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The energy spectra and wave functions of two electrons confined by a quasi-one-dimensional Gaussian
potential have been calculated for different strengths of confinement, �z, and anharmonicity by using the
quantum chemical full configuration interaction method employing a Cartesian anisotropic Gaussian basis set.
The energy spectra for a nearly harmonic Gaussian potential have been studied and analyzed in three regimes
of �z: namely, large ��z=5.0�, medium ��z=1.0�, and small ��z=0.1�. For large and medium �z the energy
spectrum shows a band structure which is characterized by the polyad quantum number vp while for small �z

it is characterized by the extended polyad quantum number vp
*. The energy levels for small �z form doublet

pairs each of which consists of a pair of singlet and triplet states. The nodal patterns of their wave functions are
almost identical to each other except for their phases. The energy spectra for the strongly anharmonic Gaussian
potential look quite similar to those of the nearly harmonic case except that an irregular level structure appears
in the high-energy region for �z=0.1. The wave functions of the states in this high-energy region have curved
nodal lines which align along a pair of bent nodal coordinates. Two types of pairs of bent nodal coordinates
have been identified: namely, those passing through the valley of the confining potential and the others passing
on the hillside. It is shown that the wave functions with these nodal coordinates correspond to new types of
classical local-mode motions of electrons.
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I. INTRODUCTION

Recent developments of semiconductor technology allow
the construction of nanostructures on semiconductor
surfaces1–3 and have triggered theoretical studies on quantum
systems consisting of a small number of electrons confined
in such engineered nanospaces.4 Because of their finite size,
these quantum systems have a discrete energy-level structure
that follows Hund’s rules5,6 well known for atoms. Therefore
they are referred to as artificial atoms or quantum dots.

One of the most significant differences between quantum
dots and atoms is that the electronic properties of quantum
dots can be controlled by the size of the dots—namely, the
strength of confinement,7 as well as by the shape8,9 and by
the dimensionality.10,11 Because of this property, quantum
dots are regarded as potential sources for lasers12,13 and
quantum computers.14,15 Indeed, it has been demonstrated
computationally that the energy-level structure of quantum
dots changes strongly for different strengths of
confinement.4,16–20 For the strong limit the confining poten-
tial dominates the energy spectrum and the electron-electron
interaction plays only a minor role. On the other hand, as the
strength of confinement decreases the electron-electron inter-
action starts to affect the energy spectrum more and more
strongly and the energy-level structure gets complicated.4 At
the weak limit of confinement the electron correlation be-
comes so large that it breaks the shell structure resulting
from the confining potential.20,21 For practical applications of
quantum dots as future quantum devices the relation between
the form of the confining potential, the resultant energy spec-
tra, and the dynamics of the electrons needs to be well es-
tablished.

In the present study, as a first step toward this goal, quan-
tum dots have been modeled by two interacting electrons
confined in a quasi-one-dimensional Gaussian potential.22,23

This model allows the wave functions of the electrons to be
visualized in a two-dimensional plane and permits a detailed
analysis of the correlation of the confined electrons. A Gauss-
ian potential has been chosen as confining potential that is
approximated in the low-energy region by a harmonic-
oscillator potential typically used for modeling semiconduc-
tor quantum dots.4,17,24 Introducing anharmonicity into the
confining potential is important for simulating realistic con-
fining potentials25 as well as for studying the breakdown of
the generalized Kohn theorem.24,26–31 The eigenvalues and
wave functions of the two electrons confined in the quasi-
one-dimensional Gaussian potential have been calculated by
using the quantum chemical full configuration interaction
�CI� method employing a Cartesian anisotropic Gaussian ba-
sis set with large angular momentum functions.32 The com-
puted energy spectra and wave functions have been exam-
ined by focusing on the nodal pattern in the CI wave
functions. Atomic units are used throughout this paper.

II. COMPUTATIONAL METHODOLOGY

A. Theoretical model

The Hamiltonian operator adopted in the present study is
given by
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where the one-electron confining potential w�r� is chosen to
be the sum of an isotropic harmonic-oscillator potential for
the x and y directions and an attractive Gaussian-type poten-
tial for the z direction and is given by

w�r� =
1

2
�xy

2�x2 + y2� − D exp�−
�z

2

2D
z2� . �2�

For a sufficiently large value of �xy the electrons bound by
the potential of Eq. �2� are strongly compressed along the x
and y directions and have degrees of freedom only along the
z direction. Therefore the system can be regarded as a quan-
tum system confined by a quasi-one-dimensional Gaussian
potential. The value of �xy in Eq. �2� is set to 20 a.u. for all
calculations in the present study. The computed spectra do
not strongly depend on this value unless the energy gets
close to or larger than �xy. Since the Gaussian potential of
Eq. �2� can be approximated close to the minimum by a
harmonic-oscillator potential with the confinement strength
of �z, the above potential is suitable for modeling the con-
fining potential of semiconductor quantum dots with
anharmonicity.33

The anharmonicity of the Gaussian potential in Eq. �2�
can be characterized as defined in a previous study32 by the
ratio of the confinement strength �z over the depth of the
Gaussian potential D as

� = �z/D . �3�

By using this anharmonicity parameter the studied system
can be described by two parameters: namely, by the strength
of confinement �z and by �.

