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From the master equation we derive the equation for the time evolution of the local density in terms of
correlation functions. In the long-time and large-scale limit we use a gradient expansion together with the
assumption of local equilibrium to derive an analytical expression for the density and temperature dependence
of the diffusion coefficient. For various choices of the detailed kinetics and with the inclusion of first and
second neighbor and trio interactions we show explicitly that the Reed-Ehrlich factorization holds exactly, we
give explicit results and discuss their implications for the understanding of experimental results. We compare
our method to existing analytic approaches and indicate its extensions.

DOI: 10.1103/PhysRevB.75.115403 PACS number�s�: 68.43.De, 68.43.Jk

I. INTRODUCTION

Various theoretical approaches have been applied to the
study of diffusion in low-dimensional systems, from analytic
methods based on the master, Fokker-Planck, or Kramers
equations, to numerical methods based on Monte Carlo and
molecular dynamics simulations. The former provide physi-
cal insight, though usually at the cost of some simplifying
assumptions, and closed form solutions in special cases.
Simulation methods have the advantage of producing realis-
tic, though numerical, results for particular physical systems.
Several reviews exist, together covering all these
approaches.1–5 Required for all methods is a representation
of the dynamics of the diffusing particle. For particles mov-
ing between well defined lattice sites the energy barrier can
be calculated accurately by ab initio methods. However, this
alone does not determine the dynamics5 and approximations
to the latter must be made, short of full-blown quantum-
mechanical treatments.6,7

Diffusion, both tracer and collective, on the basis of the
lattice gas model has been studied since the pioneering work
of Elliott.2,8 For this description the usual starting point is the
master equation with the hopping between lattice sites
treated as a Markovian process, i.e., the residence time at
sites is long compared to the time of individual hops. This is
also the easiest route to incorporate the effects of multiple
binding sites within cells and particle interactions, both hard-
core within cells and short range between them. In the case
of surface diffusion such interactions lead to a strong depen-
dence of the diffusivity on the coverage of the ad species.
The “dynamics” in this kinetic lattice gas model are usually
simplified to the specification of transition probabilities with
a hopping rate, usually of an Arrhenius form, but modified
by interactions with neighboring particles in the initial and
final configurations, leading to vastly different diffusion
behavior.1

Except in some special cases, e.g., hardcore exclusion
alone, analytic solutions for the diffusivity do not exist and
calculations are usually made using linear response theory or
Monte Carlo simulations. A number of solutions for the cov-
erage dependence of the collective diffusion coefficient in a
one-dimensional �1D� system has been obtained, e.g., by

Zwerger9 using linear response theory, and by Gortel et al.10

using a variational method for the diagonalization of the
transition rate matrix. Another type of approach is based on
gradient expansions of correlators as originally pioneered by
Kawasaki11 and Kikuchi12,13 with some further develop-
ments, e.g., Chvoj.14 Recently, an exact solution of the com-
plete nonequilibrium time evolution of a finite 1D lattice gas
with nearest neighbor interactions has been obtained by ex-
act diagonalization in momentum space with the diffusivity
emerging in the hydrodynamic limit.15

Although diffusion in a 1D lattice model has been ad-
dressed several times there does not exist a rigorous and
transparent treatment in the sense that either approximate
methods were used or unnecessary restrictions to hopping
kinetics and static interaction scenarios were imposed. In this
paper we will show that with a transparent method the cov-
erage dependence of the collective �or chemical� diffusivity
can be derived exactly for all choices of kinetics and lateral
interactions of any desired range. The method used is a
straightforward gradient expansion of all the correlators in
the diffusion current. This method lends itself naturally to
prove that the diffusivity follows the Reed-Ehrlich
factorization16 into a product of a thermodynamic factor �in-
verse susceptibility� and a kinetic factor �average hopping
rate�. This result clearly shows that the usual restrictions im-
posed on the kinetics for the use of linear response theory,
namely that particle currents must vanish, is not needed and
misleading. The methods developed here for a general 1D
system lend themselves straightforwardly to an extension to
2D systems.

This paper is structured as follows. In the next section we
present the elements of the kinetic lattice gas model which
leads naturally to the equation of motion of the density and
by a gradient expansion to Fick’s law, done in Sec. III for
nearest neighbor interactions only. The result is an explicit
formula for the coverage dependence of the diffusivity in
terms of local equilibrium correlation functions. The Reed-
Ehrlich factorization is proven analytically. In Sec. IV we
present a number of different diffusion scenarios, again re-
stricted to nearest neighbor interactions. The generalization
to second neighbor pair and trio interactions is then given in
Sec. V. Although the number of plausible hopping scenarios
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is an order of magnitude larger, everything can still be done
analytically; in particular the Reed-Ehrlich factorization is
still valid. The complexity of the diffusivity is demonstrated
in a number of explicit examples in Sec. VI. We conclude
with a discussion of our approach and its relation to previous
work. Some details of our method are collected in two ap-
pendixes.

II. KINETIC LATTICE GAS MODEL

To set up the kinetic lattice gas model, one assumes that
the surface of a solid can be divided into Ns cells labeled i,
for which one introduces microscopic occupation numbers
ni=1 or 0, depending on whether cell i is occupied by an
adsorbed particle or not. There are 2Ns microstates n
= �n1 ,n2 , . . . ,nNs

� given by sequences of zeroes and ones. To
introduce the dynamics of the system one writes down a
model Hamiltonian, here in one dimension,

H�n� = Es�
i

ni + V1�
i

nini+1 + V2�
i

nini+2 + ¯ . �1�

Arguing that the lattice gas Hamiltonian should give the
same Helmholtz free energy as a microscopic Hamiltonian
�for noninteracting particles� one can show that the proper
identification of Es is the free energy per particle17

Es = − V0 − kBT ln�q3qint� �2�

with V0 the depth of the surface potential. The center-of-
mass vibrations of the adsorbed molecule in this potential
well are represented by the partition functions q3=qzqxy, with
normal �z� and in-plane �x ,y� components; qint=qvibqrot is the
partition function for the internal degrees of freedom �vibra-
tions, �v and hindered rotations, �r�. These modes are usually
described by 1D harmonic oscillators. V1 ,V2 are interactions
between first and second nearest neighbor particles.

We introduce a function P�n , t� which gives the probabil-
ity that a given microstate n is realized at time t and define
the transition probability W�n ,n�� per unit time as the prob-
ability to go from a state n� to n. Treating diffusion as a
Markov process P�n , t� must satisfy a master equation

dP�n,t�
dt

= �
n�

�W�n,n��P�n�,t� − W�n�,n�P�n,t�� . �3�

To ensure the approach to equilibrium in an isolated system
each term in the sum must satisfy detailed balance

W�n,n��Peq�n�� = W�n�,n�Peq�n� , �4�

where

Peq�n� =
e�−H�n�−�N�n��/kBT

�
, �5�

� = �
n

e�−H�n�−�N�n��/kBT �6�

is the equilibrium probability and � is the grand canonical
partition function. In principle, W�n� ,n� must be calculated
from a Hamiltonian that includes, in addition to Eq. �1�, cou-

pling terms to the gas phase and the solid phase that mediate
mass and energy exchange. In this paper we will rather fol-
low the procedure initiated by Glauber18 in setting up the
kinetic Ising model and guess the appropriate form of
W�n� ,n�.

