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We present a calculation for a two-dimensional �2D� electron gas layer interacting with a slab of conductive
material. We treat the plasmons in the slab in the local limit and obtain the frequency of the coupled mode
corresponding to the extended 2D plasmon interacting with the background plasmons in the presence of a
conducting surface. The dispersion equation of a double quantum well is obtained and we show how the split
symmetric and antisymmetric modes are formed and modified by the localized surface plasmon. For a single
layer, we show that when a one-dimensional �1D� periodic electrostatic potential is applied to the surface, each
of the symmetric and antisymmetric modes will be further split by the interaction with the 1D modulation,
leading to folding of plasmon dispersion curves for different modes. For double layers, we show that the
coupled 2D and surface plasmons may result in radiated energy. Our analysis is based on a calculation of the
surface response function obtained using a transfer-matrix method.
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I. INTRODUCTION

It is well known that for a pair of coupled layers of two-
dimensional electron gas �2DEG�, the plasmon modes may
radiate energy.1–12 The current research which is being ac-
tively pursued, involving a double-quantum-well structure
with a grating gate, is concerned with investigating whether
the terahertz radiation by the plasmon modes could be em-
ployed in electronically tunable detectors.5,12–16 The spectral
bandwidths of these grating-gated field-effect transistors are
of the order of 50 GHz. This range of frequency has proven
useful in developing highly sensitive detectors and sensors.
van Zyl and Zaremba12 have studied the behavior of the col-
lective plasma excitations of a 2DEG in the presence of an
arbitrary lateral electrostatic modulation. Furthermore, recent
experiments have shown that the two-dimensional �2D� plas-
mon modes of high-mobility grating-gated field-effect tran-
sistors could be excited and could be at resonance with the
incident terahertz radiation. Besides modulating the electron
density at a specific wave vector, the grating gate induces a
longitudinal modulation of the incident radiation. As a result
of both these effects, the incident radiation is polarized per-
pendicular to the grating lines to excite and be absorbed by
2D plasmons at the wave vector specified by the grating gate.
In this paper, we have demonstrated that when a periodic
electrostatic potential is applied to a conducting surface sup-
porting a 2DEG, the coupling between the 2D and three-
dimensional �3D� surface plasmons can result in radiated en-
ergy from the plasmon excitations. The bulk material must
be adequately doped for effective coupling between the col-
lective excitations.

Here, we calculate the effect which a periodic electrostatic
modulation has on the coupled 2D plasmon modes. The 2D
sheet of electrons interacts with an adjoining slab of conduc-
tive material, which could be heavily doped so as to enhance
the coupling between the 2D plasmon and 3D surface plas-
mon. The formalism which we use is based on the surface

response function which appears in the power absorption
spectrum when electrons in the medium are excited by an
external electromagnetic field.

Early theoretical research done by the Mills and
Maradudin17 and experimental researches done by Moreland
et al.18 and Tsang et al.19 all dealt with scattering of the near
field associated with the surface-plasmon-polariton �SPP� to
the radiation of the far field related to the so-called radiation
loss of SPP. This scattering process requires the presence of
some surface structures, e.g., surface roughness or a grating,
to satisfy momentum conservation. In this case, both the near
field and far field are transverse electromagnetic fields. How-
ever, in our current study, we only concentrate on the modes
of longitudinal electromagnetic fields connected to induced
plasma waves in the nonretardation limit. These modes are
generally determined by zeros of the determinant of a
dielectric-function matrix, as we obtain below.

The main results of our calculations are summarized as
follows. We have demonstrated that when a periodic electro-
static potential is applied to a conducting surface supporting
a 2DEG, the coupling between the 2D plasmon and 3D sur-
face plasmon can result in a gain or loss in energy from the
plasmon excitations when an incident beam of charged par-
ticles �a current� impinges on the structure. The bulk material
must be adequately doped for effective coupling between the
collective excitations. The effect due to a periodic modula-
tion on the plasmons in a biplane is calculated. We obtain the
plasmon dispersion relation in this case, as well as the loss
function associated with these collective excitations. The
presence of the one-dimensional �1D� modulation is found to
enhance either a gain or a loss in energy of the incident beam
of charged particles.