The total energies and wave functions of the electrons
confined by the quasi-one-dimensional Gaussian potential of
Eq. �2� have been calculated as the eigenvalues and eigen-
vectors of the full CI matrix. All calculations have been per-
formed by using OpenMol,34 which has been extended to ac-
count for Gaussian and power-series potentials and
anisotropic Gaussian basis functions.32 The results are pre-
sented in atomic units and can be scaled by the effective
Bohr radius of 9.79 nm and the effective Hartree energy of
11.9 meV for GaAs semiconductor quantum dots.35,36

B. Basis set

In previous studies of this series18,19,32,37 it has been dem-
onstrated that a set of properly chosen Cartesian anisotropic
Gaussian-type orbitals �c-aniGTO’s� is the most convenient
choice to correctly approximate the wave function of elec-
trons confined in anisotropic potentials. A c-aniGTO basis
set can be transformed into a set of eigenfunctions of
the corresponding three-dimensional anisotropic harmonic
oscillator.19 Therefore it would be useful also for calculating
with high accuracy eigenvalues and eigenfunctions of atoms
in strong magnetic fields38–41 and of semiconductor quantum
dots.42,43 In the present study a c-aniGTO basis set has been
placed at the center of the confining potential:—i.e., at the

origin of the Cartesian coordinate system. The orbital expo-
nents for the x and y directions have been chosen as �xy /2
while that for the z direction accounting for the Gaussian
potential in Eq. �2� has been determined in the same way as
described in a previous study.32 Since �xy is much larger than
�z, those functions that have nodal lines only along the z
direction without nodal lines along the x and y directions
have been selected and used in the basis sets.20,32

In order to check the reliability of the c-aniGTO basis set
with respect to calculating the energy spectra of two-
electrons confined by the potential of Eq. �2� the conver-
gence of the resultant energies calculated by increasing the
size of the basis set has been examined for the Gaussian
potentials with �D ,�z�= �2.0,0.1� and �0.8, 0.1�. The number
of basis functions was increased stepwise by adding a new
function with an additional nodal line to the previous basis
set. The maximum deviation of the energy levels covered by
the present study was shown to be smaller than 2�10−4 for
the results obtained by using basis sets with 13 and 14 func-
tions, respectively, whose highest-angular-momentum func-
tion has 12 and 13 nodal lines, respectively. For the rest of
the study the basis set of 13 functions has been used.

III. RESULTS AND DISCUSSION

A. Nearly harmonic case

The energy spectra of two electrons confined by the quasi-
one-dimensional Gaussian potentials with �D ,�z�
= �100.0,5.0�, �20.0, 1.0�, and �2.0, 0.1� have been calculated
and are displayed in Fig. 1. The anharmonicity parameter �
defined by Eq. �3� has been chosen as 0.05 for all cases
which corresponds to a relatively harmonic shape of the
Gaussian potential. The vertical axis of each of the three
energy diagrams is scaled by �z so that the energy of the

FIG. 1. Energy spectrum of two electrons confined by a quasi-
one-dimensional Gaussian potential with different strengths of con-
finement, �z, represented as relative energies from the ground state.
The anharmonicity parameter � of the Gaussian potential is 0.05 for
all cases. The vertical axis of each of the three energy diagrams is
scaled by �z so that the energy of the ground state and the excita-
tion energy of four quanta of �z are at the same level of the vertical
axis, respectively.
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ground state and the excitation energy of four quanta of �z
are at the same level of the vertical axis, respectively. There-
fore, if there is no electron-electron interaction, all three en-
ergy spectra will look identical in this representation. On the
other hand, as shown in Fig. 1, the energy-level structure
changes drastically for different strength of �z, indicating
that the effect of electron-electron interaction on the spec-
trum changes strongly for different �z.

The energy spectrum for �z=5.0 displayed on the left-
hand side of Fig. 1 shows a band structure in which energy
levels having the same polyad quantum number lie close to
each other while those with different values of vp are well
separated from each other. The polyad quantum number was
introduced in a previous study32 and specifies in the present
model the total number of nodes in the leading configuration
of the CI wave functions. By using the polyad quantum num-
ber the energy-level structure for �z=5.0 is interpreted as
follows: In the strong limit of confinement the effect of
electron-electron interactions becomes negligibly small and
the energy spectrum is completely dominated by the confin-
ing potential. For a harmonic confining potential the energy
levels with the same polyad quantum number vp=q form in
the strong limit a group of �q+1�-fold degenerate levels. For
example, the polyad manifold of vp=2 consists of three
states, two from the configuration 0121 �singlet and triplet�
and one from the configuration 12 �singlet�, in which the
numbers m and n in the notation mn represent the one-
electron harmonic-oscillator quantum number m and its oc-
cupation number n in the configuration, respectively. As the
strength of confinement �z decreases from the strong limit
the electron-electron interaction starts to affect the spectrum
by splitting the degenerate levels within each of the polyad
manifolds as observed for �z=5.0

As �z decreases the splitting of levels within polyad
manifolds becomes larger and energy levels belonging to ad-
jacent polyad manifolds come close to each other as ob-
served in the spectrum for �z=1.0 displayed in the middle of
Fig. 1. For the range of �z�1.0 the energy spectrum can be
interpreted by using the polyad quantum number vp since
different polyad manifolds are energetically separated. When
�z decreases further energy levels belonging to different
polyad manifolds start to overlap with each other. In the
small limit of �z energy levels belonging to different polyads
for large �z interact with each other through the electron-
electron interaction and form a new structure of energy lev-
els. Since the polyad quantum number is an approximately
conserved quantity, the overlap of energy levels having dif-
ferent polyad quantum numbers may lead to lowering this
constant of motion and in turn give rise to quantum chaotic
states as known for vibrationally highly excited states of
small polyatomic molecules.44,45

The results for �z=0.1 displayed on the right-hand side of
Fig. 1 show, however, that the energy level structure is not
irregular as observed for chaotic vibrational spectra but quite
regular with a similar band structure as observed for �z of
5.0. It is noted that the energy spectrum for �z=0.1 differs
from that of �z=0.5 in that all levels form nearly degenerate
doublets each of which consists of a pair of singlet and triplet
states belonging to different polyad manifolds for large �z.
For example, the energy levels at E=0.095, 0.188, and 0.280,

each of which looks like a single level in Fig. 1, are doubly
degenerate, respectively, as well as the apparent doublets at
E=0.173 and 0.263. A similar doublet structure was reported
previously for two electrons confined in a quasi-one-
dimensional rectangular potential well of large size16,46 as a
precursor of the Wigner lattice.47 Therefore, the observed
doublet energy-level structure can be a general trend for
weakly confined two-electron systems. It is also noted that
the number of levels belonging to each band is counted from
the lowest band as 2, 2, 4, 4, and 6 for �z=0.1 while the
corresponding number is 1, 2, 3, 4, and 5, respectively, for
�z=5.0 and 1.0.