If we treat the diffusion as the result of particles hopping
from an occupied site to a neighboring unoccupied site we
can write the transition probability as19

Wdiff�n�,n� = �
i

�Wi
��n� + Wi+1

� �n���ni�
1−ni�ni+1�

1−ni+1 �
l�i,i+1

�nl�
nl ,

�7�

where the probabilities to hop to the right from site i to i
+1 and to the left from site i+1 to i are given, respectively,
by

Wi
��n� = J0ni�1 − ni+1��1 + A1ni−1 + B1ni+2 + C11ni−1ni+2� ,

�8�

Wi+1
� �n� = J0�1 − ni�ni+1�1 + A1ni+2 + B1ni−1 + C11ni−1ni+2� .

�9�

These general forms express the effect on the transition prob-
abilities due to nearest neighbor interactions �for the
present�. They can also be written in terms of the occupation
configurations of all neighboring sites, e.g.,

Wi
��n� = J0ni�1 − ni+1���1 − ni−1��1 − ni+2� + �1 + A1�ni−1

��1 − ni+2� + �1 + B1��1 − ni−1�ni+2 + �1 + A1 + B1

+ C11�ni−1ni+2� �10�

with a similar expression for Wi+1
� �n�. This form is illustrated

in Fig. 1. The first term in �10� represents the hopping of a
particle which is isolated before and after the jump, with a
rate J0; the second term represents the separation of a particle
from a neighbor with a rate J0�1+A1�; the particle has no
neighbors after the event; the third term represents the con-
verse of the process, with a rate J0�1+B1�. The last term
represents the exchange of a particle between blocks. The
elementary hopping rate, J0, usually has a thermally acti-
vated form.

Detailed balance puts one condition on the three coeffi-
cients, namely,

1 + A1 = �1 + B1�e�V1. �11�

Judicious choices of these coefficients allow us to describe
different hopping scenarios that we will discuss below; vari-
ous choices have been made in the literature.1,19 For ex-
ample, if particle-hole symmetry is to be preserved in the

FIG. 1. The four relevant hopping processes and their rates for a
one-dimensional lattice gas with nearest neighbor interactions.
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hopping process then the first and fourth terms in Eq. �10�
must be the same, which requires that

A1 + B1 + C11 = 0. �12�

III. EQUATION OF MOTION AND FICK’S LAW

Taking the first moment of the master equation, i.e., mul-
tiplying Eq. �3� by ni and summing over all microstates n,
we obtain the equation of motion for the average occupancy
of a site. To write this efficiently we introduce a particle
current through the bond i→ i+1

ji = a�Wi
��n� − Wi+1

� �n�� �13�

and its average

�ji� = a�
n

��Wi
��n�� − �Wi+1

� �n��� = aJ0��•i�i+1
�� − ��i•i+1

��

+ A1��•i−1•i�i+1� − ��i•i+1•i+2�� + B1��•i�i+1•i+2�

− �•i−1�i•i+1�� + C11��•i−1•i�i+1•i+2� − �•i−1�i•i+1•i+2��� .

�14�

�The arrows indicate the directions of the hops for the two
contributions.� Averages are defined by, as examples,

�•i� = �ni��t� = �
n

niP�n,t� , �15�

�•i�i+1� = �ni�1 − ni+1���t� = �
n

ni�1 − ni+1�P�n,t� . �16�

The equation of motion then reads

d�ni�
dt

=
1

a
��ji−1� − �ji�� . �17�

The diffusion equation emerges from this in the long-time
and long-wavelength limit for which we can introduce a lo-
cal density or coverage 	�x= ia , t�= �ni��t� and a local current
j�x , t�. For the latter we get from Eq. �14�

j�x,t� = aJ0		�x,t� − 	�x + a,t� + A1�F2�x − a,t� − F2�x + a,t��

− A1�F3�x,t� − F3�x + a,t�� + B1�F3h�x + a,t�

− F3h�x,t�� + C11�F4h
� �x + a,t� − F4h

� �x,t��
 �18�

in terms of correlation functions with a continuous space and
time dependence

F2�x,t� = �nini+1��t� ,

F3�x,t� = �ni−1nini+1��t� ,

F3h�x,t� = �ni−1�1 − ni�ni+1��t� ,

F4h
� �x,t� = �ni−2ni−1�1 − ni�ni+1��t� ,

F4h
� �x,t� = �ni−1�1 − ni�ni+1ni+2��t� . �19�

For densities varying slowly on the length scale of the
lattice constant, i.e., in the continuum limit, we expand the

current keeping terms linear in the spatial gradient

j�x,t� � − a2J0� �

�x
�	 + 2A1F2 − A1F3 − B1F3h − C11F4h

� �x��

− a−1C11�F4h
� �x� − F4h

� �x��
 . �20�

In addition, for long time and length scales, a system is
maintained in local equilibrium by much faster relaxation
processes. In particular, this implies that the space and time
dependence of correlation functions is completely given by
that of the local density, i.e., for their gradients we must have

�

�x
F
�x,t� =

d

d	
F
�	�x,t��

�	

�x
�21�

and we obtain Fick’s first law for the diffusion current

j�x,t� = − D�	�
�	

�x
�22�

with the density-dependent diffusion coefficient

D�	� = D0�1 +
d

d	
�A1�2F2 − F3� − B1F3h�

+ C11F4h
d

d	
ln� F4

F4h
�
 �23�

in terms of the equilibrium correlators at the local density.
Here D0=a2J0 is the diffusion coefficient in the absence of
lateral interactions. We have evaluated the contribution from
the last term in Eq. �20� by using the fact that the correlators
are those of local equilibrium and hence they factorize ex-
actly, in one-site overlap, for a 1D system with nearest neigh-
bor interactions. Thus we have

F4h
� �x� − F4h

� �x� = �ni−2ni−1�1 − ni�ni+1� − �ni−1�1 − ni�ni+1ni+2�
�24�

=
�ni−2ni−1��ni−1�1 − ni�ni+1�

�ni−1�
−

�ni−1�1 − ni�ni+1��ni+1ni+2�
�ni+1�

�25�

=− a
F3h�x�
	�x� �3

�F2

�x
− 2

F2

	

�	

�x
� + O�a2� �26�

=− a
d

d	
ln

F2
3

	2

�	

�x
= − a

d

d	
ln�F4�

�	

�x
�27�

to first order in a. Combined with the contribution from the
first C11 term in Eq. �20� this gives the result in Eq. �23�.

