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Electron transport through strained Si1−xGex /Si/Si1−xGex quantum well embedded in relaxed
n-Si1−yGey/strained Si emitter and collector was analyzed and numerically simulated taking into account the
two main processes that are resonant tunneling and thermally activated transfer through the barriers. These
processes were modeled with a system of Schrödinger and kinetic equations resolved self-consistently with the
Poisson equation. Within the optimum domain of composition �0.09�y�0.25, 0.56�x�0.83� and thickness
providing defect free strained Si and Si1−xGex layers, it has been found that resonant tunneling dominates over
the transport mediated by the thermally activated charge transfer for low applied voltages. Peak-to-valley ratio
reaches 11 at room temperature. At high voltages �Vbias�0.8–1.0 V�, thermally activated transfer determines
the electric current passing through the structure.
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I. INTRODUCTION

In the last decades, nanosized structures in the form of
periodic quantum wells and barriers were actively studied
due to their prospects for nanoelectronic devices operating at
THz range.1,2 Traditionally, such devices are designed on the
basis of AIIIBV semiconductors of which good lattice match-
ing provides high quality interfaces important for undis-
turbed charge carrier transport. So far, resonant tunneling
diodes �RTD� operating at 2 THz at room temperature have
been reported.3 However, AIIIBV semiconductors are hardly
integrated with the widely spread SiGe BiCMOS technology.
That is why the opportunity to use SiGe alloy to design
quantum heterostructures appropriate for resonant tunneling
devices is of practical importance.

Recently, resonant tunneling effect at room temperature
with a 1.3–2.4 peak-to-valley ratio has been experimentally
demonstrated with strained Si1−xGex /Si/Si1−xGex quantum
well grown on relaxed Si1−yGey �001� virtual substrate.4 As
compared to a conventional RTD, preconfinement Si regions
have been introduced between the unstrained Si1−yGey inject-
ing n-type contacts and Si1−xGex /Si/Si1−xGex active part.
Suggested in 1991 by Wie and Choi in AIIIBV systems and by
Ismail et al. for SiGe/Si,5 this band structure design �x�y�
�i� reorganizes the three-dimensional �3D� incoming charge
carriers into two-dimensional �2D� electron gas before their
following transfer in the active device part and �ii� increases
the overall conduction band discontinuity. To improve an ef-
ficiency of the structure proposed for RTD application, an
advanced theoretical investigation of the carrier transfer
through the double barrier is required. The anisotropy of the
carrier effective mass and the different conduction band val-
leys in Si and SiGe should be accounted for. In addition, the
“relaxed type” of the conduction band profile of an emitter
formed by the injecting contact and the preconfinement re-

gion supports thermally activated carrier transport.4 In its
turn, the latter can significantly modify the current-voltage
�I-V� characteristics of the device, as it has been observed for
silicon-insulator multiple quantum wells.6,7

The goal of this paper is presentation of a comprehensive
model of electron transport mechanisms through
Si1−xGex /Si/Si1−xGex quantum well and results of a numeri-
cal simulation of the I-V curve. The model is based on the
realistic band structure of Si1−xGex and Si layers modified by
internal strains, i.e., including the different conduction-band
valleys with anisotropic effective masses of electrons. More-
over, special attention is paid to the effects of the charge
localization in the Si emitter accumulation layer.

II. BAND DIAGRAM DESIGN

The general conditions of a quantum effects appearance in
the systems with potential barriers and wells are observance
of the charge carrier reflection inside the quantum well that
provides the interference of an electron wave, the quantiza-
tion of a transverse energy, and generates quantum levels.
For this, the growth of Si/Si1−xGex heterostructures onto un-
strained Si1−yGey �001� templates by means of the molecular
beam epitaxy or the chemical vapor deposition techniques
have now reached maturity that allows at certain conditions
the fabrication of the appropriate and elaborate strained
stacks of the nanometer-scaled layers with the abrupt, sharp
and defect-free interfaces.8 Due to the important lattice mis-
match between Si and Ge bulk lattice parameters �aSi
=5.4311 Å, aGe=5.6579 Å�, strain versus compositions
however imposes the drastic limitations of the achievable
thickness of a Si1−xGex layer pseudomorphically grown on
the relaxed Si1−yGey. Let us define the mismatch as ��x ,y�
= �a�x�−a�y�� /a�y�, where the lattice parameters a�x� and
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a�y� are interpolated by aSi�1−x�+aGex−cBx�1−x� with a
lattice parameter bowing cB=0.027 Å. The first limitation is
the critical thickness hc at which relaxation occurs by the
formation of dislocations, which are known to strongly im-
pede the electronic transport properties. For a high mismatch
��x ,y��3.0%, the so-called Stranski-Krastanov growth
mode is an additional issue. A complex interplay between the
surface adatom diffusion and the strain field results in the
formation of a dome at a given coverage �SK. In the follow-
ing, we only focus on the main limitation in thickness hc that
is related to the generation of threading dislocations at
Si1−xGex /Si1−yGey strained and/or relaxed heterointerfaces
with moderate mismatch ��x ,y��2.5% �e.g., x�0.85 with
y=0.25�. From another viewpoint, strain versus Ge content
in the Si1−xGex layers controls the band gap, the band split-
ting, the effective masses, and the band discontinuities at
Si1−xGex /Si1−yGey interfaces. Thus, it is the essential engi-
neering tool for designing RTDs and other heterostructures.