In order to understand the origin of the doublet structure
observed in the energy spectrum for �z=0.1 in Fig. 1 the
energy levels for �z=1.0, 0.5, and 0.1 and the square density
of the corresponding wave functions are displayed in Fig. 2.
The vertical axis of each of the three energy-level diagrams
is scaled by �z so that the excitation energy of one quantum
of �z is at the same level of the vertical axis. The electronic
wave functions are plotted as the square density in the two
electron coordinates z1 and z2 by integrating over the remain-
ing four spatial coordinates of x1, x2, y1, and y2 and over the
spin coordinates, respectively. The square density distribu-
tion of the wave functions in the z1−z2 plane is simply called
wave function hereafter.

For �z=1.0 the assignment 2S+1�ns ,na� of the wave func-
tions has been made by using the spin multiplicity 2S+1 and
by the pair of numbers ns and na counting the number of
nodal lines along the symmetric coordinate zs and the anti-
symmetric coordinat za, respectively, which are defined by

zs =
1
	2

�z1 + z2� , �4�

za =
1
	2

�z1 − z2� . �5�

The nodal lines of a wave function are defined by the lines
along which the density of the wave function is exactly zero.
The symmetric coordinate zs and antisymmetric coordinate za
coincide with the 45° diagonal line and with the other diag-
onal line in the density plots, respectively. For example, in
the case of �z=1.0 the wave function of the seventh excited
3�2,1� state has two nodal lines along the symmetric coordi-
nate and one nodal line along the antisymmetric coordinate
while the eighth excited 1�1,2� state has one nodal line along
the symmetric coordinate and two nodal lines along the an-
tisymmetric coordinate. It is noted that the spin
multiplicity—i.e., singlet or triplet—can be derived also
from the density plots in Fig. 2. According to the Pauli prin-
ciple the spatial part of the wave function must be either
symmetric or antisymmetric with respect to the exchange of
the coordinates z1 and z2 and the symmetric and antisymmet-
ric wave functions have to be coupled to the singlet and
triplet spin functions, respectively. The symmetric wave
functions do not change their sign with respect to a reflection
about the symmetric coordinate while the antisymmetric
wave functions change their sign. Although the phase infor-
mation is not displayed in the density plots in Fig. 2, wave
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functions must change their sign in passing through a nodal
line. Therefore, those wave functions which have symmetric
coordinate as a nodal line are antisymmetric wave functions
while the others are symmetric wave functions. In the above
example the wave function of the 3�2,1� state has a nodal
line that coincides with the symmetric coordinate. Therefore,
this wave function is of opposite sign in the two regions
separated by the symmetric coordinate and must be coupled
to the triplet spin function. On the other hand, the wave
function of the 1�1,2� state does not have a nodal line that
coincides with the symmetric coordinate. Therefore, this
wave function does not change sign with respect to a reflec-
tion about the symmetric coordinate and must be coupled to
the singlet spin function.

As shown in Fig. 2 the energy levels of the lowest singlet
1�0,0� state and the lowest triplet 3�0,1� state become nearly
degenerate as �z decreases from 1.0 to 0.1. Moreover, the
wave function of the singlet 1�0,0� state, which has no nodal
line for �z=1.0, apparently has a diagonal nodal line that
coincides with the symmetric coordinate and has a nodal
pattern very similar to that of the triplet 3�0,1� state for �z

=0.1. It is noted that the wave function of the 1�0,0� state

has the same sign on both sides of the symmetric coordinate
since it is a singlet state. Therefore, in a strict sense the
symmetric coordinate of the wave function of the lowest sin-
glet 1�0,0� state for �z=0.1 is not a nodal line. However,
since the density of the wave function along the symmetric
coordinate is negligibly small, it is convenient to regard the
symmetric coordinate in this case as a nodal line in assigning
the nodal pattern. Therefore the assignments of the singlet
wave functions for �z=0.1 in Fig. 2 marked with an asterisk
are extended assignments in which the symmetric coordinate
with negligible density is included in counting the number of
nodal lines along the antisymmetric coordinate. By using this
convention the assignments for the lowest doublets are
3�0,1�* and 3�0,1�, respectively, which clearly supports the
observation that the spatial distributions of the singlet and
triplet wave functions are quite similar to each other but
differ in their phases.

A similar observation can be made for the second lowest
doublet in Fig. 2. The pair of the states 1�1,0� and 3�1,1� in
this doublet have a different number of nodal lines and are
energetically separated for �z=1.0. As �z decreases these
two levels come closer to each other, and at �z=0.1 they
form a nearly degenerate doublet. The corresponding wave

FIG. 2. �Color online� Corre-
spondence of the low-lying energy
levels and wave functions of two
electrons confined in a quasi-one-
dimensional Gaussian potential.
The anharmonicity parameter � of
the Gaussian potential is 0.05 for
all cases. The vertical axis of each
of the three energy diagrams is
scaled by �z so that the excitation
energy of one quantum of �z is on
the same level. The electronic
wave functions are plotted as the
square density in the two electron
coordinates z1 and z2. The assign-
ment of wave functions has been
made by counting the number of
nodal lines along the symmetric
and antisymmetric electron coor-
dinates for �z=1.0 while an ex-
tended assignment marked by an
asterisk has been made for the sin-
glet wave functions with �z=0.1
�see text�.
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functions for �z=0.1 have quite similar nodal patterns but
differ in their phases such that the singlet wave function is
symmetric about the symmetric coordinate while the triplet
wave function is antisymmetric with respect to it.

