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Electron correlation effects on the Lehmann spectra of the one-body Green functions are clarified by using
the quantum Monte Carlo simulation of path-integral form. Through the analysis of the Lehmann spectrum, we
also show that the electron states of the insulating systems caused by the Coulomb repulsion �Mott-type
insulators� significantly depend on the strength of the Coulomb interaction. Specifically, it is shown that in the
weak interaction regime, the momentum-specified Lehmann spectrum is qualitatively explained by the second
order perturbation theory from the unrestricted Hartree-Fock state, especially near the Fermi energy. This
means that the Lehmann spectrum still has a dominant one-body component. On the other hand, in the strong
interaction regime, the Lehmann spectrum loses such a one-body component almost completely even near the
Fermi energy, and is constituted of the many-body component caused by the coupling between the charge and
magnetic excitations. These results indicate that in the weak interaction regime, the electron state of the
Mott-type insulator can be described by the one-body picture near the Fermi energy, while in the strong
interaction regime, such a one-body picture no longer works even near the Fermi energy. For these two cases,
the Lehmann spectra have clearly different peak structures. Since the Lehmann spectrum corresponds to the
photoemission spectrum in experiment, we conclude that photoemission spectroscopy can be a valuable tool to
obtain direct information on the strength of the Coulomb interaction.
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I. INTRODUCTION

The electron correlation effects on the condensed-matters
cause a lot of interesting and unconventional phenomena,
such as high-temperature superconductivity and colossal
magnetic resistance. A metal-insulator transition due to the
electron-electron interaction, called a Mott �or Mott-
Hubbard� transition, is another hot topic. Many scientists
have tried to clarify its nature for a long time by both
theoretical1–3 and experimental4–8 approaches, as the high-
temperature superconductivity is realized by light hole �or
electron� doping on the Mott-type insulator. We believe that
the investigation of the Mott-type insulator will help us un-
derstand the mechanism of the high-temperature supercon-
ductivity.

As far as the experimental approaches are concerned,
angle-resolved photoemission spectroscopy �ARPES� has be-
come one of the most important probes to investigate elec-
tron states, even having strong interactions. Its energy and
momentum resolution has been remarkably improved8 and
bulk sensitive observation has also been developed.9 As a
result, now, ARPES gives quite reliable information on elec-
tron states inside solids. In fact, ARPES has been applied for
many materials so far, including the Mott-type insulators
where the electron-electron interaction plays a crucial role.
With the increase of the polished experimental data, how-
ever, we have met some difficulty in understanding of these
data appropriately.

Basically, ARPES is believed to give information mainly
on a single-electron state, through the direct observation of
electrons ejected from the solid by light emission. A spectral

component corresponding to this single-electron state is
called a coherent component. This coherent component
makes a very sharp peak of �-function type in the spectral
function, since theoretically it comes from a pole of a one-
body Green function. The electronic band structure is ob-
tained by searching the energy-momentum relation of the
coherent peak. A weak interaction makes this �-functional
peak slightly broad. A simple metal, where the electron-
electron interaction is well renormalized into the electron
mass, is the case. In addition to the broadening of the coher-
ent peak, the electron-electron interaction causes a so-called
incoherent component in the spectral function. This incoher-
ent component, representing the many-body effects, comes
from scattering of a photogenerated hole and elementary ex-
citations inherent in each material. With help of significant
progress in ARPES technique, we have realized that the in-
coherent component sometimes has more important meaning
than the simple subsidiary structure of the coherent peak. In
other words, ARPES spectra also include valuable informa-
tion on the many-body effects beyond the one-body picture.
At present, however, theoretical understanding of the ARPES
spectra is not enough to extract necessary information on the
many-body effects.