Owing to the differences in the energy gaps and electron
affinities, the interchange of silicon and SiGe layers forms
the Si/Si1−xGex /Si type II quantum wells.9 This basic state-
ment has been confirmed by experiment and theory: namely
�1� the band-lineup procedure outlined by Ben Zid et al. in
the framework of the model-solid theory of Van de Walle and
Martin �see Ref. 10 and references therein� and �2� the em-
pirical pseudopotential calculations of Rieger and Vogl,11

both extended to Si1−xGex /Si1−yGey �001� strained and/or re-
laxed heterointerfaces. Hence, while holes are energetically
confined in a strained Si1−xGex well of �0.88x �eV� depth,
electrons injected from an unstrained Si contact layer must
overcome a potential barrier of �0.38x2 �eV�.10 Initially, this
insufficient value of the conduction band offset has prompted
Ismail et al. to develop a RTD structure based on
Si1−xGex /Si/Si1−xGex double barrier sandwiched in n-type-
Si1−yGey /Si emitter and Si/n-type-Si1−yGey collector.5

The energy diagram of the conduction band of this RTD
structure is presented in Fig. 1. The Si and Si1−xGex �x�y�
layers are grown pseudomorphically strained onto a relaxed
Si1−yGey �001� pseudosubstrate thus having tensile and com-
pressive distortion of their lattice parameter, respectively.
Since it is assumed that y�x�0.85, the conduction band

minimum10,11 and the band gap12 are defined by the � critical
point of the Brillouin zone for each constitutive layer of the
stack. The strain splits the sixfold energetically degenerated
� conduction band of unstrained SiGe into two valleys b and
e elongated towards �100� direction denoted as �2 and, four
ellipsoidal valleys a, d and c, f denoted as �4, elongated
towards �010� and �001� directions of the momentum space,
respectively. The energy minimum is �2 for tensile strain
�x�y� and �4 for compressively strained layers �x�y�. Set-
ting as a reference the energy of the � conduction band in
unstrained Si1−yGey, the following first-order approximated
analytical laws of the conduction band discontinuities be-
tween strain-splitted valleys �2 and �4 has been established
using the procedure and parameters of Ref. 10,

�EC
�2−� � �x − y��0.337 + 0.206�x + y� + �0.212 + 0.245x�

��1 + 0.138�x + y��� in units of eV, �1�

�EC
�4−� � �x − y��0.337 + 0.206�x + y� − �0.386 − 0.261x�

��1 + 0.138�x + y��� in units of eV. �2�

The rest of it is a rather large value of the strain splitting
between the �2 and �4 equivalent valleys that is given by:

E�2 − E�4 � �x − y��0.598 + 0.016x�

��1 + 0.138�x + y�� in units of eV. �3�

For unstrained Si1−yGey, the longitudinal and transverse
components of the effective mass tensor for electrons are
weakly dependent upon the composition, being ml�0.9m0
and mt�0.2m0, respectively, where m0 is the free electron
mass.11 As the carrier transport takes places along the �001�
direction, contributions from valleys b and e with mz=ml,
my =mx=mt and the four remaining valleys a, d with mz
=mt, my =mt, mx=ml and c, f with mz=mt, my =ml, mx=mt are
taken into account in this work. For simplicity sake, the dif-
ference of the electron effective masses in the layers having
different compositions and strain states is however disre-
garded, although their changing takes place along the
structure.11

The design of the “relaxed type” Si1−yGey /Si injecting
contacts is a compromise between the highest �EC

�−�2�x
=0,y� discontinuity and the larger thickness of the Si regions
d1 that collect incoming electrons. Widths in the 8–13 nm
range generate the appearance of the quantum levels which
are closely distributed at the bottom of the well, thus ensur-
ing a good 2D preconfinement of the charge carriers. d3
�d1 is an obvious condition as the width d3 of the central
well sets up the energy of the resonant levels. Efficient tun-
neling is provided by the highest Si/Si1−xGex potential bar-
rier �EC

�4−�2 =�EC
�4−�+�EC

�−�2 �hence the highest �EC
�4−��

and the larger barrier width d2. For a realistic epitaxy, it is
arbitrarily assumed that each elemental layer of the structure
has a thickness below the critical thickness and corresponds
to a direct growth of a single Si1−xGex layer onto relaxed
Si1−yGey. This hypothesis on the thermodynamic stability of
each individual strained layer is strictly valid for the first Si
layer in the stack. For that purpose, we use the law of hc
given by Mathews and Blakeslee,13 which is known to be

FIG. 1. The conduction band profile along the strained
n-Si1−yGey /Si/Si1−xGex /Si/Si1−xGex /Si/n-Si1−yGey structure with
the strain-induced energy-splitted bands. The inset shows the six
isoenergetic ellipsoidal surfaces for the unstrained Si1−yGey.