The paper is organized as follows. We will first describe
in Sec. II the formalism for the power absorption in terms of
the surface response function.20–28 In Sec. III, we explicitly
calculate the surface response function for a double quantum
well, which we model as a pair of parallel 2D layers of
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electron gas �EG�. This method allows us to include the cou-
pling between the background 3D electron gas with the
2DEG layers. The dispersion equation we obtain is well
known. However, we are able to extend our calculation to
include the effects due to an electrostatic modulation on the
surface. We also present and discuss the results of our nu-
merical calculations in Sec. IV and concluding remarks in
Sec. V.

II. ENERGY LOSS AND THE SURFACE RESPONSE
FUNCTION

The subject of electron energy loss has received a consid-
erable amount of attention over the years, with several re-
view articles and books written in the last few years.29 Here,
we give a formalism in terms of the surface response func-
tion g�q� ,��. Let us assume that the medium occupies the
half-space z�0. Consider a point charge Ze moving along a
prescribed trajectory r�t� outside the medium. The external
potential �ext satisfies Poisson’s equation in the nonretarded
limit:30

�2�ext�r,t� = 4�Ze��r − r�t�� . �1�

We now write down the solution of this equation in the re-
gion of interest, i.e., 0�z�z�t�, with

�ext�r,t� =� d2q��
−�

�

d��̃ext�q�,��ei�q�·r�−�t�eq�z, �2�

where

�̃ext�q�,�� = −
Ze

4�2q�

F�q�,�� , �3�

with

F�q�,�� � �
−�

�

dte−q�z�t�ei��t−q�·x��t��. �4�

Here, q� = �qx ·qy� is a two-dimensional wave vector of elec-
trons in the xy plane parallel to the surface which is in the
z=0 plane.

The external potential �ext�r , t� will give rise to an in-
duced potential. By using linear-response theory to relate the
induced potential to the charge-density fluctuation along with
Poisson’s equation,31 it follows that the induced potential
outside the medium �z�0� has the form for z�0

�ind�r,t� =� d2q��
−�

�

d��̃ext�q�,��ei�q�·r�−�t�g�q�,��e−q�z.

�5�

In this notation, g�q� ,�� defines the surface response func-
tion. Here, it has been implicitly assumed that the external
potential �ext is so weak that the medium responds linearly to
it. The function g�q� ,�� is itself related to the density-density
response function � by

g�q�,�� =
2�e2

q�
�

0

�

dz�
0

�

dz�eq��z+z����z,z�;q�,�� �

− �
−�

0

dzeq�z	ind�z;q�,�� , �6�

where the second equality defines the induced surface charge
density.

The quantity Im�g� is related to the energy absorption in
the semiconductor due to the electronic excitations induced
by the evanescent external potential. The power absorption is
obtained by integrating the Poynting vector over the surface
and over time. This gives �see Appendix A of Ref. 28�


E =
1

4�
� d2x��

−�

�

dt�	�
�

�t

�

�z
�
�

z=0
, �7�

where �=�ind+�ext is the total potential with

��r,t� =� d2q��
−�

�

d��eq�z

− g�q�,��e−q�z�ei�q�·x�−�t��̃ext�q�,�� . �8�

Substituting � into the expression for 
E in Eq. �7�, we
obtain after some algebra to the leading order of g


E =
�Ze�2

4�2 � d2q��
−�

�

d�
�

q�

�q�,���2Im�g�q�,��� . �9�

We now turn to the calculation of the surface response func-
tion for a pair of parallel 2DEG layers. In order to make our
results appear transparent, we present our transfer-matrix
method first for the nonmodulated system. Then, we modify
our formalism to include the effects due to a 1D periodic
modulation. In this way, we are in a position to compare the
results for the plasmon excitations in the presence and ab-
sence of a 1D periodic modulation, as well as the absorption
spectrum in these two cases. The dispersion equation for a
bilayer system without the 1D modulation is well known and
has been examined in great detail, following the work of Das
Sarma and Madhukar32 as well as that of Santoro and
Giuliani.33

III. SURFACE RESPONSE FUNCTION FOR A BIPLANE

Let us first consider the following device structure. Here,
two 2DEG layers are located at z=0 and z=a with a slab
medium of local dielectric constant ���� between them and
�r is the background dielectric constant for z�0 and z�a. In
the nonretarded limit, we take the induced electrostatic po-
tential in the “vicinity” of the z=0 layer to be

