band
insulators are adiabatically connected if and only if they have
the same Z2 sum of individual Z2 invariants for occupied
band pairs.

The approach in this paper can be summarized as follows.
The basic objects of homotopy theory are the homotopy
groups �n�M� that describe equivalence classes under
smooth deformations of mappings from the sphere Sn to a
manifold M. A band structure can be thought of as a map
from the Brillouin zone �a torus rather than a sphere� to the
space of Bloch Hamiltonians. The importance of time-
reversal symmetry is as follows: T symmetry means that only
“half of the Brillouin zone” �which we define formally below
as an “effective Brillouin zone,” or EBZ� needs to be as-
signed Bloch Hamiltonians, as then the other half of the Bril-
louin zone is determined by symmetry. Then we study the
topological classes of maps from the EBZ to the space of
Bloch Hamiltonians.

The EBZ in two dimensions is almost but not quite a
sphere: a key object in our analysis is a “contraction,” de-
fined below, that extends a mapping from the EBZ to one
from the sphere. Once we have such a mapping from the
sphere, then the ordinary Chern number is defined. Surpris-
ingly, a given mapping from the EBZ has infinitely many
inequivalent contractions in this sense; there are only two
connected classes of band structures, for the case of two
occupied bands connected by T. These classes correspond to
the ordinary insulator and the topological insulator. For one
band pair, an ordinary �topological� insulator becomes the
equivalence class of all mappings from the sphere with even
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�odd� Chern numbers. This construction requires only stan-
dard homotopy results, makes no assumptions about details
of band structure or the existence of additional commuting
operators such as spin, and generalizes to multiple bands and
higher dimensions.

We begin the derivation by recalling some facts about
topological invariants of 2D band structures on the “mag-
netic Brillouin zone” �an effective unit cell in a lattice system
with a magnetic field�.5,6 For 2D T-breaking systems, in a
nondegenerate band structure each band is associated with a
TKNN integer that is invariant under smooth perturbations
of the Bloch Hamiltonians. More precisely, if the Hilbert
space of the nondegenerate Bloch Hamiltonians has dimen-
sion n, there are n−1 independent integer-valued invariants6

because the invariants sum to zero. The Chern integer for a
band is a Brillouin-zone integral involving the projection
operator,6

ni =
i

2�
�

BZ

Tr�dPiPidPi�, Pi = ��i���i� . �1�

Here dPi=dx�xPi+dy�yPi and dxdy=−dydx. A powerful way
to prove that these integer invariants are exhaustive6 is by
considering mappings of the torus to Bloch Hamiltonians,
assumed nondegenerate. Denoting the space of such nonde-
generate Hermitian matrices as M, the TKNN integers fol-
low from the homotopy groups

�1�M� = 0, �2�M� = Zn−1, �2�

where the second formula indicates n−1 copies of the infi-
nite cyclic group Z. The second result follows from the same
exact sequence as used in the theory of topological defects.7

For a pair of bands i , j that are degenerate with each other
but with no other bands, there is a single integer-valued
invariant6 �total Chern number� obtained by replacing Pi in
Eq. �1� with Pij = Pi+ Pj. In a time-reversal-invariant system,
bands come in pairs, and the bands within a pair are required
to be degenerate at some points by Kramers degeneracy. We
define C as the set of Hermitian matrices allowing possible
pair degeneracies �i.e., eigenvalues 1 and 2 may be degener-
ate, eigenvalues 3 and 4 may be degenerate, and so forth�.

Now consider consequences of invariance under the time-
reversal operator T. For fermions, T 2=−1 and T is repre-
sented by an antiunitary operator � in the Hilbert space of
Bloch Hamiltonians. Time-reversal connects both pairs of
points in the Brillouin zone �k ,−k� and the associated Bloch
Hamiltonians:

H�− k� = �H�k��−1. �3�

Time-reversal invariance forces degeneracies at the four
points where k goes to −k, and as a result the Bloch Hamil-
tonians in the band structure cannot be assumed nondegen-
erate �as in the IQHE case�; instead, bands come in pairs
related by time-reversal, and the only generic degeneracies
are those within a pair.23

Figure 1 shows the original toroidal Brillouin zone and
one possible EBZ �the right half of the original zone�. Speci-
fying the Hamiltonians for the points in the EBZ determines
them everywhere. Note that any 2D Brillouin zone is topo-

logically a torus: this follows from the requirement that mul-
tiple copies of the Brillouin zone tile the 2D reciprocal-
lattice plane. There are four points of the 2D Brillouin zone
that are invariant under k→−k, and we assume below that
the EBZ boundaries are chosen to connect pairs of these
points. The Bloch Hamiltonians can be specified indepen-
dently on the EBZ except at the boundaries, where points are
conjugate under T as shown. Clearly points at which k=−k,
such as �, A, B, C in Fig. 1, are special: at these points the
Bloch Hamiltonian commutes with �. We denote the set of
such Hamiltonians that commute with �, with the additional
assumption of no degeneracies other than the twofold degen-
eracies required by T, as Q �Ref. 8�. The twofold Kramers
degeneracies exist because, for any energy eigenstate ���,
T��� is an orthogonal state with the same energy �since
T2=−1�. T invariance requires an even number of bands 2n,
so Q consists of 2n�2n Hermitian matrices for which H
commutes with �. Q is the even subspace in the language of
Ref. 1.