BERASHEVICH et al. PHYSICAL REVIEW B 75, 115336 �2007�

115336-2



pessimistic regarding other models and experimental data in
semiconductor lattice-mismatched cubic systems. Briefly, for
a 60° threading dislocation with a Burger vector magnitude
B=a�x�	2/2, the latter is given in Å units by

hc =
B

2N���x,y�
1 − 	P/4

1 + 	P
ln
1 +

hc

B
� , �4�

where 	P=
C12

C11+C12
is the Poisson ratio for �001� orientation

that is calculated assuming a compositional linear interpola-
tion of the elastic stiffness coefficients Cij�x� given in Ref.
10.

On the basis of these conditions, numerical solutions of
the equations �1�, �2�, and �4� �with N=2� were used to find
out an �x ,y� appropriate composition domain for the struc-
ture design. As one can see in Fig. 2, a pseudosubstrate com-
position y�0.25 limits the critical thickness of the Si pre-
confinement strained layer to d1=10 nm. Hence, the �EC

�−�2

offset cannot exceed 0.15 eV �horizontal solid line�. In addi-
tion, for a preconfinement of the incoming electrons, we do
not allow the Si emitter well depth to be lower than
�EC

�−�2 =0.05 eV �y�0.09�. Another reason for this is to
satisfy an overall barrier height �EC

�4−�2 of 0.15 eV, at least.
�EC

�4−��0.1 eV is then achieved for x�0.56. Within the
assumption of attainable hc for a single Si1−xGex layer, it
ends up that the counterpart for larger values of �EC

�4−� and
�EC

�4−�2 is a thinner d2 barrier width. This is graphically
illustrated in Fig. 2. The appropriate composition domain of
the strained Si1−xGex layers on relaxed Si1−yGey contacts lies
within the gray area marked out in Fig. 2. For instance, with
y=0.25, x should be kept below 0.83 to guarantee a d2
=3 nm minimal thickness of the barrier.

The assumption made is again pessimistic as strain bal-
ancing occurs at each interface of the stack allowing the next
thin layer to keep out an additional excess of stress. This
strain compensation results from the successive tensile and
compressive strain state of the individual layers. In a general
way, the strain compensation is supposed to be partial in this
stack. This means that each layer adds to the overall stress
and leads to an additional critical thickness for the whole
structure. For a periodic superlattice built on a Si/Si1−xGex

bilayer, setting N=0 in Eq. �4� would give a valuable law
with a predicted value of hc �4 times greater than the one
given for a single layer �see Ref. 13�. Nevertheless, if the
RTD stack is symmetrical, it is nonperiodic. Therefore, one
cannot use or extract an extra critical thickness for the whole
structure because it is not possible to predict at which inter-
face a dislocation should be generated. In order to put an
additional constraint on the RTD parameters �x, y, d1, d2, d3�,
one can arbitrarily assume the special case of a full strain
compensation. Obviously, the critical thickness of the overall
stack is not a design-limiting factor in such a case. From the
three strain-balanced criteria given by Ekins-Daukes et al.,14

we have derived the following common formula:

y =
x

1 +

Si


Si1−xGex

2d1 + d3

2d2

1 + x

aGe − aSi − cB�1 − x�
aSi

�M

�
aGe − aSi − cB�1 − x�
aGe − aSi − cB�1 − y�� , �5�

where 
i
�001�= � EY

1−	P
�=

�C11−C12��C11+2C12�

C11
is the �001� elastic

strain-energy parameter for Si and Si1−xGex; EY being the
Young modulus. In the present formula, the exponent M
stands for the chosen criteria, e.g., M =0 for the average-
lattice method, M =1 for the thickness-weighted method, and
M =2 for the zero-stress method. Equation �5� has been
solved for the three criteria setting d1=10 nm, d2=3 nm, and
d3=3 nm. It is worth noting that the numerical difference
between the slope of the curves obtained by the three meth-
ods is small �±0.6% �. As shown in Fig. 2, the main discrep-
ancy �±3.1% � arises when either the lattice parameter bow-
ing or the difference in the elastic stiffness coefficients is
taken into account. Within the optimum domain of composi-
tions �0.09�y�0.25,0.56�x�0.83� set above, this calcu-
lation shows that strain-compensated stacks can be designed
as far as 0.17�

2d2

2d1+d3
�0.59.