���z� = e−q�z − g�q�,��eq�z, z�
�

0,

�0�z� = a0eq�z + b0e−q�z, z = 0+,

�0��z� = t0e−q�z + r0eq�z, 0 � z � a , �10�

where all the coefficients are independent of z. Here, we
must separate the solutions at the interface since the 2DEG is
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embedded within a dielectric medium.27 Both � and �d� /dz
must satisfy

���+ − ���− = 0 and ��+
d�

dz
�

+
− ��−

d�

dz
�

−
= 4��0

�11�

across the lower interface layer, where �0 is the induced
surface charge density in the 2DEG layer at z=0. At the
upper interface z=a, the induced potential is given by

�1�z� = a1eq�z + b1e−q�z, z�
�

a ,

�1��z� = t1e−q�z, z � a , �12�

where the coefficients a1 ,b1, and t1 are determined from the
continuity equations for the potential and electric field such

as Eq. �11� with the induced surface charge at z=a denoted
by �1. In general, we get �=�2D� from linear-response
theory, where �2D is the sheet susceptibility, so that �0
=�2D�0= �1−g��2D and �1=�2D��z=a�. After some algebra,
we obtain the coefficients of the potential as given by

AI
1 − g

a0

b0

r0

t0

a1

b1

t1

� = − 2
0

1

0

0

0

0

0

0

� , �13�

where the invertible transfer matrix is

AI = 
1 − 1 − 1 0 0 0 0 0

− 	�r +
4��2D

�rq�

 1 − 1 0 0 0 0 0

0 1 1 − 1 − 1 0 0 0

0 �r − �r ���� − ���� 0 0 0

0 0 0 e−q�a eq�a − eq�a − e−q�a 0

0 0 0 − ����e−q�a ����eq�a − �re
q�a �re

−q�a 0

0 0 0 0 0 eq�a e−q�a − e−q�a

0 0 0 0 0 	�r +
4��2D

�rq�

eq�a 	− �r +

4��2D

�rq�

e−q�a e−q�a

� . �14�

Equation �13� has the explicit solution for g in terms of the sheet susceptibility as

g�q�,�� = 1 − 2
����� + �r +

4��2D

�rq�
� + ����� − �r −

4��2D

�rq�
�e−2q�a

����� + �r +
4��2D

�rq�
�2

− ����� − �r −
4��2D

�rq�
�2

e−2q�a

. �15�

The normal modes are obtained by setting the denominator
to zero, i.e.,

�r +
4��2D

�rq�

= ����	 e−q�a ± 1

e−q�a  1

 . �16�

In the limit q�a→�, we obtain the surface response for a
single plane as

gsingle plane�q�,�� = 1 −
2

�r + ���� +
4��2D

�rq�

, �17�

which was previously derived by Persson.21

If we set �2D=0 in Eq. �15�, we obtain the surface re-
sponse function for a slab of conductive material as

gslab�q�,�� =
2 sinh�q�a�

� ���� + �r

���� − �r
�eq�a − � ���� − �r

���� + �r
�e−q�a

= 2��q�,��

�� ���� − �r

���� + �r
�e−q�a sinh�q�a� , �18�

where

��q�,�� � �1 − � ���� − �r

���� + �r
�2

e−2q�a�−1

. �19�

In the limit a→� for the single interface of a semi-infinite
medium, Eq. �18� becomes
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gsemi�q�,�� =
���� − �r

���� + �r
. �20�

Let us now set ����=�r for a dielectric slab and use the
approximation34

�2D�q�,�� � −
n2De2q�

2

m*��2 − �2D
2 q�

2�
�21�

for the 2DEG with electron effective mass m* and sheet den-
sity n2D in Eq. �21�. Here, �2D

2 =3vF,2D
2 /8. By taking vF /c

→0 for moderate electron densities, we obtain the dispersion
relation for plasmons in the long-wavelength limit as

�+
2 = �2D

2 �1 + e−q�a� �22�

and

�−
2 = �2D

2 �1 − e−q�a� , �23�

corresponding to a symmetric and an antisymmetric mode. In
this notation, �2D=�2�n2De2q� /m*�r is the well-known 2D
plasmon frequency. When q�a�1, the �+ mode behaves like
a 2D plasmon, whereas the �− mode has the character of an
acoustic mode. Also, if we take