The fact that for a 1D system all equilibrium correlation
functions factorize allows one to write an analytical expres-
sion for the coverage dependence of the diffusion coefficient.
For nearest neighbor interactions, factorization gives30

F2�	�x�� = �• • � = �•��1 − 2
1 − 	

1 + 

� , �28�


2 = 1 − 4	�1 − 	��1 − exp�− �V1�� , �29�

DIFFUSION IN A ONE-DIMENSIONAL SYSTEM WITH… PHYSICAL REVIEW B 75, 115403 �2007�

115403-3



F3�	� = �• • • � =
�• • �2

�•�
, �30�

F3h�	� = �• � • � =
�� • �2

���
. �31�

With these expressions the diffusion coefficient becomes, af-
ter simplification,

D�	� = D0
�1 − r�



	1 + A1r + �1 − r�	�A1 + B1 + C11

��	 + �1 − 	�r��
 ,

r =

 − 1


 + 1
. �32�

If we set C11=0 here we recover Zwerger’s result,9 effec-
tively.

The factorization is also behind the fact that the diffusiv-
ity can be expressed as a product of the susceptibilitiy and
the average hopping rate, i.e., the Reed-Ehrlich form. We
now show this form is rigorously valid for a 1D system with
nearest neighbor interactions, i.e., we want to rewrite Eq.
�23�, here in diagrammatic form,

D�	� = D0�1 +
d

d	
�A1�• • � + A1�• • � � − B1�• � • ��

+ C11�• • � • �
d

d	
�ln

�• • • • �
�• • � • ��
 , �33�

=
1

2
a2�−1�Wi

��n� + Wi+1
� �n�� , �34�

=D0�−1��• � � + A1�• • � � + B1�• � • � + C11�• • � • �� ,

�35�

where

�−1 =� ���

�	
�

T
= �
	�1 − 	��−1 �36�

is the inverse susceptibility, given as a derivative of the
chemical potential

exp���� =

 − 1 + 2	


 + 1 − 2	
exp��V1� .

To show that Eqs. �33� and �35� are equal we first elimi-
nate B1 in favor of A1 by using detailed balance Eq. �11�. In
this new expression A1 and C11 are arbitrary functions of
temperature alone, to be chosen independently of each other
according to the kinetics envisaged. Thus the terms multiply-
ing them must be equal on either side, e.g., for the terms
independent of A1 and C11 we must have

1 + �1 − e−�V1�
d

d	
�• � • � = �• � ��−1. �37�

This can be shown by direct differentiation. A more involved
identity follows from the terms proportional to A1. As for the

C11 term this is almost trivial because �Appendix B�

�• • • • �
�• • � • �

=
�• • • �
�• � • �

= exp��� − 2�V1� �38�

with further forms given after factorization into two-site cor-
relators and with use of the identity

�• • ��� �� = e−�V1�• � �2. �39�

IV. RESULTS FOR NEAREST NEIGHBOR
INTERACTIONS ONLY

In this section we will give explicit results for various
choices of diffusion kinetics, namely initial state interactions
�B1=C11=0�, final state interactions �A1=C11=0�, symmetric
�initial and final state� interactions �A1=−B1 ,C11=0�; we
compare these with cases where C11 is chosen nonzero. Table
I summarizes various limiting behaviors of the diffusivity,
discussed below, in the cases of strong nearest neighbor re-
pulsion or attraction which follow from these choices.

A. Initial state interactions

In this scenario one assumes that only the initial neigh-
borhood of the hopping particle is important, i.e., that the
hopping probability is not influenced by the final environ-
ment, and is the one encountered frequently in the literature.
In the picture of transition state theory this corresponds to
the situation where the accommodation coefficient is unity,
namely, that the particle will complete the hop once it is on
top of the diffusion barrier between the sites. With B1=0
detailed balance gives

A1 = e�V1 − 1. �40�

Consistent with this scenario, we choose C11=0.
In Fig. 2�a� we show the behaviour with coverage of the

diffusivity and the average hopping rate, both normalized to
the values for a noninteracting system, for several values of
�V1. For sufficiently large repulsion and attraction we obtain
the analytic forms of D shown in Table I, for this case, by
using the limiting forms of 
. In particular, for large repul-
sion and 	�1/2, 
→ + �1−2	� and D /D0→ �1−2	�−2,
while for 	�1/2, 
→−�1−2	� and D /D0→A1	−2. Thus
diffusion is accelerated above 1/2 ML, exponentially in the
interaction strength. If one performs an Arrhenius analysis of
D, i.e., by assigning

D/D0 = � exp�− �Eb� �41�

and determining the prefactor � and the diffusion barrier Eb
�relative to that of an isolated particle�, one finds a barrier
stepping down from its value at low coverage, by −V1,
around 1/2 ML. The coverage variation of the barrier and
prefactor for this case appear elsewhere.10 For sufficiently
strong attraction 
→ �	�1−	��1/2 exp�−�V1 /2�, D /D0→ �1
−	� /2
3 and the diffusion decreases rapidly with the inter-
action strength.

B. Final state interactions

In this scenario the final neighborhood of the hopping
particle is relevant. We set A1=0 and get
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B1 = e−�V1 − 1. �42�

Again, we choose C11=0, to ensure that the initial neighbor-
hood is irrelevant. Figure 2�b� shows the coverage depen-
dence of D and �W�, for the same parameters as Fig. 2�a�.
The effects of this choice of kinetics on the diffusivity are
just the opposite to those for the case above. Thus, above 1/2
ML, D decreases below D�	=0� for any moderate repulsion
while it must eventually increase above D�0� for moderate
attraction. �If the ordinate of Fig. 2�b� is set to a logarithmic
scale then a transposition of the curves of Fig. 2�a� about 1 /2
ML is produced, with appropriate shifting along the ordi-
nate.� In particular, for sufficiently strong repulsion the sys-
tem behaves as one with nearest neighbor exclusion, i.e., the
�empty� site to which the particle is hopping cannot have an
occupied neighbor. Consequently, �W� must decrease with
increasing coverage and vanish as 	→1/2; because �−1 is

diverging in the vicinity of this point D rises, instead, and
then decreases abruptly above 1/2 ML. One finds D /D0
→ �1−	�−2 for 	�1/2, i.e., finite at 1 /2 ML.

C. Initial and final state interactions

We treat several scenarios under this heading. First, we
extend the above two cases by allowing C11 to be finite. An
obvious physical choice is to specify particle-hole symmetry
for the diffusivity in addition to the above constraints.

Case I: A1=−C11=e�V1 −1 ,B1=0. Figure 2�c� exhibits this
particle-hole symmetry in D�	�, with a logarithmic scale
similar to Fig. 2�a�. For strong repulsion D diverges around
1/2 ML as �1−2	�−1�1−	�−2. The symmetric increase and
decrease of D about 1 /2 ML for V1�0 follows from that of
�W�: its form in Eq. �35� becomes ��• � �+A1�•• � � �� so that
hopping is accelerated by the interaction in the initial con-

TABLE I. Limiting forms of the diffusivities for different kinetics and extreme repulsion and attraction between nearest neighbors.