III. MODEL OF ELECTRON TRANSPORT

The model of the carrier transport is developed for a
n-Si1−yGey /Si/Si1−xGex /Si/Si1−xGex /Si/n-Si1−yGey device

FIG. 2. The boundary conditions �gray area�
defined by the Si and Si1−xGex critical layer
thickness and band offsets setting up the
germanium fractions �x ,y� for the design
of the relaxed-strained-relaxed n−Si1−yGey /Si/
Si1−xGex /Si/Si1−xGex /Si/n-Si1−yGey symmetri-
cal stack. The optimum domain is cross-hatched
by the isoenergetic solutions of the band dis-
continuities �EC

�4−�2 and �EC
�4−�. Y = f�x� solu-

tions of Eq. �5� for strain-compensated stacks
with d1=10 nm, d2=3 nm, and d3=3 nm: �a�
with M =0, CB=0.027 45 Å and assuming no dif-
ference in the elastic strain energy parameter 
i;
�b� with M =2, CB=0 and taking a compositional
dependence of 
Si1−xGex

.
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in which external n-Si1−yGey /Si and Si/n-Si1−yGey regions
act as an electron injector and a collector for the internal
Si1−xGex /Si/Si1−xGex quantum well. The lower energy con-
duction band is solely considered, that corresponds to the
sixfold �, fourfold �4, and twofold �2 degenerated valleys
for the Si1−yGey injecting contacts, the Si1−xGex potential bar-
riers, and the Si preconfinement regions and the central well,
respectively �see Eq. �3��. Availing that the injector is a
strong electron source, we consider only electron transport in
the device neglecting a minority-hole component.

The energy diagram of the device under an external ap-
plied voltage Vbias and possible mechanisms of the electron
transport are shown schematically in Fig. 3. The elastic tun-
neling turning to the resonant tunneling at the coincidence of
the energy of the injected electrons and the energy levels in
the silicon central quantum well is supposed to be a general
carrier transfer mechanism �mechanism 1 in Fig. 3�. The pre-
confinement Si regions before and after the
Si1−xGex /Si/Si1−xGex stack accumulate electrons. Electrons
fill the states possessing the energy close to the bottom of the
silicon well that can be identified as localized states. Electron
tunneling from these states through the stack provides an
additional component to the charge flow through the device
�mechanism 2 in Fig. 3�. The relatively low potential barriers
for electrons and “relaxed type” of the injecting contacts
open a possibility for thermally activated emission over the
barrier which can be very efficient depending on tempera-
ture, doping, and interface quality �mechanism 3 in Fig. 3�.
The competition of the forward and the reverse thermally
activated electron transfers, which are under nonequilibrium
conditions for an applied external bias that direct charge car-
rier flow toward field vector, is observed.

One of the peculiarities of the model is to take the
thermally activated transfer through the structure into con-
sideration. The presence of the opposite components of
this transfer provides a predominate charge carrier flow
from the preconfinement region back to injecting contact
over the flow of these charge carriers through the
Si1−xGex /Si/Si1−xGex well. Their contribution depends on
the band offset between Si/Si1−yGey and Si/Si1−xGex paths.

The height of the potential barriers, doping, and quality of
interfaces mainly define a prevalence of one of the above

mechanisms. For modeling purpose, the electron charges are
supposed to flow in the z direction that is normal to the layer
planes, as it is shown in Fig. 3. The charge distribution in the
injecting contacts is defined within the Boltzmann approxi-
mation of the Fermi-Dirac statistic,

n�z� = nie exp
 ���z�q − EF�
kBT

� , �6�

where nie is the effective equilibrium concentration of elec-
trons at the contact at zero bias, q is the elementary charge,
kB is the Boltzmann constant, T is the temperature, ��z� is
the electrostatic potential extension along the z direction, and
EF is the Fermi energy. The charge injection occurs from the
emitter �E� and collector �C� of the device. The Fermi energy
is constant EF�E�=EF at the emitter contact and EF�C�=EF

−qVbias at the collector contact. At zero bias, EF�E�=EF�C�
=EF and the charge injections from emitter and collector
contacts are identical. Otherwise, the redistribution of the
higher electron density close to collector contact takes place
and equilibrium between the two current flows is broken.

Electrons fill all available states in the active part of the
device according to the Fermi-Dirac f�E� distribution.6 The
electron density in the active part of the device is described
in the following way:

n�x,y,z� = 2

v



�

�
v�x,y,z��2f�E� , �7�

where the factor of 2 stands for the spin degeneracy and a
summation is performed over all conduction band valleys v
and all available values of the wave vector �; 
v�x ,y ,z� be-
ing one electron wave function. Because of the spatial invari-
ance in the xy plane, the wave function of the electron is
separable 
v�x ,y ,z�=
v�z ,kz���x ,y�, where the transverse
wave function is described by plane waves as ��x ,y�
=exp�ikxx+ ikyy�. The longitudinal wave function 
v�z ,kz�
along the z direction corresponding to wave vector value kz is
one solution of the Schrödinger equation,

−
�2

2

�

�z

 1

mz

�

�z
�
v�z� + V�z�
v�z� = Ez
v�z� , �8�

where � is the reduced Plank’s constant; mz is the effective
electron mass of electron along the z direction. V�z� is the
potential energy of electron defined as follows:

V�z� = − q��z� + �EC�z� , �9�

where �EC�z� is the conduction band profile along the struc-
ture.