In general, a T-invariant system need not have Bloch
Hamiltonians in Q except at these special points as long as
inversion symmetry is broken, which allows H�k��H�−k�.
There is no obvious topological invariant for a degenerate
band with time-reversal symmetry, because the Chern num-
ber for the whole Brillouin zone vanishes. It is simplest to
see this for the projection operator Pi for a single nondegen-
erate band: writing Pi= ��i���i�,

ni =
i

2�
Im � ���x�i��y�i� + ��x��i��y��i�	

=
i

2�
Im � ���x�i��y�i� + ��y�i��x�i�	 = 0. �4�

The total Chern number similarly vanishes for two degener-
ate bands connected by T in a T-invariant system, but there is
still a topological invariant,1 as we explain.

As a quick example of homotopy arguments, suppose that
inversion symmetry is unbroken, which implies that the
Bloch Hamiltonians are everywhere in Q. Any mapping of

FIG. 1. The topology of the effective Brillouin zone �EBZ�: if
the original Brillouin zone is the torus in �a�, then T invariance
reduces the independent degrees of freedom to live on half the
Brillouin zone; one choice of “half the Brillouin zone” is the mani-
fold in �b� �here we have chosen the right half of the original Bril-
louin zone to form an EBZ�. Points on the boundary circles that are
connected by horizontal lines are conjugate under T; the points �,
A, B, C are self-conjugate, and their Bloch Hamiltonians are there-
fore in the even subspace Q. Note that the EBZ has been chosen so
that each boundary passes through two of these special points.
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the torus T2 to Q with the condition that points k and −k go
to the same point is determined by its behavior on one point
from each �k ,−k� pair, and the EBZ under this condition is
topologically identical to a sphere �stitching T-conjugate
points together in Fig. 1�b�	: the classes of such mappings
are given by8 �2�Q�=0. Hence there is no homotopy invari-
ant for 2D band structures with both T and inversion sym-
metry, although �4�Q��0 and higher-dimensional invariants
can exist.

Now consider possible invariants without inversion sym-
metry. We seek to classify mappings from T2 to Bloch
Hamiltonians that are consistent with T invariance and have
no accidental degeneracies. Such a mapping is determined by
a mapping from the EBZ, i.e., a mapping from the cylinder C
to C with certain conditions on the two circular boundaries
reflecting time reversal. The image of a boundary point must
be the � conjugate of the image of the point related by
k↔−k.

We show that any mapping from C to C, even if the ele-
ments at a boundary are not all the same, can be deformed
�“contracted”� to one in which the boundary elements are
identical to an arbitrary reference element Q0�Q �Fig.
2�a�	; the resulting map from the sphere has well-defined
Chern numbers. It is required that at each stage of the con-
traction, the boundary has the same conjugacy under T as the
original EBZ boundary, to guarantee that two maps from the
EBZ that can be contracted to maps from the sphere with the
same Chern numbers are homotopic �deformable to each
other�.

Then it is shown that different contractions differ by arbi-
trary even Chern numbers, so that there are only two invari-
ant classes per band pair according to whether the Chern
number with any contraction is an odd or even integer. A
contraction is formally defined as a mapping from the cylin-
der with angular coordinate �� �0,2�� and length
coordinate �� �0,1	 to C, f�� ,��, such that f�� ,�� and
f�2�−� ,�� are T conjugates �which implies that f�0,�� and
f�� ,�� are in Q	. Now f�� ,0� should agree with the initial

specification of Bloch Hamiltonians on the EBZ boundary,
while f�� ,1�=Q0 is constant. If both boundaries are con-
tracted, the resulting sphere has a well-defined Chern number
nB

i for each pair i of bands. The existence of one contraction
follows from �1�C�=0: contract one side of the boundary
circle to the point Q0, then determine the other side by T
conjugacy.

Many topologically inequivalent contractions exist, and
this reduces the integer-valued Chern numbers on the sphere
to Z2 invariants on the EBZ. Let f1 and f2 be two different
contractions. Then define a mapping g�� ,��, again with co-
ordinates �� �0,2��, �� �0,1	, which combines contrac-
tions f1 and f2 �Fig. 2�b�	:

g��,�� = 
 f1��,1 − 2�� if 0 	 � 
 1/2

f2��,2� − 1� if 1/2 	 � 	 1
. � �5�

Although the domain of the mapping g is topologically a
sphere because the circles at both ends go to the same point,
g differs in its T symmetry from the contracted half of the
Brillouin zone, which in its interior has no T symmetry re-
lating different values of �: the values of g at the points
�� ,�� and �2�−� ,�� are T conjugate.