Kinetics A1 B1 C11 �V1→
 �V1→−


initial state e�V1 −1 0 0 �1−2	�−2 ,	�1/2
	−2e�V1 ,	�1/2

1

2
�1−	��	�1−	��−3/2e3�V1/2

−A1 �1−2	�−1�1−	�−2 1

2
�	�1−	��−3/2e3�V1/2

final state 0 e−�V1 −1 0 �1−	�−2 ,	�1/2
�2	−1�−1e−�V1 ,	�1/2

1

2
	�	�1−	��−3/2e�V1/2

−B1 �1−	�−2 1

2
�	�1−	��−1e�V1

p-h symmetry tanh��V1 /2� −A1 0 �1−	�−2 1

2
�	�1−	��−3/2e3�V1/2

p-h asymmetry tanh��V1 /2� −A1 −A1 �1−	�−2 ,	�1/2
�2	−1�−1e−�V1 ,	�1/2

1

2
	�	�1−	��−3/2e�V1/2

−B1 �1−	�−2 ,	�1/2
2	−2 ,	�1/2

FIG. 2. The coverage dependence of the diffusivity, D, and the average hopping rate �W� for varying first neighbor interaction strength
and hopping kinetics; each displayed relative to its value for a noninteracting adsorbate DR=D /D0, �D0=J0a2�, �WR�= �W� / �W0�, ��W0�
=J0	�1−	��. DR is shown for V1=1000kB K, T=100 K �solid line�, T=200 K �dash�, T=500 K �dash-dot�, and V1=−1000kB K, T
=200 K �long dash�; �WR� �dotted line� is shown for the extreme repulsion and attraction only. Hopping kinetics: initial state interactions
only, A1=e�V1 −1, panel �a�; final state interactions only, B1=e−�V1 −1, panel �b�; initial and final state interactions with C11=−A1, panel �c�,
C11=−B1, panel �d�; initial and final state interactions with A1=−B1=tanh��V1 /2� and C11=−A1, panel �e�, C11=−B1, panel �f�.
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figuration �A1�1� provided the neighboring site of the final
state is also empty; the probability of this final state configu-
ration �• � • � � is a maximum at 	=1/2 and decreases steadily
thereafter. For initial-state attraction, on the other hand, the
pertinent correlators for Figs. 2�a� and 2�c� are similar, �••
� ���•• � � �, except as monolayer coverage is approached and
the magnitude of D is similar as a result.

Case II: B1=−C11=e−�V1 −1 ,A1=0. For sufficiently strong
interactions the resulting curves for D and �W� in Fig. 2�d�.
are the same as those in Fig. 2�b� for 	�1/2 and the reflec-
tions of these for 	�1/2. Again this symmetry arises from
the correlator combination in �W�, which can be written as
��• � �− �1−e−�V1���• � •��; the second correlator is again that of
case I but it now specifies the configuration of the initial
state.

Next we consider cases where both the initial and final
states fully influence the kinetics, e.g., with particle repul-
sion, a neighbor to the hopping particle in its initial configu-
ration aids the hop while a neighbor in the final configuration
hinders it. This is achieved by setting A1=−�B1 where � is a
parameter of order unity; we have a symmetric influence
with �=1, a choice also made by Dieterich et al.1 and
Zwerger.9 We illustrate D and �W� for three choices of C11

made already.
Case III: A1=−B1=tanh��V1 /2� ,C11=0. This case was

discussed originally by Zwerger and gives rise to a particle-
hole-symmetric diffusivity. Its coverage dependence is simi-
lar to that of Fig. 2�d� and identical in the limit of strong
repulsion; for strong attraction the limiting value differs, see
Table I.

Case IV: A1=−B1=tanh��V1 /2� ,C11=−A1 �Fig. 2�e��.
The particle-hole symmetry is maximally broken with D�	
=1� /D0=1+C11. For particle repulsion the coverage depen-
dence of D is nearly identical to that of Fig. 2�b�. For strong
repulsion �A1→1� it is easy to see why – �W�J0

−1→ �• � ��
+ �• • � ����• � �� for all 	.

Case V: A1=−B1=tanh��V1 /2� ,C11=−B1 �Fig. 2�f��. For
repulsive interactions the peak value of D is about twice as
large as the previous cases. Again, D�1� /D0=1+C11.

V. DIFFUSION BEYOND FIRST NEIGHBOR
INTERACTIONS

A. Diffusivity

We now generalize our approach to include second near-
est neighbor �V2� and trio �Vt� interactions between particles.
The general forms of the transition probabilities Eqs. �8� and
�9� now expand to sixteen terms each, for example,

Wi
��n� = J0	ni�1 − ni+1��1 + ni−1„A1 + ni−2�A11 + A111ni+2�…

+ ni−2�1 − ni−1��A10 + A101ni+2� + A1101ni−2ni−1

��1 − ni+2�ni+3 + „�B111ni−1 + B11�ni+3 + B1…ni+2

+ �B101ni−1 + B10��1 − ni+2�ni+3 + B1101ni−2

��1 − ni−1�ni+2ni+3 + C11ni−1ni+2 + ni−2ni+3

�„C1001�1 − ni−1��1 − ni+2� + C1111ni−1ni+2…�
 �43�

with a similar expression for Wi+1
� �n�. The labels of the co-

efficients here specify the occupations of the neighborhood
of the pair of sites exchanging the particle. The A and B
coefficients are related by detailed balance; there are now
three C coefficients as free parameters which attend the com-
pletely symmetric neighborhood. Some details about the re-
lations between these parameters and their values for some
choices of kinetics are gathered in Appendix A. We calculate
the average current through a bond and convert this to a local
current j�x , t� by introducing additional time and space-
dependent correlators, ranging up to six sites. The majority
of these are asymmetric with respect to a reflection about
their midpoint; we distinguish these asymmetric pairs by su-
perscripts ��, ��, see F4h

� ,F4h
� , and list one member of each

pair, only, obtaining the other by replacing the indices i+a
by i−a for a=1,2 ,3:

F4�x� = �ni−1nini+1ni+2� ,

F42h�x� = �ni−1�1 − ni��1 − ni+1�ni+2� ,

F5h1�x� = �ni−2ni−1�1 − ni�ni+1ni+2� ,

F5h
� �x� = �ni−2ni−1ni�1 − ni+1�ni+2� ,

F52h
� �x� = �ni−2ni−1�1 − ni��1 − ni+1�ni+2� ,

F5h2�x� = �ni−2�1 − ni−1�ni�1 − ni+1�ni+2� ,

F6h
� �x� = �ni−3ni−2ni−1�1 − ni�ni+1ni+2� ,

F62h
� �x� = �ni−3ni−2ni−1�1 − ni��1 − ni+1�ni+2� ,

F6h2
� �x� = �ni−3ni−2�1 − ni−1�ni�1 − ni+1�ni+2� ,

F63h
� �x� = �ni−3�1 − ni−2�ni−1�1 − ni��1 − ni+1�ni+2� . �44�

The expansion of j�x , t� in the spatial gradient gives terms
with the general form of Eq. �20�, namely, direct spatial de-
rivatives of combinations of all correlators and differences of
all pairs of asymmetric correlators. These differences can be
evaluated by factorization of the correlators but now in two-
site overlap, as this is exact for interactions over two lattice
sites for a 1D system in local equilibrium. For example, in
place of Eq. �25� we have