Assuming a parabolic dispersion relation in the case of
isoenergetic elliptic surface for the different conduction val-
leys along the whole structure, and after performing integra-
tion over the transverse component of the momentum for the
total electron density, the charge distribution expression is
found to be

FIG. 3. The energy band diagram of the
n-Si1−yGey /Si/Si1−xGex /Si/Si1−xGex /Si/n-Si1−yGey �y=0.20, x
=0.60� stack under an external bias, and carrier behaviors inside the
structure: 1 is the tunneling transfer from extended states, 2 is the
tunneling transfer from the localized states in preconfinement re-
gion, and 3 is the thermally activated carrier transport.
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n�z� =
kBT

��2�

k=1

m


l
*�z,kl�
l�z,kl�g2mt

�ln�1 + exp
EF − E�kl�
kBT

��
+ 


k=1

m


t
*�z,kt�
t�z,kt�g4

	mtml

�ln�1 + exp
EF − E�kt�
kBT

��� , �10�

where the first term describes the contribution from the two
valleys b, e; whereas the second term corresponds to the
contribution from the four valleys a, d and f , c �see inset in
Fig. 1 and Sec. I�. In the above expressions, the summation
over momentum has been replaced by the integration index.
Factors g2=2 and g4=4 stand for the valley degeneracy.

For an analysis of the thermally activated carrier trans-
port, the electron transfer components in two opposite direc-
tions from the preconfinement silicon regions are included.
The rates of electron ni concentrations in the ith point of
mesh are written as6

dni

dt
= gi−1→ini−1 − nigi→i+1 − nigi→i−1 + ni+1gi+1→i, �11�

where ni is the electron concentration in the ith mesh point
�i=1, . . . ,N, where N is the number of mesh points� and the
gi→i+1 ,gi+1→i are the rates of carrier transfer from i to i+1
mesh point and in the opposite direction. This rate that we
have defined within the thermally activated transport theory
includes the image-force effect in the following way:6,15

gi→i+1 = �0 exp
q��i − �i+1�
kBT

�
�exp�− 
�ECi −	q3��i − �i+1�

16��i�0hzi
�� kBT� ,

�12�

where �0 is the permittivity in vacuum, �i is the relative
permittivity of the materials, hzi is the step of the mesh, and
�0 is the frequency of the local carrier oscillations in the
quantum well ��0=1012 s−1 �Ref. 16��. All variables
��z� , �EC�z�, and ��z� have been attached to discrete mesh.
The system of kinetic equations has been solved for the sta-
tionary case.

The charge accumulation in the quantum wells is nonuni-
form and defines the potential distribution in the structure. To
evaluate the potential ��z� drop along the z direction, the
Poisson equation is solved,

�

�z

��z�

�

�z
���z� =

q�ND�z� − n�z��
�0

, �13�

where ND�z� is the ionized donor doping concentration.
The finite-difference method has been applied for the

Schrödinger and the Poisson equation solutions. The real
space along the stack has been divided into discrete uniform

mesh points and equations have been solved within those
discrete spacings. Within this method, the discretization of
the differential equation �8� and the Poisson equation �13�
has been performed by using the three-point finite difference
scheme.17 The interaction procedure is used to obtain a self-
consistent solution of the Schrödinger equation �8�, the ki-
netic equation system for the thermally activated carrier
transport �11�, and the Poisson equation �13�.

After extracting the self-consistent solutions of the
Schrödinger and the Poisson equations providing the poten-
tial distribution to be known, the distribution of the charge
carrier density along the structure is again defined. Finally,
the probability of the resonant tunneling has been determined
by a system of wave function equations which consider the
incident and reflected waves in every point of the discrete
mesh and include the boundary conditions at points 1 and
N,18 according to


l�t�,1 = exp�ikl�t��1�z� + A exp�− ikl�t��1�z� ,


l�t�,N = B exp�ikl�t��N�z� , �14�

where A, B are the amplitude coefficients. Thus, the trans-
mission coefficient for tunneling is given by

T�Ex�z�,,kl�t�� =
kl�t��N�

kl�t��1�
�B�2. �15�

This transmission coefficient includes 3D to 2D resonant
tunneling, namely from injecting contacts to the active part
of the structure, where quantum effects are predominant. Yet,
calculation of the potential profile along the whole structure
within this method misses the current from localized states in
preconfinement regions, which are occupied according to the
Fermi-Dirac distribution. The contribution of the localized
states to the total current is supposed to be significant in the
case of the positive energy gap between the injecting contact
and the bottom of the quantum well in the preconfinement
region. For this reason the procedure of the probability cal-
culation has been used for the active part of the device ex-
cluding the potential profile at the contact regions that allows
to account the contribution of 2D-2D current from localized
states in the preconfinement regions.