Another interesting observation concerning the second
lowest doublet is the relative insensitivity of the energy level
of the singlet 1�1,0� state with respect to the change of �z
compared to the strong decrease of the energy of the triplet
3�1,1� state as �z decreases from 1.0 to 0.1. The insensitivity
of the singlet 1�1,0� state is interpreted as a consequence of
the generalized Kohn theorem. The excitation energy of the
dipole-allowed transitions which correspond to an excitation
into the center-of-mass mode is according to this theorem for
harmonic potentials always equal to �z irrespective of the
effect of the electron-electron interaction. In the present case
the 1�1,0� state in the second doublet is dipole allowed from
the lowest 1�0,0� state since the wave function of this state
has one additional nodal line along the symmetric coordinate
as compared to the lowest 1�0,0� state. Since according to
the definition of Eq. �4� the symmetric coordinate is propor-
tional to the center-of-mass coordinate of 1

2 �z1+z2�, the ad-
ditional nodal line along the symmetric coordinate indicates
an excitation of one quantum into the center-of-mass mode.
The energy-level diagrams in Fig. 2 have been scaled so that
the excitation energy of one quantum of �z is at the same
level for different values of �z. Therefore the excitation en-
ergy of the dipole-allowed transition from the lowest state
should be in the harmonic limit of the confining potential at
the same height for the energy-level diagrams with different
values of �z. The weak �z dependence of the energy level of
the 1�1,0� state represented in Fig. 2 is due to the small
anharmonicity of the Gaussian potential.

Similar observations can be made for the fourth doublet
consisting of the 1�2,0�− 3�2,1� pair of states. The singlet
1�2,0� state is relatively insensitive to the change of �z as
previously observed for the 1�1,0� state in the second dou-
blet. Although this singlet 1�2,0� state is not dipole allowed
from the lowest 1�0,0� state, it is dipole allowed from the
1�1,0� state in the second doublet. Therefore, since the en-
ergy level of the 1�1,0� state is relatively insensitive to the
change of �z as discussed in the last paragraph, the energy
level of the 1�2,0� state is also only weakly dependent on �z.
On the other hand, in the case of the third doublet consisting
of the 1�2,0�− 3�0,3� pair of states the energy levels of the
triplet state and the singlet state change strongly as �z de-
creases. This strong �z dependence of the singlet energy
level can be understood also by the nodal pattern in the wave
function. As displayed in Fig. 2 the wave function of the
singlet 1�0,2� state has no nodal line along the symmetric
coordinate, indicating that the 1�0,2� state is not dipole al-
lowed from any lower-lying states. Therefore, the general-
ized Kohn theorem does not apply to this case.

The above observations and their interpretation based on
an examination of the nodal pattern of the wave functions
and the correspondence of the energy levels for different
values of �z can be summarized as follows: For �z�1.0 the
energy levels can be grouped into sets with respect to their
polyad quantum number vp. The singlet 1�ns ,na� states and
the triplet 3�ns ,na+1� states are energetically separated since

they belong to different polyad manifolds with vp=ns+na
and ns+na+1, respectively. As �z decreases the density
along the symmetric coordinate in the singlet wave functions
decreases and eventually it becomes a nodal line in the sense
of the extended assignment defined above. For �z=0.1 the
singlet state has the same number of nodal lines as the triplet
state using the extended assignment and they form a nearly
degenerate doublet.

In order to understand the origin of the appearance of the
new nodal line in the singlet wave functions for small �, the
sum of the one- and two-electron potential functions in the
Hamiltonian of Eq. �1� projected onto the z1−z2 plane,

V�z1,z2� = �
i=1

2

D�1 − exp
−
�z

2

2D
zi

2�� +
1

�z1 − z2�
, �6�

has been calculated and displayed in Fig. 3 for �D ,�z�
= �100.0,5.0�, �20.0, 1.0�, and �2.0, 0.1�, respectively, where
the minimum of the one-electron potential has been chosen
as the reference point of energy.

In all three cases displayed in Fig. 3 the maximum poten-
tial height is 10�z and the domain of the coordinates z1 and
z2 is chosen such that for the one-dimensional harmonic-
oscillator potentials the classical turning points for the en-
ergy value of 10�z coincide with the limits of the domain. In
this representation the energy contours for the one-electron
part of the potential—i.e., the first-term on the right-hand
side of Eq. �6�—are identical for different values of �z.
Therefore, differences in the contours among different �z
must be ascribed to the electron-electron interaction poten-
tial. As shown in Figs. 3�a�–3�c� the diagonal line separating
the contours into two regions that represents the potential
wall of the electron-electron interaction becomes thicker as
�z decreases from 5.0 to 0.1. This indicates that the wave
functions bound in this potential are influenced by the
electron-electron interaction potential more strongly for
smaller �z.

Based on the contour plots of the potential function
V�z1 ,z2� the �z dependence of the energy spectra and the
wave functions displayed in Figs. 1 and 2, respectively, can
be interpreted as follows: As shown in Fig. 3�a� the potential
wall of the electron-electron interaction for �z=5.0 is so thin
that the electron-electron interaction acts only as a perturba-
tion to the potential function V�z1 ,z2� which is dominated by
the one-electron confining potential. Since a set of energy
levels belonging to the same polyad manifold are nearly de-
generate if there is no electron-electron interaction as ex-
plained above, the splitting of the nearly degenerate energy
levels observed for �z=5.0 is due to tunneling through the
thin potential wall. The level ordering after the splitting may
be explained by the relative amount of density of the wave
functions along this potential wall. For example, the energy
eigenstates belonging to the polyad manifold of vp=2 are
3�1,1�, 1�0,2�, and 1�2,0� in increasing order of their energy.
The wave functions of these three states are displayed in Fig.
4 for �z=5.0 and 1.0 in the same way as in Fig. 2. Only the
triplet 3�1,1� state has a nodal line that coincides with the
symmetric coordinate: namely, along the potential wall as
observed in Fig. 4. The energy increase due to the potential
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wall may be estimated by integrating the density ��z1 ,z2�
multiplied by the electron-electron interaction potential over
a region close to the potential wall:

�Ewall = �
�

��z1,z2�
1

�z1 − z2�
dz1dz2, �7�

where � denotes a domain of integration close to the poten-
tial wall. Because of the existence of a nodal line along the
potential wall for the triplet state, the energy increase �Ewall
for the triplet state is much smaller than that for the singlet
states. In case of the two singlet states the wave function of
the 1�0,2� state extends along the antisymmetric coordinate
while that of the 1�2,0� state extends along the symmetric
coordinate as displayed on the left-hand side of Fig. 4.
Therefore, �Ewall is larger for the 1�2,0� state than for the
1�0,2� state since the density in the domain of integration �
is larger for 1�2,0� than for 1�0,2�. This suggests that the
energy of the 1�2,0� state is larger than that of the 1�0,2�
state in accordance with the observed energy-level ordering.