���� = �r	1 −
�p

2

�2
 �24�

for a conductive slab, we obtain the frequency of the coupled
2D plasmon mode interacting with the 3D plasmon. The re-
sults are

�+
2 = �2D

2 �1 + e−q�a� + �s
2�1 − e−q�a� �25�

and

�−
2 = �2D

2 �1 − e−q�a� + �s
2�1 + e−q�a� , �26�

where �s=�p /�2 is the surface plasmon frequency. This
shows that the symmetric �antisymmetric� mode for the 2D
sheet is coupled to the antisymmetric �symmetric� mode of
the slab. As a matter of fact, the �− mode has frequency �s
and the �+ mode has an effective 2D plasmon frequency for
an effective sheet density that includes both the 2D layer and
that of the conductive slab.

In addition to the high-frequency modes in Eqs. �25� and
�26�, there is a low-energy acoustic plasmon mode whose
frequency can be obtained analytically in the limit a→�.
For this, we keep the �2D in Eq. �21�. After a straightforward
calculation, we obtain a correction to the results in Eqs. �25�
and �26� arising from the nonlocal correction, i.e.,

�±
2 = �2D

2 + �s
2 + �2D

2 q�
2, �27�

along with

�ac
2 =

�s
2�2D

2 q�
2

�2D
2 + �s

2 + �2D
2 q�

2 . �28�

In the paper by Pitarke et al.35 a low-frequency acoustic
plasmon mode of the nature of that in Eq. �28� was obtained
in addition to the high-frequency plasmon modes we ob-
tained in Eqs. �25�–�27�. The reason for the presence of this
acoustic plasmon mode for a 2D sheet near the surface of a

semi-infinite metal is due to a nonlocal and dynamically
screened Coulomb potential in the dielectric function.

We next consider the effect that a periodic grating on the
surface of the material will have on the results derived
above. In the presence of the grating, the spatial profile of the
x-dependent sheet density can be described as n2D�x�
=�n=−�

� 	n exp�inGx�, where the real value 	n is the nth Fou-
rier component of n2D�x�, G=2� /d is the reciprocal-lattice
vector, and d is the period of the grating. In this case, as a
generation of Eqs. �10� and �12�, the potentials can be ex-
panded by using the Bloch theorem

���r;�� = �
n=−�

�

ei�qx+nG�xeiqyy�e−qnz − gn�qx,qy ;��eqnz�, z

�
�

0,

�0�r;�� = �
n=−�

�

ei�qx+nG�xeiqyy�an�qx,qy ;��eqnz

+ bn�qx,qy ;�ght�e−qnz�, z = 0+,

�0��r;�� = �
n=−�

�

ei�qx+nG�xeiqyy�tn�qx,qy ;��e−qnz

+ rn�qx,qy ;��eqnz�, 0 � z�
�

a−,

�1�r;�� = �
n=−�

�

ei�qx+nG�xeiqyy�a1,n�qx,qy ;��eqnz

+ b1,n�qx,qy ;omega�e−qnz�, z�
�

a

�1��r;�� = �
n=−�

�

ei�qx+nG�xeiqyyt1,n�qx,qy ;��e−qnz, z � a ,

�29�

where qn= �qy
2+ �qx+nG�2�1/2. Furthermore, if the period of

the modulation is large with negligible quantum confinement
effects, we may approximate the modulated susceptibility by
the value for a 2D sheet. Therefore, when qxd→�, this re-
duces to the case with an unmodulated 2DEG.

Applying the boundary conditions at z=0 to the potential
and its derivative, we obtain the following set of linear equa-
tions:

1 − gn = an + bn,

�an − bn + 1 + gn�qn =
4�

�r
�

n�=−�

�

�2D�qn�−n,����qn�−n�

=
4�

�r
�

n�=−�

�

�2D�qn�−n,���1 − gn�−n� ,

an + bn = tn + rn,
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�r�an − bn� = �����− tn + rn� ,

tne−qna + rneqna = a1,neqna + b1,ne−qna,

�����− tne−qna + rneqna� = �r�a1,neqna − b1,ne−qna� ,

a1,neqna + b1,ne−qna = t1,ne−qna,

qn�− t1,ne−qna − �a1,neqna − b1,ne−qna�� =
4�

�r
�

n�=−�

�

�2D�qn�−n,��

��a1,n�−neqn�−na + b1,n�−ne−qn�−na� , �30�

where �2D�qn ,�� is given in Eq. �21�. These results show
that there is a coupling among field components with differ-
ent reciprocal-lattice vectors. The effect of the modulation on
the transmission and reflection coefficients is to couple the
lateral degree of freedom to the propagation of the electro-

magnetic wave between the two 2DEGs. Consequently, the
energy loss from the structure through the surface response
function is not determined by its physical properties in one
direction only. Assuming a simple sinusoidal form for the
sheet density, i.e., n2D�x�=n2D�1+cos�Gx�� /2, we find non-
zero terms of �2D�qn ,�� only for n=0, ±1 with 	0=n2D/2
and 	±1=n2D/4. However, there are still infinite number of
field components with different reciprocal-lattice vectors in
this case. In numerical calculations, we have to truncate the
number of reciprocal-lattice vectors to a finite value N0. The
larger the value of N0 is, the more the plasmon modes can be
calculated accurately. As an example, we take N0=3 for
n2D�x�=n2D�1+cos�Gx�� /2. As a result, we will include the
coupling between the q� and the q±1= �qy

2+ �qx±G�2�1/2

modes, then we truncate the set of equations in Eq. �30� to
include n=0, ±1. The resulting 24�24 coefficient matrix for
�1−gn ,an ,bn , tn ,rn ,a1,n ,b1,n , t1,n� with n=0, ±1 is

MI = 
MI 11�q−1� MI 12 �I �q�� OI �I �q1� OI

MI 21�q−1� MI 22�q−1� OI �I�q�� OI ��q1�

�I �q−1� OI MI 33�q�� MI 12 �I �q1� OI

OI ��q−1� MI 21�q�� MI 22�q�� + �I�q�� OI �I�q1�

�I �q−1� OI �I �q�� OI MI 11�q1� MI 12

OI �I�q−1� OI �I�q�� MI 21�q1� MI 22�q1�

� . �31�

In this notation, OI is the 4�4 null matrix and �I is a 4�4
submatrix with all its elements equal to zero except the ele-
ment in the second row and first column with

��I �qn��21 = −
4��2D�qn,��

�r
. �32�

All elements of the 4�4 matrix MI 12 are zero except

�MI 12�31=−1 and �MI 12�41=����. Also, �I is a 4�4 submatrix
with all its elements equal to zero except the two elements in
the fourth row and second and fourth columns with

��I�qn��42 = −
4��2D�qn,��

�r
eqna, ��I�qn��43 =

−
4��2D�qn,��

�r
e−qna, �33�

and the only elements of the 4�4 submatrix MI 21 which are
nonzero are

�MI 21�qn��14 = − e−qna, �MI 21�qn��24 = ����e−qna. �34�

The other 4�4 submatrices MI 11, MI 22, and MI 33 introduced
in Eq. �31� are defined as

MI 11�qn� = 
1 − 1 − 1 0

− qn qn − qn 0

0 1 1 − 1

0 �r − �r ����
� , �35�

MI 22�qn� = 
− eqna eqna e−qna 0

− ����eqna �re
qna − �re

−qna 0

0 eqna e−qna − e−qna

0 − qneqna qne−qna − qne−qna
� ,

�36�

MI 33�q�� = 
1 − 1 − 1 0

− �q� +
4��2D�q�,��

�r
� q� − q� 0

0 1 1 − 1

0 �r − �r ����
� .

�37�

The frequencies of the normal modes are obtained by solving

for the roots of the determinantal equation Det�MI �=0. In the
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next section, we numerically calculate the dispersion relation
for a pair of 2DEG layers in the presence of a 1D periodic
modulation. We examine these modes when their separation
is varied. We also analyze the corresponding behavior of the
loss function Im�g� for a pair of 2DEG layers and compare
the results with those obtained when the layer separation is
sufficiently large that the coupling between the layers can be

neglected. When a→�, the coefficient matrix MI single plane for
this case can be obtained from Eq. �31� by forming a 12
�12 matrix with the submatrices in the odd-numbered rows
and columns. That is,

MI single plane = MI 11�q−1� �I �q�� �I �q1�

�I �q−1� MI 33�q�� �I �q1�

�I �q−1� �I �q�� MI 11�q1�
� . �38�

We also compute Im�g� in the absence of a 1D modulation
by using Eqs. �15� and �17� for a bilayer and a single plane,
respectively.