The formula after Tsu and Esaki19 generalized for the case
of the several conduction valleys and the effective mass an-
isotropy is used for the tunneling current calculation. For the
parabolic dispersion relations with integration over the trans-
verse component, the current density from extended and lo-
calized states has the form

Jext,loc =
qkBT

2�2�3 � �mtg2T�Ez,kl� + 	mtmlg4T�Ez,kt��

��f�Ez� − f�Ez + qVbias��dEz. �16�

The currents related to extended and localized states are
calculated with different integration procedures. For the lo-
calized carriers, the conduction band of injecting contacts
restricts the upper limit of the integration. The calculation of
the thermally activated carrier transport is performed with
the same expression, but the total valley degeneracy g6=6
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and an effective mass meff= �mt
2ml�1/3 are used.

IV. RESULTS AND DISCUSSION

The experimental I-V characteristics of the
n-Si1−yGey /Si/Si1−xGex /Si/Si1−xGex /Si/n-Si1−yGey devices
�x=0.60, y=0.20, d1=10 nm, d2=2 nm, d3=3 nm� �Ref. 4�
have broad resonant peaks with the low current peak-to-
valley contrasts at room temperature �1.3–2.4�, that is insuf-
ficient for digital applications. To establish the conditions for
an efficient resonant-tunneling effect, the I-V curves were
calculated within the above model. The parameters used are
summarized in Table I. The donor concentration in the n-type
Si1−yGey with 0.09�y�0.25 was fixed to ND=3
�1018 cm−3. At room temperature, this value sets the Fermi
level position 0.05 eV below the conduction band of the
Si1−yGey emitter and the collector. In order to reduce the
direct electron transmission from injector to collector con-
tact, the thickness of the preconfinement regions was set
large enough in the 8–13 nm range, keeping it lower than
the critical thickness of a Si layer under tensile strain on
relaxed Si1−yGey with 0.09�y�0.25. The Si middle quan-
tum well was varied in the range of 2.5–4 nm width that
should provide the resonant-tunneling effect. The potential
barrier widths were chosen in the range of 2.5–3.5 nm. As
seen in Fig. 2, the critical thickness of these Si1−xGex layers
compressively strained on the relaxed Si1−yGey limits their
achievable composition, thus the �EC

�4−� band offset, in a
drastic way.

Calculations of the transmission probability have shown
the presence of two peaks for the transverse effective mass of
electrons and three well-resolved peaks for the longitudinal
one. The results are demonstrated in Fig. 4 where the trans-
mission coefficient is plotted. The large value of the longitu-
dinal effective mass of electrons ml causes the related low
transmission coefficient and the three levels appearance. That
is the reason of the significant domination of the transmis-
sion component relative to the transverse mass. The vertical
dotted line separates the energy range that is not considered
for the modeling of the 3D-2D resonant tunneling transfer.
For parameters of Fig. 4, it corresponds to a conduction band
offset at injecting contacts �EC

�−�2 =0.12 eV. This confirms
the requirements of the additional calculations of 2D-2D tun-
neling from localized states in the preconfinement quantum

well for adequate current simulations. A reduction of the
thickness of the middle quantum well d3 shifts the second
resonant level to the higher energy range and increases the
peak transmission coefficient. For d3�2.5 nm, this level is
actually delocalized over the Si0.20Ge0.80 barrier of height
�EC

�4−�2 =0.32 eV.
The contribution of electrons from localized and extended

states to the total current and the role of thermally activated
transport have been estimated. The simulation results are
presented in Fig. 5. As it has been suggested, the current due
to the charge transfer from 3D extended states is the domi-
nant current provided by the transverse mass component.
This current includes only one resonant peak due to the co-
incidence of the � conduction band of the injector with the
second level in the middle quantum well. The transverse and
longitudinal components of 2D-2D current related to local-
ized states are significantly smaller. The potential barrier
height �EC

�4−�2 =�EC
�4−�+�EC

�−�2 seen by localized electrons
is obviously larger than the potential barrier �EC

�4−� for 3D
carriers in the injecting contact. For the highest achievable
potential barrier �EC

�4−�2 =0.32 eV preserving 3-nm-thick
Si0.20Ge0.80 layer in pseudomorphic strain configuration, the
peak current density reaches 1.64�1011 A/m2 at Vbias
=0.36 V and the peak-to-valley ratio equals 11. One should
note that the calculated value of the peak current density is

TABLE I. Parameters of the n-Si1−yGey/Si/Si1−xGex/Si/Si1−xGex/Si/n-Si1−yGey devices.