F4h
� �x� − F4h

� �x� =
�ni−2ni−1�1 − ni���ni−1�1 − ni�ni+1�

�ni−1�1 − ni��

−
�ni−1�1 − ni�ni+1���1 − ni�ni+1ni+2�

��1 − ni�ni+1�
�45�

=− a
F3h

�	 − F2��3
�F2

�x
− 2

�F3

�x
− �2

�	

�x
−

�F2

�x
� �F2 − F3�

�	 − F2� �
�46�
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=− aG4h�	�
�	

�x
�47�

which defines a function of the local density G4h�	�x� , t�
analogous to Eq. �27�. Because the parent correlator, F4h�x�
=F3h�F2−F3� / �	−F2�, can be factored from this expression
we may also write

G4h�	� = F4h� 1

�F2 − F3�
d

d	
�3F2 − 2F3�

−
1

�	 − F2�
d

d	
�2	 − F2�� , �48�

=F4hH4h. �49�

All asymmetric differences can be written in this manner.
The final expression for the diffusivity is

D�	�/D0 = 1 + 2A1F2� + �3A11 − A1�F3� + �3A10 − B1�F3h�

− 2A11F4� − 2B10F42h� + C11�G4h − F4h� � + A10

��G4h − 3F4h� � − B11�G4h + F4h� � + A111�G5h + F5h� �

− B111F5h1� + A101F5h2� + B101�G52h − F52h� �

+ C1111�G6h − F6h� � + A1101�G62h − F62h� �

− B1011�G6h2 − F6h2� � + C1001�G63h − F63h� � , �50�

where the prime indicates a derivative of the particular cor-
relator with respect to coverage 	. The functions H


=G
 /F
 are listed in Appendix B.
Although it is not obvious, this expression also transforms

to the Reed-Ehrlich product form Eq. �34� for arbitrary val-
ues of the kinetic coefficients, provided only that they satisfy
detailed balance. The clue that the transformation exists is
provided by the multipliers of the free parameters
C1111,C1001 in Eq. �50�. Both of these can be written as a
product of �−1 and the corresponding correlator, directly. For
example, using �B10� we have,

�G6h − F6h� � = �F6hH6h − F6h� � �51�

=− �••••••�
d

d	
ln

�••• � ••�
�••••••�

�	

�x
. �52�

The quotient here can be factored down to Eq. �B5�; �−1

follows. Although we have no analytical proof of the trans-
formation for the remaining terms in Eq. �50�, due to the
nonlinear relations between correlators, we have shown it to
desired numerical precision. As we have employed both lin-
ear and nonlinear interactions, by extension, we can expect
the product form of the diffusivity to exist for any interac-
tions between particles on a 1D lattice and for the most gen-
eral forms of the kinetic coefficients.

B. Results

With two additional interactions and many more options
for the detailed kinetics of hopping we must select just a few
representative cases to illustrate new features and highlight

the intricate interplay between the effects of interactions and
kinetics. To contain the number of examples we note that if
all interactions sum up to a net attraction then, typically, the
coverage dependence of the diffusivity is similar to that il-
lustrated in Fig. 2 for attractive nearest neighbor interaction
only; we shall not consider such cases again.

For a typical chemisorption system, such as CO on tran-
sition or noble metals, the first neighbor interaction is
strongly repulsive and weaker further neighbor interactions
can be either attractive or repulsive. These cases are exem-
plified in the figures below where we choose the same range
for V1 /kBT as in Fig. 2.

In Fig. 3�a� we have initial state interactions only �the
seven nonzero kinetic coefficients are given in Appendix A�,
as the extension of Fig. 2�a�. For a weaker second neighbor
repulsion two ordered structures occur, namely, at coverages
1/3 and 2/3 ML, which give rise to two peaks in the inverse
susceptibility �see Fig. 4� and two corresponding steep rises
in the diffusivity; these are washed out as temperature is
increased. A clearer picture of the underlying energetics
emerges from an Arrhenius analysis of several isotherms of
D /D0, spanning low to moderate temperatures. The barrier,
Eb, clearly exhibits the effect of the neighbors on the hop-
ping particle �Fig. 3�b��. At low temperature and at coverage
1/3 �plus one particle� the structure around the hopping par-
ticle ��� is • � � • � � • � � •, i.e. it interacts with one first and
one second neighbor initially, escaping both after the jump.
Thus around 1/3 ML the activation barrier is reduced by
V1+V2. Similarly, at 2 /3 ML, the equilibrium structure has 2
of every 3 neighboring sites occupied and the hopping par-
ticle sees an additional second neighbor initially. Corre-
spondingly the barrier is reduced by V2 above this coverage.

FIG. 3. �a� The coverage dependence of the diffusivity for first
and second neighbor repulsions of V1=2V2=1000kB K and tem-
peratures T=100 K �solid line�, T=200 K �dash�, T=500 K �dash-
dot�; and the average hopping rate for T=100 K �dotted line�. Hop-
ping kinetics have initial state interactions. �b� The change of the
hopping barrier Eb with coverage obtained from a differential, isos-
teric Arrhenius analysis of the diffusivity in panel �a�, for the same
temperatures; the standard linear fit through the isosteres �tempera-
ture average� is shown as a dotted line. �c� Corresponding prefactor
�. �d� As panel �a� but with the kinetics of final state interactions.
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The prefactor, �, being a measure of the order �change in
entropy� of the adsorbate shows minima at these coverages
�Fig. 3�c��. For final state interactions alone, all effects and
results are essentially the converse of the above, Fig. 3�d�.
Thus, for strong repulsion, D /D0 initially rises for 	�1/3,
as �1−2	�−2; this is purely an entropic effect arising from
first and second neighbor exclusion, there being no energy
cost to hop below 1/3 ML. Above this coverage D /D0 drops
by exp�−�V2� as the hopping particle sees a second neighbor
when in its final state; at 2 /3 ML, it plummets again, by
exp�−��V1+V2��, due to the second well-ordered neighbor-
hood. An Arrhenius analysis produces the reflections of Figs.
3�b� and 3�c� �about 	=1/2 and Eb=0�.

Next we consider some cases of initial and final state
interactions. Among the many choices available for the ki-
netics we shall follow cases III–V in the previous section,
with the generalisation of the condition A1=−B1 to all such
pairs, Amn. . .=−Bnm. . . �see Appendix A�, and three sets of the
remaining parameters: C1001=C1111=0, and C11=0 �case VI�,
C11=−A1 �case VII�, C11=−B1 �case VIII�.