IV. NUMERICAL RESULTS

Our dispersion formula for a 2D bilayer in the presence of
a modulation potential shows that there is a coupling be-
tween the wave-vector components of the response function.
This nonlocal effect leads to a splitting of the plasmon modes
into branches �band-structure folding�, which can be identi-
fied with a reciprocal-lattice vector or scattering off a
Brillouin-zone boundary. Figures 1 and 2 show plots of our
results for the modes of plasmon dispersion with a single
layer of 2DEG on the surface of a semi-infinite conductive
material �a→��. A 1D sinusoidal modulation in the x direc-
tion is present in these calculations. In Figs. 1�a� and 1�b�,
we plot the scaled plasmon-mode frequencies as a function
of qxd /� for qy =0, n2D/ �n3Dd�=2�10−3, and �r=1. The up-
per and lower branches in the Fig. 1�a� are associated with
the n=−1 and n=0 plasmon modes. The effect of the 1D
modulation acts to split the degenerate �± modes predicted
by either Eq. �25� or �26� with a→� due to the coupled 2D
plasmon interacting with the 1D modulation within the sheet.

The general features found from Fig. 1�a� can be ex-
plained as follows. Initially, when qx=0, the degeneracy be-
tween the upper n=−1 branch with another n=1 branch
above �not shown here� is split by the 1D modulation with a
gap proportional to the Fourier component 	0=n2D/2. There-
fore, as qxd increases from zero in the strong coupling re-
gime �qxd�1�, the upper n=−1 branch is pushed down, ex-
hibiting negative dispersion in the figure. When qxd /�
=1/2 is reached, the second degeneracy existing between the
upper downward sloping n=−1 branch and the lower upward
sloping n=0 branch is split again into a smaller gap propor-
tional to the Fourier component 	+1=n2D/4 of the density
modulation. When qxd /��1 �not shown in the figure�, the
upper n=−1 branch increases with qxd, while the lower n
=0 branch decreases as qxd is increased, creating a sym-
metrical anticrossing behavior centered at qxd /�=1. When
qxd /�=2 is reached, there exists a periodic condition for
both the n=0 and n=−1 branches due to the periodicity of

the 1D modulation, i.e., the energies of the n=−1 and n=0
modes at qxd /�=2 should have the same value as their ini-
tial energies at qx=0, respectively. As a result, we expect an
inversion symmetry of dispersion curves for both the n=−1
and n=0 plasmon modes with respect to qxd /�=1.

The modes we plotted in Fig. 1�a� interact weakly with
the low-frequency acoustic plasmon mode. This means that
they are not significantly affected by the presence of the �2D
term in Eq. �22�. This is supported by Eq. �27� for the fol-
lowing reason. Typical values of the plasma frequency are
�p�1010–1016 s−1 �See Kittel’s book,36 for example�. Also,
the grating period d�4 �m �Ref. 16� and vF,2D�4.33
�104 m/s for a 2D electron density n2D=1010 cm−2 and an
electron effective mass m*=0.067me, corresponding to
GaAs, where me is the free electron mass. Since we are plot-
ting � /�p as a function of qxd /�, the scaled frequency of the
acoustic plasmon mode is determined by U= ���2D/d�p�2.
Using the values above for �p ,vF,2D, and the spacing d, we
obtain the values U�1–10−12 for the range of plasma fre-
quencies. In Fig. 1�b�, we chose U=0.1 and plotted the low-
frequency region of the plasmon spectrum. The dispersion

FIG. 1. The plasmon frequencies in units of �p, for a single
layer of 2DEG in the presence of an electrostatic modulation poten-
tial, as a function of qxd /�.In �a�, only the two lowest modes with
finite frequency as qx→0 are shown. In �b�, the plasmon spectrum
arising from the acoustic mode is displayed. Here, qy =0,
n2D/n3Dd=2�10−3, and the parameters used in the calculation are
given in the text.
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relation is linear for qx→0. This mode is then split by the
presence of the grating as qx is increased.