Parameter Value

Conduction band energy of Si1−xGex barrier, �EC
�4−� 0.03–0.25 eV

Conduction band energy at Si/Si1−yGey injecting contact, �EC
�−�2 0.05–0.15 eV

Transverse effective mass, mt 0.2m0 �Ref. 12�
Longitudinal effective mass, ml 0.9m0 �Ref. 12�
Thickness of Si preconfinement region, d1 8–13 nm

Thickness of potential Si1−xGex barrier, d2 2.5–3.5 nm

Thickness of Si middle quantum well, d3 2.5–4 nm

Temperature, T 150–300 K

FIG. 4. Transmission coefficient vs electron energy for the
transverse and longitudinal effective masses for two well widths
d3=3.5 nm and d3=2.5 nm �d1=10 nm, d2=3 nm, y=0.2, and x
=0.8�.
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not absolute because the integration procedure depends on
the overall stack thickness �see Sec. III�. The occurrence of a
small resonant peak having a maximum at Vbias=0.05 V can-
not proceed from Fig. 4. It may be explained by the influence
of the electrostatic charge distribution and accumulation
across the structure modifying the potential profile, which is
taken into account via the Poisson equation. Without consid-
ering the electrostatic potential extension ��z� in the Poisson
equation, this low bias peak clearly disappears and, in addi-
tion, the peak-to-valley ratio of the current component re-
lated to 3D extended states reaches 15 at Vbias=0.36 V.

The contribution of the thermally activated current com-
ponent becomes significant and strongly competes with the
tunneling current at large applied voltages. The parity be-
tween extended states related—and thermally activated—
currents occurs at Vbias�0.47 V. It is worth noting that the
fast growth of the thermally activated current with the ap-
plied voltage is not observed when one discounts the charge
distribution in the structure. A 300 K to 100 K temperature
drop �not shown� exponentially decreases the thermally acti-
vated current density �see Eq. �12�� of �1 order of magni-
tude below the one due to the component resulting from the
competition of the two opposite carrier flows through the
central well, e.g., from the emitter contact towards the col-
lector and vice versa. Meanwhile, the resonant tunneling pro-
cess is almost linearly dependent on the temperature �see Eq.
�16��.

The peak current in resonant tunneling devices is known
to be very sensitive to the barrier height. In a general way,
the larger the overall potential offset, the higher is the value
of the Jmax/Jmin peak-to-valley ratio. Figure 6 presents the
results of the I-V characteristics of devices having different
barriers �EC

�4−�2 but thickness kept identical to those of Fig.
5. A reduction of �EC

�4−�2 pulls down the resonant level of
the central well, the energy of which is becoming closer to
the conduction band minimum in the injecting contact. This
results in a shift of the peak current to smaller voltages with
a corresponding increase of the peak current density. How-

ever, the significant dispersion of the resonant level with the
lowering of the potential barrier height leads to a broadening
of the resonant peak and a decrease of the Jmax/Jmin peak-to-
valley ratio. On the other hand, for applied voltages above
0.40 V or barrier height greater than 0.30 eV, the thermally
activated carrier transfer prevails in all cases.

Within the limit of the structure transmission, one of the
ways to improve Jmax/Jmin ratio is an extension of the poten-
tial barrier width d2 that provides dispersion of resonant lev-
els in quantum well constriction. This is shown in the inset of
Fig. 6 where Jmax/Jmin ratios are plotted as a function of
�EC

�4−�2 for d2=2.5 nm, d2=3.0 nm, and d2=3.5 nm. Large
thickness of Si1−xGex �x�y� limit tensile strain accumulation
in the stack that is an additional advantage. Nevertheless, d2
should be kept below the critical thickness providing the
pseudomorphic strain state of a Si1−xGex layer grown onto a
relaxed Si1−yGey template. As an example, assuming a criti-
cal thickness of 3.5 nm for y=0.20, the barrier composition
should not exceed x=0.72. As mentioned above, the counter-
part is the limitation of the achievable band offset �EC

�4−�2 to
0.28 eV.

A reduction of the thickness of the middle quantum well
d3 shifts the energy of the resonant level towards the upper
limit of the Si1−xGex barrier height. This moves the condition
of resonance to the side of larger applied bias where the
resonant peak is weaker pronounced, as a result of the quan-
tum level broadening. The resonant peak vanishes at d3
=2.5 nm. Otherwise, increasing d3 significantly enhances the
peak-to-valley ratio, as it is illustrated in the inset of Fig. 6

FIG. 5. Current-voltage characteristic of the
n-Si0.8Ge0.2/Si/Si0.2Ge0.8/Si/Si0.2Ge0.8/Si/n-Si0.8Ge0.2 RTD in-
cluding: 1, 2, extended states related current for transverse and lon-
gitudinal components, respectively; 3, 4, localized states related
current for transverse and longitudinal components, respectively; 5,
thermally activated current �d1=10 nm, d2=3 nm, d3=3 nm, T
=300 K�. FIG. 6. The room temperature current-voltage characteristics of

n-Si1−yGey /Si/Si1−xGex /Si/Si1−xGex /Si/n-Si1−yGey devices and
their corresponding thermal current components with d1=10 nm,
d2=3 nm, d3=3 nm, and y=0.20 ��EC