As �z decreases from 5.0 to 1.0 the potential wall of the
electron-electron interaction becomes wider as shown in Fig.
3�b�. Consequently, the magnitude of the splitting due to tun-
neling becomes larger and for �z=1.0 it becomes compa-
rable to �z as observed for the corresponding spectrum in
Fig. 1. The effect of the increase in the width of the potential

FIG. 3. �Color online� Two-dimensional contour plot of the sum
of the Gaussian and of the electron repulsion potentials for �z

=5.0 �a�, 1.0 �b�, and 0.1 �c�. The anharmonicity parameter for the
Gaussian potential and the maximum potential height displayed are
0.05 and 10 �z, respectively, for all cases. The diagonal line sepa-
rating the contours into two regions represents the potential wall of
the electron repulsion potential.

FIG. 4. �Color online� Square density plot of the wave functions
for the three states in the polyad manifold of vp=2 of two electrons
confined in a quasi-one-dimensional Gaussian potential with �z

=5.0 and 1.0. The anharmonicity parameter � of the Gaussian po-
tential is 0.05.
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wall is most clearly visible for the wave function of the
1�2,0� state. As shown in Fig. 4 for �z=5.0 the wave func-
tion of the 1�2,0� state has the peak of the density distribu-
tion along the symmetric coordinate—i.e., along the poten-
tial wall-while for �z=1.0 it has the peak shifted towards
both sides of the potential wall, resulting in a smaller in-
crease of �Ewall. The reduction of density along the potential
wall in the singlet wave functions may rationalize the well-
known observation that electron correlation or configuration
mixing is larger for a singlet wave function than for the
corresponding triplet wave function of the same
configuration.20,21 As noted, the triplet wave functions origi-
nally have a nodal line along the potential wall while the
singlet wave functions do not. Therefore, as �z decreases the
singlet states require stronger configuration interactions in
order to “create” a dent of density in the wave functions
along the potential wall.

As displayed in Fig. 3�c� for �z=0.1 the width of the
potential wall is so thick that the electron-electron interaction
potential is no more a perturbation to V�z1 ,z2�. Therefore it is
better to adopt a zeroth-order picture in which the wave func-
tions bound to either of the two spatial regions separated by
the potential wall interact with each other weakly. By trans-
forming the coordinates from �z1 ,z2� to �zs ,za� and introduc-
ing a harmonic approximation to the Gaussian potential in
Eq. �6� the zeroth-order Hamiltonian for the upper ��� and
lower �	� bound regions separated by the potential wall in
Fig. 3�c� can be approximated by

H�z=0.1
± = hs + ha

±, �8�

where hs and ha
± are defined, respectively, by

hs = −
1

2

�2

�zs
2 +

1

2
�z

2zs
2, �9�

ha
± = −

1

2

�2

�za
2 +

1

2
�z

2za
2, �10�

where the domain of the antisymmetric coordinate za in Eq.
�10� is defined by za
0 for ha

+ and za�0 for ha
−. In the

approximation made above the Coulomb tail of the potential
wall is neglected. The Hamiltonian hs of Eq. �9� is that of a
harmonic oscillator with �z and with the eigenvalue given by
�s�vs�=�z�vs+ 1

2
� for vs=0,1 ,2 , . . .. The Hamiltonian ha

± is
also that of a harmonic oscillator but it is defined in the
domain za�0 or za
0, and its wave functions are zero at
za=0 because of the existence of the huge potential wall. It is
noted that the standing waves that are bound in a harmonic-
oscillator potential and vanish at the origin are the eigenfunc-
tions of this harmonic oscillator with odd quantum numbers
defined either in the positive or in the negative domain of za.
The eigenvalues of the Hamiltonian �10� are therefore given
by �a

±�va�=�z�va+ 1
2

� for va=1,3 ,5 , . . .. Consequently, the ei-
genvalues for the zeroth order Hamiltonian �8� are deter-
mined by

E±�vs,va� = �z�vs + va + 1� , �11�

where vs=0,1 ,2 , . . . and va=1,3 ,5 , . . .. It is noted that E+

and E− have the same energy spectrum.
By using the energy formula of Eq. �11� the origin of the

characteristic features of the energy-level structure for �z
=0.1—that is, the regular band structure consisting of dou-
blets as represented in Figs. 1 and 2—can be rationalized as
follows: For �z=0.1 the electron-electron interaction results
in a strong potential wall. Therefore the interaction between
the zeroth-order levels E+ and E− is very small and only pairs
of energy levels having the same energy can interact to some
extent with each other. This results in the formation of dou-
blets consisting of an in-phase superposition state �singlet�
and an out-phase superposition state �triplet�. Their energies
are almost identical to those of the zeroth-order levels with a
small splitting due to tunneling. Therefore, the energy spec-
trum for �z=0.1 is basically the same as the spectrum of the
zeroth-order levels given by Eq. �11� within the harmonic
approximation except that each level is doubly degenerate.
The low-lying energy levels of Eq. �11� are listed in Table I
together with the extended polyad quantum number vp