Our calculations have shown that the detailed plasmon
spectrum depends on the ratio of n2D to n3Dd. This ratio must
be kept sufficiently small so that the lowest plasmon branch
will not be suppressed at qx=0. This requires either a large
3D doping or a small sheet density for the fixed grating
period. The softening behavior is clearly demonstrated in
Fig. 2, where we kept all parameters the same as Fig. 1�a�
except that we set n2D/ �n3Dd�=10−2, 1 order of magnitude
larger. In this case, both the upper n=−1 and lower n=0
branches are shifted down in energy due to strong coupling
between the 2D plasmon and the 1D modulation, with en-
hanced gaps at qx=0 and at qxd /�=1, for both branches.

Figure 3 displays a plot of the imaginary part of the sur-
face response function Im�g−1� as a function of � /�p for
qx=0 and qyd=2 with a single layer of 2DEG on the surface
of a semi-infinite conductive material. In this calculation, we
added a small positive imaginary part �=10−2�p to the fre-
quency of gn�qx ,qy ;��. Choosing a different value for �
leads to some quantitative differences but the conclusions
remain the same. There is a “peak” associated with the lower
n=0 plasmon branch in Fig. 1 with positive dispersion

around qx=0, and there is a “dip” associated with the upper
n=−1 plasmon branch with negative dispersion. The
extreme-value frequencies are slightly shifted away from
those of the plasmon modes for these wave vectors. The
reason is due to the fact that the plasmon resonances were
obtained by finding where the determinant of the coefficient
matrix MI single plane vanishes for real �. However, the peak or
dip in Im�g−1� occurs when both the real and imaginary parts
of the determinant of g−1 have their smallest values for com-
plex frequency. As we varied the value of qx away from zero
to qxd /�=2, there were ranges of frequency where the dip
became a peak and vice versa in the imaginary part of g−1
due to switching between negative and positive dispersions
in the anticrossing region. Similar behavior was obtained
when we plotted the imaginary parts of g0 and g1 as func-
tions of �. However, although the locations of these dips or
peaks are similar, their strengths are different. A dip in the
surface response function corresponds to a gain in energy,
whereas a peak indicates a loss. In Fig. 4, we plot the imagi-
nary part of gsingle plane�q� ,�� given by Eq. �17� in the ab-
sence of the 1D modulation as a function of � /�p. The val-
ues for qx, qy, and �r are the same as those in Fig. 3. There is
just one peak arising from the coupled 2D and 3D surface
plasmon excitations, indicating that the dip seen in Fig. 3
comes from the 1D modulation to the 2DEG layer or the
plasmon-mode �n= ±1� splitting at qx=0.

We now present our numerical calculations for a pair of
2DEG layers �finite a� interacting with 3D electrons. In Fig.
5, we plot the plasmon dispersion relation as a function of
qxd /� when a /d=1.5, qyd=2, n2D/ �n3Dd�=10−3, and �r=1.
The upper and lower branches in Fig. 1 are split respectively
into a pair ��+ /�− modes�, as predicted by Eqs. �25� and �26�
through the interaction of two conducting surfaces separated
by a distance a. The upper and lower pairs around qx=0
correspond to n=−1 and n=0, noting that �s /�p=1/�2
�0.7. For this case, the second terms of Eqs. �25� and �26�
dominate the first terms. The upper plasmon mode ��+ mode
for the n=−1 pair and �− mode for the n=0 pair� of each
pair always has a negative dispersion around qx=0, while the

FIG. 2. The same as Fig. 1 except that we chose n2D/n3Dd=2
�10−2.

FIG. 3. The imaginary part of g−1 as a function of � /�p corre-
sponding to qx=0 and qyd=2. The other parameters are the same as
in Fig. 1.

FIG. 4. The imaginary part of g in Eq. �17� as a function of
� /�p corresponding to qx=0 and qyd=2 for a 2DEG layer in the
absence of an electrostatic modulation. The other parameters are the
same as in Fig. 1.
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lower plasmon mode ��− mode for the n=−1 pair and �+
mode for the n=0 pair� of each pair has a positive dispersion.
The second and the third plasmon modes ��− modes for the
n=0 and n=−1 pairs� counted from the bottom almost have
the same energy �close to the surface plasmon energy ��s�
around qx=0 due to qya�1 in Eqs. �25� and �26�. The inter-
action between the pair of 2DEG layers is very strong at qx
=0 for the upper n=−1 pair, leading to a large splitting of
�+ /�− modes. However, this interaction is greatly sup-
pressed at qxd /�=1, leading to a much smaller splitting of
�+ /�− modes for the n=−1 pair.