In this article, we clarify, from a theoretical viewpoint, the
electron correlation effects on the momentum-specified Leh-
mann spectra of the one-body Green function, which corre-
spond to the ARPES spectra in experiment. At the same time,
through the analysis of the Lehmann spectra, we will also
clarify the electron state and role of electron-electron inter-
action in Mott-type insulators. The one-body Green function
is calculated by means of the quantum Monte Carlo simula-
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tion of path-integral form10–14 and its Lehmann spectrum is
obtained by the analytic continuation from the one-body
Green function.15 A systematic study of the electron correla-
tion effects on the Lehmann spectra is important if one wants
to extract relevant information on electron states from pho-
toemission experiments for real materials. In the following
calculations, we will show that the Lehmann spectrum has a
dominant sharp coherent peak near the Fermi energy in the
weak interaction regime, while in the strong interaction re-
gime, the spectrum loses such an independent-electron com-
ponent almost completely even near the Fermi energy.

This difference has actually been observed in the ARPES
experiments for SrVO3 and copper oxides. The bulk sensitive
ARPES experiments7,8 have revealed that the spectrum for
SrVO3 has a sharp peak near the Fermi energy and a broad
peak on its high binding-energy side. Exactly speaking,
SrVO3 is metallic, but in a previous paper,16 we pointed out
that it is a metallic state very close to the Mott-type insulat-
ing phase. The ARPES spectra for 1T-TaSe2 has the similar
structures. 6 On the other hand, in the ARPES spectra for the
copper oxides,17,18 there is no sharp peak even near the Fermi
energy. The spectrum only has a broad peak at each wave
number. A one-dimensional �1D� Ni-Br complex has similar
structures.19 These different peak structures in the ARPES
experiments are explained by the following. The electron-
electron interaction in SrVO3 or 1T-TaSe2 is weak enough to
be treated by the one-body picture plus low-order perturba-
tion, while it is so strong in the copper oxides or Ni-Br
complex that the one-body picture no longer works and the
spectrum is dominated by the incoherent component. Thus,
our theoretical research proves that the ARPES spectra di-
rectly reflect the strength of the electron-electron interaction
inside the solid. This is a valuable possibility of ARPES
beyond the one-body picture.

This article is organized as follows. In Sec. II, we briefly
review our method and model. In Sec. III, we show the re-
sults and discuss the electron state in the Mott-type insulator
as well as the electron correlation effects on the Lehmann
spectra of one-body Green functions. Finally, in Sec. IV, we
give a short summary.

II. MODEL AND METHOD

In this research, we employ a two-dimensional �2D� half-
filled Hubbard model since there are interesting photoemis-
sion data on the 2D materials, such as 1T-TaSe2 and copper
oxides. However, the obtained results are general and valid
for all dimensions. The Hubbard model is very simple, but it
is instructive to see the electron correlation effects in con-
densed matter. Its Hamiltonian is given by

H = H0 + HI,

H0 = − t �
�i,j��

�ai�
† aj� + aj�

† ai�� ,

HI = U�
i

ni↑ni↓. �1�

Here, �i , j� represents the set of nearest-neighbor sites and U
represents the on-site Coulomb repulsion. In the following

calculations, all the energies are scaled by t. For different
U’s, we will see clearly different peak structures in the
momentum-specified Lehmann spectrum of the one-body
Green function, which, in turn, indicates the distinctive elec-
tron states in condensed matter with different electron-
electron interactions.

The momentum-specified Lehmann spectrum of the one-
body Green function corresponds to the ARPES spectrum in
experiment. Here, let us briefly review this relationship.
First, we prepare the complete set spanned by the eigenstates
of K, which are given by

K = H − �N ,

K�m� = Km�m� . �2�

Here, �m� and Km represent the eigenstate of K and its eigen
value, respectively. At finite temperature, the ARPES spec-
trum is given by

A�k,�� = �
m,n

e−�Km

Z
��n�ak�m��2��� − Kn + Km� , �3�

where Z represents the grand partition function. On the other
hand, the one-body real-time Green function is written by

iG�k,t � 0� = − Tr��ak
†�t�ak�0��

= − �
m

e−�Km

Z
�m�eiKtak

†e−iKtak�m�

= − �
m,n

e−�Km

Z
ei�Km−Kn�t�m�ak

†�n��n�ak�m�

= − �
m,n

e−�Km

Z
ei�Km−Kn�t��n�ak�m��2. �4�

From its Fourier transform given by

G�k,�� = 	
−	

	