�−�2 =0.12 eV� for different
�EC

�4−�2: 1, 0.30 eV �x=0.76�; 2, 0.25 eV �x=0.67�; 3, 0.20 eV
�x=0.56�; and 4, 0.15 eV �x=0.40�. The inset gives the evolutions
of the peak-to-valley ratios Jmax/Jmin as a function of �EC

�4−�2 for
different values of barrier d2 and well d3 widths. 1, d2�3.0 nm,
d3�3.5 nm; 2, d2�3.0 nm, d3�3.0 nm; 3, d2�2.5 nm, d3�3.0 nm;
4, d2�3.5 nm, d3�3.0 nm.
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for d3=3.5 nm. Further enlargement of the well, however,
turns off the participation of the second resonant level as its
location is shifted down in energy below the Fermi level
position in the emitter �see Fig. 3�. Moreover, the well is
limited in thickness as silicon layers introduce excessive ten-
sile strain in these stacks. Such strong sensitivity of the con-
ditions of resonance to the structural parameters can explain
the small Jmax/Jmin ratio obtained with the experimental de-
vices, which have far from optimized parameters. Indeed, the
Jmax/Jmin ratio calculated for the set of parameters identical
to the experimentally obtained devices4 �x=0.60, y=0.20,
d1=10 nm, d2=2 nm, d3=3 nm, ND=3�1018 cm−3� is 2.8,
that is in good agreement with the experimental values
Jmax/Jmin=1.3–2.4.

One of the abilities to regulate the thermally activated
current in this RTD device is provided by an appropriate
choice of the relation between the overall potential barrier
height �EC

�4−�2 and the conduction band offset at the “re-
laxed type” injecting contact. Results on such computer
simulation are presented in Fig. 7. An increase of the poten-
tial barrier height �EC

�4−�2 is followed by exponential drop of
the thermally activated current �see Eq. �12��. For a fixed
value of �EC

�4−�2, however, higher band offset �EC
�−�2 be-

tween injecting contact and preconfinement region lead to
slightly higher thermally activated current. These results
demonstrate the possibility for a realistic tuning of the ther-
mally activated component in this RTD device.

In addition, the performed calculations have good corre-
lation with experimental results4 and show a weak depen-
dency of the shift of the resonant current peak position to the
region of large bias versus �EC

�4−�2 �see Fig. 6� with a low-
ering of the conduction band offset �EC

�−�2. That is simply

explained by the need of an additional energy for an electron
to achieve the corresponding resonant condition with the
level in the middle quantum well. The simultaneous decrease
of the thermally activated current density with the reduction
of �EC

�−�2 compensates this shift of the resonant current peak
position. Moreover, the thermally activated current moves to
the side of large bias with an increase of �EC

�4−�2 �see Fig. 6�
and a decrease of �EC

�−�2. Thus, it never exceeds the tunnel-
ing current. The main advantage of the investigated “relaxed
type” design is a stable relationship between the tunneling
current and the thermally activated one, which is not much
sensitive to the variations of the energy profile.

V. CONCLUSION

The carrier transport in resonant tunneling devices has
been modeled on the basis of a self-consistent solver of
the Schrödinger, Poisson, and kinetics equations. We have
found the range of the structural parameters, thickness, and
composition, providing a realistic epitaxy of the optimized
resonant tunneling heterostructures built-on strained
Si1−xGex /Si/Si1−xGex quantum well embedded in
n-Si1−yGey /Si injector and Si/n-Si1−yGey collector that acts
as preconfinement regions of the electronic charge. It has
been shown that the tunneling transfer mainly occurs via 3D
extended states at the coincidence of the electron energy in
the injector with the second resonant level in the middle
quantum well that is located above the conduction band of
the n-Si1−yGey contact. The computer simulation has shown
insignificant contribution of the 2D-2D electron transfer
from states localized in the preconfinement silicon well due
to the high potential barrier at Si/Si1−xGex interface, al-
though the resonant conditions for such mechanism appears
more effective compared to those for extended states.

The central well and barrier widths are the key parameters
setting the resonant energy level and the conditions control-
ling the second current peak in the I-V characteristics, which
relates to resonant tunneling of electrons from extended
states in the injecting contact. The thermally activated cur-
rent is found to prevail at high-applied voltages only. The
relationship between resonant tunneling—and thermally
activated—currents is rather stable with the parameter varia-
tions, namely the band offsets. This allows well-resolved
resonant current peak at low voltage with expected peak-to-
valley ratio as high as 11 at room temperature.
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and having different offsets �EC
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