Case VI �Fig. 5�a��. D is symmetric about 1 /2 ML for this
choice of the kinetic coefficients, see Eq. �A9�. For low
enough temperature the effect of the ordering of the adsor-
bate on the diffusivity for 	�1/3 has a similar result to that
of final state interactions. However a hopping particle expe-
riences no energy change as a result of its jump for 1 /3
�	�1/2 and the average hopping rate �W� while passing
through a minimum at 1/3 ML, does not change signifi-
cantly, with the result that D does not diminish much, either,
in this region. This is confirmed by a differential Arrhenius
analysis which shows, again, that the variation of D at lowest
temperatures is due to entropy changes alone. �Note that a
standard analysis, a straight line fitted to isosteres of ln�D� vs
1/T, gives a misleading account of the prefactor because the
isosteres are curved for this example at high temperature.�

Case VII. �Fig. 5�b��. Here �W�, hence D, decreases ex-
ponentially with interaction strength above 2/3 ML for low
temperature. This case is the counterpart to Fig. 2�e� and a

similar analysis of the contributions to �W� explains the de-
crease: The symmetry-breaking term C11�• • � •� subtracts
from A1�• • �� to give A1�• • � �� �with A1=tanh���V1−V2� /2�
now�; this correlator diminshes above 1/2 ML and rapidly
above 2/3 ML. An Arrhenius analysis confirms a barrier of
�V1−V2� at 2 /3 ML.

Case VIII. �Fig. 5�c��. Because the symmetry-breaking
factor only adds the term A1�• • � •� to the expression for �W�
in case VII, the average hopping rate and D can increase
modestly, only, above 2/3 ML; compare the first-neighbor-
only counterpart, Fig. 2�f�.

These three cases show that the coverage variation of the
diffusivity is noticeably affected by the variation in just one
of several kinetic coefficients; variations of C1001 or C1111
produce different results again. In Fig. 6 we present a few
results for other interactions. In panels �a�, �b� we have
changed the sign of V2 to have attraction between second
neighbors. There is only one ordered structure because, at
low temperature, nearest neighbor sites are not occupied un-
til coverage 1/2 is reached. Here the chemical potential rises
by 2V1 and the inverse susceptibility exhibits a sharp peak,
with deep minima at 1 /4, 3 /4 ML associated with the second
neighbor attraction �see Fig. 4�. This behavior of �−1 is re-
flected in the diffusivity for temperatures smaller than about
V1 /kB. Figure 6�a� has initial state interactions for the kinet-
ics. Figure 6�b� has the coefficients of case VII �initial and
final state interactions with C11=−A1�; if C11=0 instead, then
D and �W� above 1/2 ML would reflect the behavior shown
below 1/2 ML in panel �b�; for C11=−B1, however, D and
�W� are not dissimilar to panel �a�. In Figs. 6�c� and 6�d� we
supplement the interactions of Figs. 3 and 5 with a trio at-
traction, Vt=−V2. In panel �c� we have again assigned initial
state interactions only. Not surprisingly, the effect of this
additional attraction is to offset the rise of the diffusivity
above 1/3 ML in Fig. 3�a�. Conversely, a trio repulsion en-

FIG. 4. Dependence of the inverse susceptibility of a 1D adsor-
bate on coverage and temperature for two interaction sets, �i� V1

=2V2=1000kB K �upper 3 lines at 1 /3 ML�, T=100 K �solid�, T
=200 K �dash�, T=500 K �dash-dot�, and �ii� V1=−2V2

=1000kB K, T=300 K �dotted�, T=500 K �dash-dot�, T=1000 K
�long dash�.

FIG. 5. The diffusivity and average hopping rate for the inter-
actions and temperatures of Fig. 3 and for the hopping kinetics of
initial and final state interactions varying: Amn¯=−Bnm¯

, C1001

=C1111=0, and C11=0 �panel �a��, C11=−A1 �panel �b��, C11=−B1

�panel �c��.
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hances the rise of D around 2/3 ML by a factor exp��Vt�. In
panel �d� the kinetic coefficients are those of Case VI; the
trio attraction now suppresses, completely, both the mini-
mum of �W� and the peak of D around 2/3 ML in Fig. 5�a�.

As a final, but significant, example of the interplay be-
tween the interactions and kinetics, we present in Fig. 7 two
panels generated with distinct values of both sets of param-
eters. Panel �a� has the interactions of Fig. 3�d� �V1=2V2

=1000kBK� and with a modification to the kinetics there by
setting C11=C1111=−A1. The nonzero value of C1111 intro-
duces just one more initial state into the kinetics. The effect
of this choice for the free parameters is to make the diffusiv-
ity almost symmetric around 1/2 ML, except at highest tem-
perature. In contrast, panel �b� has this symmetry enforced
with the standard choice of initial-and-final state interactions
�case VI� but now with the interactions interchanged V1
=1/2V2=500kBK. But for an adjustment in scale, the average
hopping rates and diffusivities are quite similar in these two
panels. Not surprisingly, a standard Arrhenius analysis does
not differentiate the interactions in these two cases. Other
examples of distinct interaction sets and kinetic parameters
producing a similar coverage dependence of the diffusivity
exist.

VI. DISCUSSION AND SUMMARY

By applying a gradient expansion of the correlators in the
diffusion current of a 1D adsorbate, we have derived analytic
expressions for the collective diffusivity as a function of lo-
cal coverage, valid for all choices of the hopping kinetics and
lateral interactions out to second neighbors, including non-
linear �trio� interactions. Also, we have shown that the diffu-
sivity can be expressed as a product of the average hopping
rate �a kinetic factor� and the inverse susceptibility �a ther-
modynamic factor�. Underpinning these results is the exact
factorization of correlators down as far as �m+1�-site quan-
tities, with m-site overlap, for interactions to mth neighbors.
Thus the Reed-Ehrlich product form should exist for any
range of interactions and for any forms of the kinetic coeffi-
cients satisfying detailed balance. Our calculational method
is transparent and the more so by employing diagrammatic
representations of the correlators where possible.