�t�e−i�tG�k,t � 0�

= �
m,n

e−�Km

Z

��n�ak�m��2

� + Km − Kn − i�
, �5�

we obtain

A�k,�� =
1

�
Im G�k,�� . �6�

Thus, the ARPES spectrum corresponds to the momentum-
specified Lehmann spectrum of the one-body real-time
Green function. On the other hand, this Lehmann spectrum
has the following relationship to the one-body thermal Green

function Ḡ:20

Ḡ�k,�n� = 	
−	

	 d�

2�

A�k,��
i�n − �

, �7�

where �n= �2n+1�� /�. Fourier transformation of this ther-
mal Green function is given by
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Ḡ�k,
� =
1

�
�

n

e−i�n
Ḡ�k,�n� . �8�

The summation over the frequency �n can be carried out by
using the residual theorem

�
n

e−i�n


i�n − �
=

�

2�i
	

−	

	

dz
 e−
z

e−�z + 1

1

z − �
� =

�e−
�

e−�� + 1
.

�9�

Thus, the one-body thermal Green function is written in
terms of the Lehmann spectrum

Ḡ�k,
� =
1

2�
	

−	

	

d�
e−
�A�k,��

e−�� + 1
. �10�

Now, what we should do is calculate this one-body ther-
mal Green function as accurately as possible. For this pur-
pose, in the present research we employ the quantum Monte
Carlo method of path-integral form. Here, let us review this
path-integral theory. First, we decompose the total Hamil-
tonian into a one-body translation term and a two-body in-
teraction term,

e−�H = �e−�
H�M ,

e−�
H = e−�
H0e−�
HI + O��tU�
�2
 , �11�

where the error in the order of �tU�
�2 is negligible when
the number of the Trotter decomposition M is large enough.
In the following calculations, we employ large M, which
makes the error of the order of 10−2.

The important point is that this method allows us to re-
duce the two-body electron-electron interaction into the one-
body electron-boson interaction by means of the
Stratonovich-Hubbard transformation,21

e−U�
n↑n↓ =
1

2 �
�=±1

e2���n↑−n↓�−�U�
�/2�n↑+n↓�. �12�

Here, � satisfies

tanh2��� = tanh��
U/4� . �13�

This transformation reduces the total Hamiltonian into the
one-body form, having scalar Ising-type variables. There-
fore, we can easily diagonalize the obtained one-body
Hamiltonian. However, now we have to sum up over 2NM

Ising-type variables �, where N represents the system size.
This summation corresponds to the path integration, but in
practice it is impossible for present computers to carry out
this path integration exactly. Instead, we employ the Monte
Carlo simulation to estimate the path integration. Owing to
the effort to reduce the numerical errors as well as the sta-
tistic ones in the Monte Carlo calculations,11 we can now
obtain a quite accurate thermal Green function. The Leh-
mann spectrum is easily obtained by analytic continuation
from the one-body Green function.15 It should be noted that
the analytic continuation sometimes smears out fine struc-
tures in the spectral function, especially in the high-energy
region. To avoid such ambiguity, in this research we focus on
the substantial structures in the Lehmann spectra near the

Fermi energy. The details of the analytic continuation are
given in the Appendix .

Although the one-body Green function is the main target
of the present research, it gives information on not only the
one-body but also many-body properties through the cou-
pling of the one-body excitation and other elementary exci-
tations. Therefore, it is important to investigate the one-body
Green function for the overall understanding of the electron
states in condensed matter.