* de-
fined by the sum of vs and va. The extended polyad quantum
number specifies the number of nodal lines in the wave func-
tions for �z=0.1 displayed in Fig. 2. As shown in Table I the
lowest energy level has the assignment �vs ,va�= �0,1� which
is not the usual harmonic-oscillator ground state �vs ,va�
= �0,0� since va starts from 1 by the definition. This level
forms the lowest doublet consisting of the 1�0,1�* and 3�0,1�
states displayed in Fig. 2. The second lowest level has the
assignment �vs ,va�= �1,1�, which forms the eigenstates
1�1,1�* and 3�1,1�. As shown in Table I the energy of this
second lowest level is one quantum of �z larger than that of
the lowest level. This is consistent with the observation that
the energy difference between the lowest 1�0,1�* state and
the second lowest singlet 1�1,1�* state is close to �z as a
consequence of the generalized Kohn theorem. The third and
fourth lowest levels with �vs ,va�= �0,3� and �2, 1�, respec-
tively, have the same vp

* of 3 and the same energy of 4�z.
This is again one quantum of �z larger than that of the sec-
ond level. The corresponding doublets have the eigenstates

TABLE I. Zeroth-order energy levels E± for �z=0.1 defined by
Eq. �11�.

vs va vp
*a E± /�z

0 1 1 2

1 1 2 3

0 3 3 4

2 1 3 4

1 3 4 5

3 1 4 5

0 5 5 6

2 3 5 6

4 1 5 6

aThe extended polyad quantum number.
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1�0,3�*− 3�0,3� and 1�2,1�*− 3�2,1�, respectively. Their en-
ergies are roughly one �z larger than the energies of the
second doublet. By repeating this procedure it can be under-
stood that the zeroth-order energy spectrum of Eq. �11� has a
band structure characterized by vp

* with a band-gap energy of
�z and that the number of levels belonging to the vp

* mani-
fold is �vp

* +1� /2 for odd vp
* and vp

* /2 for even vp
*. Therefore,

the regular band structure of the energy spectrum for �z
=0.1 can be ascribed to the harmonic energy spectrum of Eq.
�11�. The degeneracy pattern of it accounts for the number of
energy levels that belong to each of the bands specified by
vp

*: that is, vp
* +1 for odd vp

* and vp
* for even vp

*.

B. Anharmonic case

The energy spectra of two electrons confined by the
quasi-one-dimensional Gaussian potential with �D ,�z�
= �40.0,5.0�, �8.0, 1.0�, and �0.8, 0.1� have been calculated
and are displayed in Fig. 5 in the same way as in Fig. 1. The
anharmonicity parameter � is 0.125 for all cases and corre-
sponds to a Gaussian potential with relatively large anharmo-
nicity. This value has been chosen such that all energy levels
located in the energy range covered by the present study—
that is, 4�z from the lowest state—are below the first ioniza-
tion limit.32 When � becomes larger than this value some
energy levels close to the upper limit of the energy range
become unbound.

The energy spectra for �z=5.0 and 1.0 displayed in Fig. 5
show a band structure very similar to that of the correspond-
ing spectra in Fig. 1 and are characterzied by the polyad
quantum number vp. The energy differences between adja-
cent polyad manifolds are slightly smaller for the spectra
shown in Fig. 5 than for those in Fig. 1. This is due to the
larger anharmonicity of the Gaussian potential of the spectra
displayed in Fig. 5. On the other hand, in case of the spec-
trum for �z=0.1 a significant difference is observed in the

higher-energy region above E=0.3 between the results dis-
played in Figs. 1 and 5. In the lower energy region both
energy spectra in Figs. 1 and 5 for �z=0.1 have a band
structure which can be correlated with each other up to the
fourth lowest band: namely, the band with vp

* =4. For the
higher-lying energy levels such a correspondence is obvi-
ously not clear. Indeed, the energy levels in the higher energy
region displayed in Fig. 5 do not form a band structure with
a band gap of �z as observed in Fig. 1 but a rather irregular
level structure. Since the regular band structure for the nearly
harmonic case with an energy gap of �z is due to the har-
monic energy spectrum of the zeroth-order levels given by
Eq. �11�, the irregular level structure in the higher-energy
region observed in Fig. 5 is due to the effect of the large
anharmonicity.

In order to understand the irregular energy-level structure
in the energy spectrum for �z=0.1 observed in Fig. 5 the
square density of their wave functions is displayed in Fig. 6
in the same way as in Fig. 2. The assignment of the wave
functions has been made by counting the number of nodal
lines along the symmetric and antisymmetric coordinates.
For the singlet wave functions the symmetric coordinate is
treated as a nodal line in determining na; that is, the extended
assignment has been adopted as in Fig. 2.

The wave functions of the lowest and second lowest dou-
blets displayed in Fig. 6 show nodal patterns quite similar to
those of the corresponding wave functions in Fig. 2. On the
other hand, in the case of the third doublet consisting of the
1�0,3�* and 3�0,3� states the outer rims of the wave func-
tions extend into a much larger spatial region than those of
the corresponding wave functions in Fig. 2. A similar obser-
vation is made for the wave functions of the 1�1,3�* and
3�1,3� states in the fifth doublet, which are dipole allowed
from the 1�0,3�* and the 3�0,3� state, respectively. It is noted
that most of the nodal lines in the wave functions above the
second doublet in Fig. 6 are not straight lines as observed in
Fig. 2 but are curved more and more strongly, indicating an
increasingly stronger mixing of the two degrees of freedom
zs and za through anharmonicity. Nevertheless, the wave
functions can still be assigned up to the six lowest doublets
by counting the number of the curved nodal lines along the
symmetric and the antisymmetric coordinates.

In the case of seventh and tenth doublets consisting of the
1�2,3�* and 3�2,3� states and the 1�1,5�* and 3�1,5� states,
respectively, on the other hand, the nodal lines are so
strongly curved that it is apparently not clear how many
nodal lines should be counted along the symmetric and anti-
symmetric coordinates. A similar difficulty occurs for the
eighth and ninth doublets but by an analogy to the nodal
pattern of the pair of wave functions located in a lower-
energy region—namely, of the 1�0,3�* and 3�0,3� states and
of the 3�3,1�* and 3�3,1� states, respectively—they can be
assigned as 1�0,5�* and 3�0,5� states and as 1�4,1�* and
3�4,1� states, respectively. By assuming that the seventh
doublet originally belongs to the polyad manifold of vp

* =5
for smaller anharmonicity its states have been assigned ten-
tatively as the remaining possibility in this manifold: namely,
to the 1�2,3�* and 3�2,3� states, as shown in Table I. The
assignment of the 1�1,5�* and 3�1,5� states of the tenth dou-

FIG. 5. Excitation energy spectrum of two electrons confined in
a quasi-one-dimensional Gaussian potential with different strengths
of confinement, �z. The anharmonicity of the Gaussian potential �
is 0.125 for all cases. The vertical axis of each of the three energy
diagrams is scaled by �z so that the energy of the ground state and
the excitation energy of four quanta of �z are at the same level of
the vertical axis, respectively.
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blet has been made in a similar way by assuming that it
belongs to the vp

* =6 manifold for smaller anharmonicity.