We have presented numerical examples of the coverage
and temperature dependence of the diffusivity for a range of
interactions and choices of kinetic coefficients. Of note is the
fact that effects of one choice of interactions and kinetics can
be mimicked, or nearly so, with a different choice of one or
both sets of parameters. Only the case of initial-state inter-
actions for the kinetics with significant particle repulsions
stands apart: here the diffusivity increases exponentially with
the interaction strength as the coverage increases through
that of the ordered structures. For other choices of the kinet-
ics, a unique interpretation of features, such as peaks in the
diffusivity, as due to a particular set of interactions is not
possible. Thus one needs, first, equilibrium data on a particu-
lar adsorbate to extract the interaction parameters before one
can attempt to extract the kinetics from the diffusion data.
This situation is very much akin to that of interpreting ther-
mal desorption spectra, where it has been demonstrated, re-
peatedly, that a unique description of a particular adsorbate
can only be achieved if a large set of equilibrium and kinetic
�adsorption-desorption� data is analyzed.21

For the case of first neighbor interaction alone, the various
diffusivity results arose in part from the choices of the free
parameter C11. In previous work this parameter has been
ignored or assumed to vanish, for computational efficacy. In
particular, in his examination of diffusivity in 1D using lin-

FIG. 6. �a�,�b� The diffusivity for first neighbor repulsion and
second neighbor attractions of V1=−2V2=1000kB K, and tempera-
tures T=300 K �solid line�, T=500 K �dash�, T=1000 K �dash-
dot�; and the average hopping rate for T=300 K �dotted line�. Hop-
ping kinetics are those of initial state interactions only �a� and case
VII �b�. �c�,�d� Interactions and temperatures of Fig. 3 with a trio
attraction added, i.e., V1=2V2=−2Vt=1000kB K, and initial state
interactions only �c� or symmetric initial and final state interactions
�d�.

FIG. 7. �a� The diffusivity and average hopping rate for the
interactions and temperatures of Fig. 3 �V1=2V2=1000kB K�, and
kinetic coefficients assigned those of final state interactions with
C11=C1111=−A1 in addition. �b� Interactions of panel �a� inter-
changed �2V1=V2=1000kB K� and kinetic coefficients those of
symmetric initial and final state interactions.
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ear response theory, Zwerger9 assumed C11=0; in a corre-
sponding examination of conductivity in 1D, Singer and
Peschel20 did the same. We repeat their argument: The
Green-Kubo expression for the generalised conductivity for a
1D lattice is

���� = ��
� − �Ns
−1�

0




dt exp�i�t��J�t�J�0�� , �53�

��
� =
�

2
a2��Wi

��n�� + �Wi+1
� �n��� . �54�

The collective diffusion coefficient is obtained from the dc
conductivity and the static structure factor S�q�, as D
=��0� /	�S�q=0�, i.e., in the hydrodynamic limit. Here J is
the net particle current, in the present case,

J = �
i

ji = C11�
i

ni−1�1 − ni�ni+1 �55�

with the A1 and B1 terms summing to zero. Thus, for C11
=0, the calculation of D simplifies to the evaluation of ��
�
and S�0� �i.e., �−1� and the product form of D is guaranteed.
No such restriction is necessary in our approach. When in-
teractions to second neighbors are included the number of
terms in Eq. �55� increases to nine, these corresponding to all
the asymmetric correlators present in �Wi�n��. Clearly, the
neglect of the second term in Eq. �53� may grossly misrep-
resent the diffusivity in this case.

We discuss, briefly, other approaches to the analytical cal-
culation of the diffusivity which are applicable to 1D sys-
tems. Kikuchi developed the path probability method for dif-
fusion as the nonequilibrium extension of the cluster
variation method.12,13 In the cluster method correlators are
also factorized. Applied to a one-dimensional system with
nearest neighbor interactions22 his result has the kinetics of
initial state interactions. However, the path probability
method is not transparent and relatively complicated to ex-
tend to more general cases, including 2D systems, without
severe approximations.23

Chvoj14 has developed a similar method to ours, using a
Kramers-Moyal expansion of the master equation to intro-
duce a coverage gradient term as a starting point for the
evaluation of the diffusivity. He evaluates the latter, for a
square lattice, by invoking the quasichemical approximation
with first neighbor interaction and initial-state kinetics with
saddle-point modifications; the quasichemical approximation
is again a factorization result. For strong interaction his re-
sults are in contradiction to earlier work based on the Green-
Kubo formula.

Recently Gortel et al10 have calculated the diffusivity of a
1D adsorbate with nearest neighbor interactions using a
variational technique to extract the leading eigenvalue of the
transition rate matrix in the master equation �3�. Their for-
mula for D is equivalent to Eq. �32� upon rearrangement and
results are presented for the case of initial-state interactions,
only. In a subsequent paper24 the product form of the diffu-
sivity is realized and long-range nearest neighbor interac-
tions are treated. However, their method is computationally
involved, even for the simplest case.

In contrast to the above approaches, extensions of our
method in 1D to include more than one binding site, particle
jumps longer than one site, or other specific kinetics �e.g.,
saddle point effects5,14�, appear to be straightforward. Only
the number and complexity of the correlators appearing in
Eq. �34� increases. However, their factorization will simplify
the results; the latter should again be transparent in interpre-
tation as, for example, in the case of the equilibrium and
sticking properties of a two-binding site adsorbate.25 The
method also lends itself to an analysis of diffusion in 2D
systems; the work reported here was the precursor to such an
analysis. The gradient expansion is now that of correlators in
2D which, assuming factorization, can again be expanded in
terms of the local density and functions which can be calcu-
lated exactly, e.g., by transfer matrix methods, or otherwise.
Although factorization is not exact in 2D, typically it is a
good approximation if performed properly and certainly for
strong interactions. Rigorous results again follow.26

There are few experimental realisations of diffusion in
1D; quasi-one-dimensional properties occur for adsorption in
carbon nanotubes, similarly for metals adsorbed on the
Si�111�5�2-Au structure.27,28 In any case, our results also
have implications for the validity of modeling of diffusion
for 2D adsorbates. Even with the restriction to nearest neigh-
bor interactions, there are many more choices for the kinetics
in 2D. Thus the increased possibility of misinterpretation of
features observed in the diffusivity—as due a larger set of
interactions operating, as opposed to a particular kinetics.
�The literature tends to emphasise the kinetics of initial-state
interactions.� We also note that most analytical work29 em-
ploying linear response theory disregards the dynamic corre-
lations in Eq. �53�. However, the net current is nonzero in 2D
for any choice of kinetics and the use of the product form of
D is a simplifying assumption that is factually incorrect so
that the gradient expansion presented here is a viable
alternative.26

As a final comment we note that the complete time evo-
lution of an interacting adsorbate out of equilibrium of
course demands a full diagonalization of the transition ma-
trix, as done elsewhere.15 Likewise, a full microscopic un-
derstanding of the hopping kinetics demands a quantum me-
chanical calculation of the transition probabilities coupled
with the derivation of the master equation as done elsewhere
for long jumps.6,7
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APPENDIX A

Here we present some details concerning the diffusion
kinetics scenarios for interactions on the 1D lattice out to
second neighbors. We write the generalization of Eq. �10�
and a similar expression for Wi+1