III. RESULTS AND DISCUSSION

Figure 1 shows the temperature dependence of the density
of states �DOS� at U=1.5. Here, the system size is
N=12�12. The DOS corresponds to the angle-integrated
photoemission spectrum. Since the system is half filled, elec-
trons are occupied up to E=0 �Fermi energy� and the states
beyond the Fermi energy are unoccupied. At high tempera-
ture, as shown in �a�, the DOS has no gap between the oc-
cupied and unoccupied states, therefore, the system is metal-
lic. This is because thermal fluctuations destroy the
antiferromagnetic ordering. The peak at E=0 might remind
the reader of the van Hove singularity in the 2D tight-
binding system. However, the present system has a finite
on-site Coulomb interaction U. In the low-temperature limit,
as shown below, there is no state at E=0. Therefore, we do
not think that the peak at the Fermi energy comes from the
van Hove singularity, but it would indicate a kind of quasi-
particle component in the metallic state. In fact, the peak at
the Fermi energy is also seen for the one- and three-
dimensional Hubbard models.22,16

As the temperature is decreased, the intensity at the Fermi
energy starts decreasing. As shown in �b�, the DOS has sharp
peaks just below and above the Fermi energy, accompanied
with broad peaks on their sides away from the Fermi energy.
In a previous paper,16 we showed that such a multipeak
structure originates in the electron scattering through the
short-range magnetic interaction. In other words, this means
that magnetic order starts developing in the system. At low
temperature, as shown in �c�, the intensity at the Fermi en-
ergy becomes zero and the DOS has a finite band gap. The
peaks near the Fermi energy are very sharp, while those
away from the Fermi energy are broad. We will show that
this sharp peak near the Fermi energy has a dominant one-
body component in the weak interaction regime. In this sec-
tion, we use the terms “one-body” and “many-body” compo-
nents for the coherent and incoherent components,
respectively, because they most accurately describe relevant
physics in photoemission process.

In photoemission experiments, such a multipeak structure
has actually been observed for CaVO3 �Refs. 5, 7, and 8� and
1T-TaSe2.6 As far as the 1T-TaSe2 is concerned, they
showed the temperature dependence of the spectral density
tuned to the Fermi wave number. To compare this experi-
ment, we show in �d� the temperature dependence of the
momentum-specified Lehmann spectrum at the Fermi wave
number. We can see that our numerical result qualitatively
reproduces the experiment. Here, for further consideration on
the electronic structures of 1T-TaSe2, we comment on the
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disagreement between the experiment and the present nu-
merical result. In the experiment, the spectrum has a small
but recognizable peak just on the Fermi energy as well as a
peak just below the Fermi energy, in the metallic region. On
the other hand, we cannot find such coexistence of the peaks
near the Fermi energy. When the spectrum has a peak just on
the Fermi energy, there is no more sharp peak near the Fermi
energy, and vise versa. The experimentally observed coexist-
ence of the peaks near the Fermi energy might come from
the complicated band structure or strong electron-phonon
coupling of the real 1T-TaSe2 beyond the single band Hub-
bard model. Another possibility would be a kind of artificial
treatment to symmetrize the experimentally observed
ARPES spectrum at the Fermi energy. The electron state in
the metallic phase is very interesting and its precise analysis
will be done elsewhere soon. In the following, however, we
focus on the Mott-type insulating phase, where the DOS has
sharp peaks near the Fermi energy and broad peaks on their
sides away from the Fermi energy.

In Fig. 2, the momentum-specified Lehmann spectra are
shown for the insulating state at low temperature, whose
DOS corresponds to Fig. 1�c�. We can see that the peak is
very sharp at the Fermi wave number kF= �� /2 ,� /2�, but it
becomes broad rapidly as the wave number leaves kF. To see
this feature more precisely, we show in Fig. 3 the binding
energy dependence of the peak width. The binding energy is
the energy of the occupied state measured from the Fermi
energy, which has an opposite sign to the energy shown in
Fig. 2. To obtain as many relevant points in the wave-
number-energy space as possible, we employ a N=14�10
system in this figure. We can see that near the Fermi energy,
the peak width hardly depends on the binding energy. The
peak becomes broad rapidly when the binding energy is be-
yond 0.4.