C. Local-mode wave functions

The characteristic nodal pattern observed in the wave
functions of the seventh and tenth doublets, consisting of the
1�2,3�* and 3�2,3� states and of the 1�1,5�* and 3�1,5� states
respectively, displayed in Fig. 6 looks similar to that of the
local-made vibratinal wave function of the stretching vibra-
tions of ABA molecules,48 such as H2O �Ref 49� and SO2 in
the vibrationally highly excited states.50–53 It is known in
molecular vibrational spectroscopy that the two A-B stretch-
ing vibrations in an ABA molecule that form the symmetric
and antisymmetric stretching normal-mode vibrations be-
come decoupled from each other to form doubly degenerate
local-mode vibrations when the anharmonicity in the poten-
tial energy surface dominates the momentum coupling be-
tween the two A-B stretching vibrations.54 The resulting dou-
bly degenerate local-mode vibrational wave functions
correspond to the two semiclassical trajectories in which one
A-B bond vibrates strongly while the other stays in a zero-
point vibration.49,52

The correspondence between the classical trajectories and
vibrational wave functions representing the local-mode vi-
brations can be most clearly observed by forming the sum
and the difference of the doubly degenerate vibrational wave
functions.48,50 The resulting wave functions have only nodal
lines along one stretching coordinate and no nodal lines
along the other stretching coordinate, indicating that one
stretching vibration is highly excited while the other stays in
its ground state. In order to understand the dynamics of the
two electrons in the 1�1,5�* and 3�1,5� doublet states the
sum and difference of the wave functions of the correspond-
ing states are displayed in Fig. 7 in the same way as for Figs.
2 and 6. The nodal lines of the wave functions shown in Figs.
7�c� and 7�d� do not align parallel to either of the electron
coordinates as for the local-mode vibrational wave functions
but align along a bent coordinate, indicating that these wave
functions represent a different electron motion than the local-
mode vibrations. This kind of a curved coordinate along
which nodal lines align may be an example of the nodal
coordinate55 proposed in analyzing vibrational wave func-
tions of vibrationally highly excited states of polyatomic
molecules.44 By recalling that a distribution of wave func-

FIG. 6. �Color online� Square density plot of
the wave functions for the low-lying states of two
electrons confined in a quasi-one-dimensional
Gaussian potential with �D ,�z�= �0.8,0.1�. The
assignment of wave functions has been made by
counting the number of nodal lines along the
symmetric and antisymmetric electron coordi-
nates. The assignment marked by an asterisk
given to the singlet wave functions is the ex-
tended assignment �see text�.
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tions can be interpreted as a torus of classical periodic orbits,
the wave functions in Figs. 7�c� and 7�d� can be interpreted
as follows: The distribution of the wave function �c� extends
along the line of z2=0 for z1
0 and along the line of z1=0
for z2�0. In the part of the wave function extending along
z2=0, only electron 1 moves in the range of −15
z1
0
while electron 2 stays close to the origin of the coordinate.
On the other hand, in the part of the wave function extending
along z1=0, only electron 2 moves in the range of 0
z2

15 while electron 1 stays close to the origin. Therefore, the
wave function �c� corresponds to a two-body elastic collision
of identical particles in classical mechanics in which electron
1 approaching from the negative z direction collides with
electron 2 at the origin and transfers its momentum to it.
Then electron 2 starts moving along the positive z direction
while electron 1 stays at the origin. The wave function in
Fig. 7�d� corresponds to the classical motion obtained by
inverting that of the wave function in Fig. 7�c� with respect
to the origin of the coordinates: that is, electron 2 coming
from the negative z direction collides with electron 1 at the
origin and so on. This analysis shows that the wave functions
of the tenth doublet in Fig. 6 represent a different type of
localized electron modes than the well-known local mode in
molecular vibrations, although their nodal patterns resemble
each other.

It is instructive to apply a similar analysis to the wave
functions of the states of the ninth doublet in Fig. 6 which
have a characteristic nodal pattern different from the previ-
ous case. The sum and difference of the wave functions of
the two states 1�4,1�* and 3�4,1� forming ninth doublet are

displayed in Figs. 8�c� and 8�d�, respectively, in the same
way as in Fig. 7. As observed in Figs. 8�c� and 8�d� the nodal
coordinates of these wave functions are bent as in the case of
the wave functions of the tenth doublet in Figs. 7�c� and 7�d�
but they are located in different spatial regions as compared
to those of the tenth doublet. The distribution of the wave
function in Fig. 8�c� extends along −3
z1
8 for z2=−8 and
along −8
z2
3 for z1=8. Therefore, in classical mechani-
cal interpretation electron 1 moves in the positive direction
from z1=−3 to 8 while electron 2 stays at z2=−8. Then elec-
tron 2 starts to move towards the same direction from z2=
−8 to 3 while the electron 1 stays at z1=8. This indicates that
electron 2 follows the movement of electron 1 after a quarter
cycle of one oscillation. Therefore, the wave functions of the
ninth doublet, again, show another type of localized electron
modes different from the local mode in molecular vibration.