In Figs. 6 and 7, we plot Im�g−1� from the solution of Eq.
�30� and Im�g�q� .��� given in Eq. �15�, for qx=0 and qyd
=2. Both figures display Z-shape feature, i.e., a positive peak
is closely followed by a negative dip or vice versa, which
arises from the strong electrostatic coupling between two
2DEG layers. We have noted from Fig. 5 that the upper
plasmon mode of the n=0 pair and the lower plasmon mode
of the n=−1 pair are almost degenerate with each other when
qx=0. For the very sharp Z-shape feature in Fig. 6 within the

range of 0.6�� /�p�0.7, it is found to relate to the upper
plasmon mode ��+ mode� of the n=−1 pair. The broadened
dip slightly below � /�p=0.6 comes from the degenerate
lower plasmon mode ��− mode� of the n=−1 pair and the
upper plasmon mode ��− mode� of the n=0 pair. For the
smooth Z-shape feature seen in Fig. 7 within the range of
0�� /�p�1, the low-energy positive peak is associated
with the �+ mode, while the high-energy negative dip is
associated with the �− mode. The crucial difference between
these two graphs is that the periodic modulation greatly en-
hances the dip and the peak. We have also examined the
behavior of Im�g0� and Im�g1� and found that their dips and
peaks are also enhanced compared with those shown in Fig.
7 for an unmodulated bilayer. The Z-shape feature remained
as we varied the wave-vector components qx and qy.

V. CONCLUDING REMARKS

We conclude with a discussion of the significance of our
results and the potential device applications. We have calcu-
lated the plasmon excitation spectrum of a grating-gated
double-quantum-well field-effect transistor structure with the
help of the surface response function. We restricted our at-
tention to the low-temperature electric quantum limit where
only one subband of the 2DEG is occupied. If the electron
density is such that higher subbands are to be included, then
the boundary conditions at the heterointerface must be modi-
fied. The new boundary conditions should include the finite
thickness of the electron gas layers. In addition, the
dielectric-response function for the interface electrons need
to account for multisubband and finite temperature effects.

It was shown that the essential characteristics of the re-
sponse are multiple plasmon resonances corresponding to
spatial harmonics of standing waves in the gap regions of a
metal grating. This is due to the static spatial modulation of
the electron density in the 2DEG layers. We have compared
our results for the loss function with the bilayer structure
ungated. It is known that the plasmon modes may radiate
energy for a pair of coupled layers of 2DEG.1–3 This has

FIG. 5. Plot of the lowest plasmon frequencies in units of �p,
for a pair of 2DEG layers with separation a=1.5d, as a function of
qxd /�. We chose n2D/n3Dd=2�10−2. The parameters used in the
calculation are given in the text.

FIG. 6. The imaginary part of g−1 as a function of � /�p for
qx=0 and qyd=2 for a pair of 2DEG layers in the presence of an
electrostatic modulation. The other parameters are the same as in
Fig. 5.

FIG. 7. The imaginary part of g in Eq. �15� as a function of
� /�p for qx=0 and qyd=2 for a pair of 2DEG layers in the absence
of an electrostatic modulation. The other parameters are the same as
in Fig. 5.
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been demonstrated in our calculated loss function by nega-
tive dips. The two-dimensional plasmon modes become more
responsive as the doping of the adjoining 3D material is
increased and the period of the split-gated modulation is de-
creased in the strong coupling regime. This is consistent with
the experiments aimed at combining the tunability of the
grating-gated detector with its high responsivity. The radia-
tion of energy by plasmon modes occurs when these modes
become unstable. If a current beam passes in the vicinity of
the surface, the 2D plasmon modes in adjacent layers absorb
energy for their excitation. However, due to their mutual in-
teraction, these self-sustaining oscillations exist only for a

finite length of time. The damping of these modes results in
their excitation energy being radiated from the plasma.
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