� �n� as

Wi
��n� = J0ni�1 − ni+1� �

nk=0,1
Dni−2ni−1ni+2ni+3

ñi−2ñi−1ñi+2ñi+3,

�A1�
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Wi+1
� �n� = J0�1 − ni�ni+1 �

nk=0,1
Dni+3ni+3ni−1ni−2

ñi−2ñi−1ñi+2ñi+3,

�A2�

where ñk= �1−nk� if nk=0 or ñk=nk if nk=1 and the sub-
scripts of the D coefficients specifiy the occupation neigh-
borhood of the hopping pair. Under a reflection of this neigh-
borhood, 4 of the 16 coefficients have their subscript order
unchanged and the other 12 are paired by detailed balance,
giving 6 constraints. In terms of the interaction parameters
un=exp��Vn� , �n=1,2� ,v=exp��Vt� the latter are

D0100 = u1u2
−1D0010, �A3�

D1000 = u2D0001, �A4�

D1100 = u1vD0011, �A5�

D1010 = u1
−1u2

2D0101, �A6�

D1110 = u2vD0111, �A7�

D1101 = u1u2
−1vD1011. �A8�

The indexed coefficients introduced in Eq. �43� are then ob-
tained by expansion of Eqs. �A1� and �A2�. With D0000=1,
we have, as examples, A1=D0100−1 ,B1=D0010−1, A11
=D1100−D0100, C11=D0110−D0100−D0010+1, etc. Various
interaction-based kinetics can be obtained by specifying the
6 coefficients appearing on the left hand side of Eqs.
�A3�–�A8�, as well as the three symmetric coefficients
D0110,D1001,D1111 which generate the free parameters
C11,C1001,C1111. The only constraint is that �W��0. A nec-
essary condition for particle-hole symmetry is that D1111
=D0000=1, which translates to

A1 + B1 + C11 + A11 + B11 + A111 + B111 + C1111 = 0

�A9�

the generalization of Eq. �12�. Our three parent scenarios are:
�a� Initial state interactions. The Dmnpq are to reflect the

effect of the neighbors on the hopping rate of the particle in
its initial state only. The obvious choice is D0100=u1, D1000
=u2, D1100=u1u2v, D1010=u2

2, D1110=u1u2
2v, D1101=u1u2v,

D0110=u1u2, D1001=u2, D1111=u1u2
2v. The nonzero coeffi-

cients generated are A1=u1−1, B1=A10=u2−1, A11=u1�u2v
−1�, A101=A10

2 , A111=A11A10, C11=A1B1.
�b� Final state interactions. The effect of neighbors on rate

of the hopping particle jumping to its final state are the con-
verse of those above. The corresponding choice is D0100
=u2

−1, D1000=1, D1100=u2
−1, D1010=u1

−1, D1110=u1
−1u2

−1, D1101
=u2

−2, D0110=u1
−1u2

−1, D1001=u2
−1, D1111=u1

−1u2
−2v−1. The stan-

dard coefficients mirror those for case �a� with the exchange
of labels A← →B and the inverse interaction parameters:
A1=B10=u2

−1−1, B1=u1
−1−1, B11=u1

−1�u2
−1v−1−1�, B101=B10

2 ,
B111=B11B10,C11=A1B1.

�c� Initial and final state interactions. We choose to gen-
eralize the condition A1=−B1, used for first neighbor inter-
actions alone, to all of our standard coefficients, i.e. A11=

−B11, A111=−B111, etc. This gives the condition Dmnpq
+Dpqmn=2 for 5 of the 6 coefficients appearing in Eqs.
�A3�–�A8�; for the sixth we have D1110+D0111=2D0110. The
three free coefficients then appear as

C11 = D0110 − 1, �A10�

C1001 = D1001 − 1, �A11�

C1111 = D1111 + D0110 − 2. �A12�

If particle-hole symmetry is imposed then C11=C1111 and
there are only two free parameters. The values set by our
choice are

A1 = �u1u2
−1 − 1�/�u1u2

−1 + 1� , �A13�

A10 = �u2 − 1�/�u2 + 1� , �A14�

A11 = �u1v − 1�/�u1v + 1� − A1, �A15�

A101 = �u1
−1u2

2 − 1�/�u1
−1u2

2 + 1� − A10 + A1, �A16�

A111 = �C11 + 1��u2v − 1�/�u2v + 1� − A11, �A17�

A1101 = �u1
−1u2

2 − 1�/�u1
−1u2

2 + 1� + �u1u2
−1v − 1�/�u1u2

−1v + 1�

− A11. �A18�

APPENDIX B

Here we mention our method of calculating the equilib-
rium correlators on a 1D lattice and give the equations for
the functions H
=G
 /F
, which contribute in Eq. �50�, in
terms of them. The standard approach to obtain correlators is
to maximize the system’s �grand� canonical partition func-
tion, subject to the normalization constraints. The latter are
just sums of correlators, here spanning three sites for inter-
actions out to second neighbors; three of these are

�• • � + �• � � = �•� = 	 , �B1�

�• • • � + �• • � � = �• • � , �B2�

�� • � � + �• • � � = �• � � �B3�

with three more obtained from these by exchange of particles
and holes. Correlators spanning more than three sites must
be factored in terms of these two- and three-site functions.
Three additional relations are necessary to solve for the un-
knowns. As examples, we have

�• • � �2

�• • • ��� • � �
= exp��V2� , �B4�

�• • • �3�• � �2

�• • � �2�• � • ��• • �2 = exp��� − ��2V1 + 2V2 + 3Vt�� ,

�B5�
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�• � • �3�� • � ��� � �2

�• � � �4�• � �2 = exp��� − 3�V2� . �B6�

The solution of these nonlinear equations is not always
straightforward for large interaction strengths ���V � �1�. For
a numerically more robust and accurate method, especially
for the coverage-derivatives of the correlators, we have em-
ployed the transfer matrix method to calculate the partition
function.17 Correlators spanning up to six sites are obtained
with this method by using as a basis the states �occupancies�
of a cell of three sites and constructing the matrix of Boltz-
mann weights for the particle interactions within and be-
tween two neighboring cells. The grand partition function is
then obtained as the leading eigenvalue of this 8�8 matrix,
with the coverage given as a derivative with respect to the
chemical potential, �. In practice 	�� ,T�, follows directly
from the corresponding �left and right� eigenvector and the
correlators by the contraction of derivatives of the transfer
matrix with these eigenvectors.

Equations for the functions H
, in terms of these correla-
tors, are given below. The first of these is just a diagram-
matic recasting of Eq. �48�:

H4h =
d�• • � �/d	

�• • � �
+

d�• • �/d	

�• • � �
+

d�� � �/d	

�• � �
, �B7�

H5h = 2
d

d	
ln

�• • • �
�• � • �

+ d�• • �/d	� 1

�• • � �
−

1

�• � �
−

1

�• • �� ,

�B8�

H52h = H4h −
d

d	
ln�• � � • � , �B9�

H6h =
d

d	
ln�• • • • • • � , �B10�

H6h2 = H4h + 2
d

d	
ln

�• � • • �
�• � • �

, �B11�

H62h = H52h + H6h, �B12�

H63h =
d

d	
ln

�• � • � �2

�• � � • �
. �B13�
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