Now we show that g has even Chern numbers. This can be
verified in two steps: map the equator of the sphere S to the
reference element Q0, which is possible since �1�Q�=0 and
topologically unique since �2�Q�=0, then note that each
hemisphere has a well-defined Chern number for each band
pair and that the Chern numbers of the two hemispheres are
equal, rather than opposite as in the case of the original
Brillouin zone. The reason for this equality can be under-
stood easily in the cylindrical coordinates above, where the
equator is at �=� and �=0. The identification under T of �
and 2�−� means that d� changes sign between a point and
its time-reversal conjugate, but d� does not, giving an addi-
tional change of sign in Eq. �4�. Another minus sign comes
from T conjugacy, as in Eq. �4�, so overall the contributions
from the two hemispheres add. Finally, the change �nB

i in the
band pair Chern numbers nB

i that results by changing from
contraction f1 to contraction f2 is given by the Chern num-
bers ng

i of the mapping g �note that f1 appears in g with one
of its coordinates reversed, but not the other, so that the sign
of its Chern number is flipped�. Since the ng

i are twice those
of one hemisphere nS

i ,

�nB
i = ng

i = 2nS
i . �6�

Finally, in a band structure with n pairs of bands, there is
one integer for each pair with a zero sum rule. Hence there is
one Z2 invariant for each band pair, with a Z2 zero sum rule;
there must be an even number of “odd” pairs in a complete
band structure.

We now sketch the generalization to three-dimensional
Brillouin zones, where there are significant differences be-
tween Z2 invariants and the 3D integer-valued TKNN
invariants.5,6 There are four independent Z2 invariants per
pair of bands, even though there are only three Chern num-
bers for a pair of degenerate bands. The set of mappings

FIG. 2. �a� Contracting the extended Brillouin zone to a sphere.
�b� Two contractions can be combined according to Eq. �5� to give
a mapping from the sphere, but this sphere has a special property:
points in the northern hemisphere are conjugate under T to those in
the southern hemisphere, in such a way that overall every band
pair’s Chern number must be even.
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from the Brillouin zone T3 to C is determined by three ordi-
nary Chern numbers since �3�C�=0: the three integers cor-
respond to the xy, yz, and xz planes.6

Now consider possible Z2 invariants for a time-reversal-
invariant system in three dimensions. Suppose that the Bril-
louin zone is x ,y ,z� �−1,1	, and construct an EBZ by tak-
ing the part of this three-torus with z�0. Then slices at
constant z for 0
z
1 have the topology of the torus T2,
while at z=0 and z=1 there are additional T constraints that
reduce the degrees of freedom to the 2D BZ. The T con-
straint means that the xy Chern number is zero.

The EBZ boundaries at z=0 and z=1 are characterized by
one Z2 invariant each: one boundary may be even while the
other is odd because the boundary slices have the same
Chern number �zero� and thus are homotopic as maps to C in
the EBZ interior. Once the two Z2 invariants at the bound-
aries are fixed, two contractions of an original 3D EBZ to the
torus T3 differ by two even Chern numbers, one for the xz
slices and one for the yz slices. These are even because a
slice of the contraction has the same symmetries that force
even Chern numbers in the 2D case. There are four additive
Z2 invariants per band pair in three dimensions and 16 insu-
lating phases.

To understand these four invariants using the original
Brillouin zone, note that the six planes x=0, x= ±1, y=0,
y= ±1, z=0, z= ±1 have the symmetries of the 2D BZ and
hence have a Z2 invariant. If the six invariants with values ±1
are x0, x1, y0, y1, z0, z1, then there are two relations x0x1
=y0y1=z0z1. As a 3D example, a model can be designed on
the 3D NaCl lattice to reduce to a previously introduced9 2D
square lattice topological insulator in the ky =0 or kz=0
planes: it has a phase with y0=y1=z0=z1=−1, x0=x1=1. In
two dimensions, both insulating phases can occur in models
with a conserved quantity �e.g., Sz� that allows a definition of

ordinary Chern integers. In three dimensions, the eight
phases with x0x1=y0y1=z0z1=−1 cannot be realized in this
way.

Since the results here are for Hilbert spaces of arbitrary
dimension, they apply to many-body problems with an odd
number of fermions8 if there are two periodic parameters in
the Hamiltonian that are connected by time reversal in the
same way as the momentum components �kx ,ky�. In two di-
mensions, just as the Chern number predicts the number of
edge states in the IQHE,10 the class of even �odd� Chern
numbers in the bulk corresponds to edges with an even �odd�
number of Kramers pairs of modes.

A 2D Z2 invariant was also obtained by Haldane.11 The
bulk-edge connection has been derived when ordinary Chern
integers are defined12–14 �see also Ref. 15�. Recent papers
define the 2D Z2 invariant as an obstruction14 or as a nonin-
variant Chern integral plus a formal integral on the EBZ
boundary that is defined up to addition of an even integer.15

Defining this integral is equivalent to our prescription of
choosing any contraction to define a Chern integer. The full
counting of Z2 invariants in two or three dimensions has not
been obtained previously.

These bulk invariants and the stability of total Z2 to edge
interactions and scattering16–18 confirm that the topological
insulator is a robust phase with a deep connection to the
quantum Hall effect.

Recently, consistent results in three dimensions were
found by others.19,20 Other important results include 3D ex-
amples with nonzero fourth invariant z0z1 �Ref. 21� and an
algorithm to obtain the invariants.22
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