In order to understand the origin of these two new types
of localized electron modes observed in the ninth and tenth
doublets the sum of the one- and two-electron potential func-
tions, V�z1 ,z2� in Eq. �6�, projected onto the z1−z2 plane has
been calculated and displayed in Fig. 9 for �D ,�z�
= �0.8,0.1�. The maximum potential height and the range of
the coordinates z1 and z2 are the same as in Fig. 3�c�. It is
seen in Fig. 9 that the valley of the potential—i.e., the
minimum-energy path from the bottom of the potential—
extends along two bent lines indicated schematically by the
dotted lines and arrows. Such a valley is not observed in Fig.
3�c� for the nearly harmonic case. This means that for the
strongly anharmonic potential of Fig. 9 the wave functions of
electrons bound in this potential prefer a nodal pattern ex-

FIG. 7. �Color online� Square density plot of the wave functions
for the doublet pair 1�1,5�* �a� and 3�1,5� �b� and their sum �c� and
difference �d�.

FIG. 8. �Color online� Square density plot of the wave functions
for the doublet pair 1�4,1�* �a� and 3�4,1� �b� and their sum �c� and
difference �d�.
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tending along these two bend lines. The wave functions of
the 1�2,3�* and 3�2,3� states and the 1�1,5�* and 3�1,5�
states, respectively, belonging to the seventh and tenth dou-
blets in Fig. 6, are of this type. On the other hand, the wave
functions of the 1�4,1�* and 3�4,1� states forming the ninth
doublet do not extends along a valley but on the hillside of
the potential. Therefore, these wave functions may corre-
spond to a pair of unstable classical periodic orbits. In both
cases the wave functions tend to have nodal lines not along
the coordinates of the correlated motion of two electrons, zs
and za, but along the coordinates local to each electron:
namely, z1 and z2.

IV. SUMMARY

In the present study the energy spectra and wave functions
of two electrons confined by a quasi-one-dimensional Gauss-
ian potential have been calculated for different strengths of
confinement and anharmonicity by using the quantum chemi-
cal configuration interaction method employing reduced Car-
tesian anisotropic Gaussian basis sets. The most important
results of the study are summarized as follows.

The energy spectra for a nearly harmonic Gaussian poten-
tial have been calculated, analyzed, and classified for three
regimes of confinement strength �z: namely, strong ��z

=5.0�, medium ��z=1.0�, and weak ��z=0.1� confinement.
For the strong confinement the energy spectrum shows a
regular band structure with a band gap close to �z. The en-
ergy levels of each band are well localized and are charac-
terized by the polyad quantum number vp defined as the sum
of the nodal lines ns and na of the wave functions along the

symmetric and the antisymmetric coordinate, respectively.
The number of energy levels belonging to each band is equal
to vp+1. For medium confinement the energy spectrum
shows also a band structure characterized by vp but the split-
ting of the energy levels belonging to the same vp manifold
is so large that adjacent polyad manifolds get close to each
other. As the confinement becomes even weaker energy lev-
els belonging to different vp manifolds start to overlap with
each other. For the small confinement strength of �z=0.1 the
triplet energy levels having the set of nodal lines �ns ,na� for
ns=0,1 ,2 , . . . and na=1,3 ,5 , . . ., respectively, become nearly
degenerate with the singlet energy levels that have the nodal
lines �ns ,na−1� for strong and medium confinement. By in-
troducing an extended assignment for the singlet wave func-
tion in which the symmetric coordinate is treated as a nodal
line in determining na the singlet and triplet wave functions
in the degenerate pair have the same set of nodal lines
�ns ,na�. The energy spectrum of the weak confinement has a
band structure with a band-gap of about �z as observed for
the strong confinement but each band is characterized by the
extended polyad quantum number vp

*. The number of levels
belonging to the vp

* manifold is shown to be vp
* +1 for odd vp

*

and vp
* for even vp

*.
The square density of the wave functions for the nearly

harmonic case has been plotted in the two-dimensional z1
−z2 plane, and its nodal pattern has been examined. It has
been shown that the density of the singlet wave functions
along the symmetric coordinate becomes smaller as �z de-
creases and that it becomes negligibly small for �z=0.1. The
singlet wave functions at �z=0.1 have the same number of
nodal lines as their counterpart triplet wave functions of the
degenerate pairs using the extended assignment. Their nodal
patterns become almost identical to each other except for
their phases. The sum of the one- and two-electron potentials
projected onto the z1−z2 plane V�z1 ,z2� shows that the de-
creasing density along the symmetric coordinate in the sin-
glet wave functions for decreasing �z is caused by the in-
creasingly stronger potential wall of the electron-electron
interaction along this coordinate.

The energy spectra for a strongly anharmonic Gaussian
potential have been calculated, analyzed, and classified for
the same three regimes of confinement strength �z as for the
nearly harmonic case. For the strong and medium confine-
ment the energy spectra look quite similar to those of the
nearly harmonic case. But for weak confinement of �z=0.1
the spectrum shows an irregular level structure in the high
energy region above E�0.3. The nodal lines of the wave
functions in this high-energy region get increasingly curved
as the energy increases, and it becomes more and more dif-
ficult to assign these wave functions by counting the number
of nodal lines along the symmetric and antisymmetric coor-
dinates. By taking the sum and the difference of the singlet
and triplet wave functions of the degenerate pairs two types
of a pair of bent nodal coordinates, along which the nodal
pattern of the wave functions extend, have been identified:
namely, one pair of coordinates passing through the valley of
the potential V�z1 ,z2� and the other pair passing on the hill-
side. It is shown that the wave functions having the nodal
coordinates through the valley correspond to a classical mo-

FIG. 9. �Color online� Two-dimensional contour plot of the sum
of the Gaussian and of the electron-repulsion potentials for �D ,��
= �0.8,0.1�. The maximum potential height displayed and the range
of the coordinates z1 and z2 are the same as in Fig. 3�c�. The lines
allows represent the valleys of the potential.
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tion of two electrons performing an elastic collision and that
those having the nodal lines on the hillside correspond to a
classical motion in which one electron follows the movement
of the other electron after a quarter cycle. Both of these
localized electron motions have resulted as a consequence of
large anharmonicity in the confining potential.
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