To explain this peak width behavior, we apply the second
order perturbation theory for this system. Second order per-

turbation is the lowest perturbation which gives a finite
imaginary part to the self-energy of the one-body Green
function. Since the system is insulating, the spin-density-
wave insulator is referred to as the unperturbed state. The
explicit Feynman diagram is depicted on the top of Fig. 3�b�,
and the obtained result is shown in Fig. 3�b�. In this pertur-
bation theory, the Fermi energy is also set at E=0. The oc-
cupied and unoccupied states start from E=−� and +�, re-
spectively. Therefore, the binding energy of the highest
occupied state is given by � and the band gap is 2�. The
contribution from the second order perturbation originates in
an electron-hole excitation by the scattering, and it needs an
energy of 2� or more for the present insulating system.
Therefore, an electron must have an excess energy of 2� or
more to be affected by this scattering. This is the reason why
the imaginary part of the self-energy stays zero from � to
3�. In other words, the electrons in this energy region are not
affected by the scattering and, therefore, their Lehmann spec-
tra consist of one-body components. Only those electrons
whose binding energies are beyond 3� can be affected by the
scattering, and the spectral peak becomes broad beyond 3�.
Here, we should note that the quantum Monte Carlo calcu-

FIG. 1. Temperature dependence of the den-
sity of states �DOS� ��a�–�c�
 and close up of their
momentum-specified Lehmann spectra at
k= �� /2 ,� /2� near the Fermi energy �d�. Dotted,
dashed, and solid lines in �d� represent the spectra
at �=12, 20, and 28, respectively. U is set at 1.5.

FIG. 2. Momentum-specified Lehmann spectra at U=1.5 and
�=28.
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lations cause finite spectral broadening due to the finite-
temperature effect and the finite-statistic deviations. Never-
theless, by comparing Figs. 3�a� and 3�b�, we can see that
second order perturbation explains the quantum Monte Carlo
results well. Thus, we can conclude that the momentum-
specified Lehmann spectrum for the weakly interacting sys-
tem has a dominant one-body component near the Fermi
energy. As the binding energy goes away from the Fermi
energy, the peak of the Lehmann spectrum becomes broad
due to many-body effects. This is quite similar to standard
Fermi liquid theory, though the present system is a Mott-type
insulator.

On the other hand, when the electron-electron interaction
is increased, the Lehmann spectrum changes its shape dras-
tically. The DOS at U=4.0 is shown in Fig. 4. The system
size is N=12�12. In contrast to the DOS at U=1.5, there is
no sharp peak even near the Fermi energy. Furthermore, Fig.
5 shows the momentum-specified Lehmann spectrum, and
we can see that the peak in the Lehmann spectrum is very
broad even at k= �� /2 ,� /2�. This difference strongly sug-
gests that different fluctuations more dominantly affect the
electron state in this system than the random-phase-
approximation- �RPA-� like fluctuations in the weak interac-
tion regime. The charge excitation gap increases with the
increase of the electron-electron interaction, therefore, the

electron-hole excitation needs more energy than in the weak
interaction regime. As a result, the contribution from such
RPA-like fluctuations becomes relatively small in the strong
correlation regime.

In a previous paper,23 we showed that the broad peak
originates in the coupling between a hole �or an electron� and
the gapless magnetic excitation inherent in the strongly cor-
related electron system. Recent progress in computing capa-
bility makes it possible for us to calculate the one-body
Green function for more than twice as large systems as the
previous one. Therefore, to establish the previous result as
well as to see the size dependence, we show the competition
between the one-body and many-body components in the
momentum-specified Lehmann spectrum.

The broad ARPES peak has actually been observed for
copper oxides17,18 and the halogen bridged Ni complex.19

Therefore, the following analysis is important in order to
understand the electron states in these strongly correlated
materials.

Our idea is that, as mentioned above, the ARPES peak for
the strongly correlated electron system is predominated by
the many-body component due to the strong coupling of a
photogenerated hole and magnetic excitations. Since the
magnetic excitation is gapless in the strongly correlated elec-

FIG. 3. Binding energy dependence of the peak width of the momentum-specified Lehmann spectrum at U=1.5 and �=28 �a� and the
imaginary part of the self-energy of the one-body Green function calculated by second-order perturbation from the spin-density-wave state
�b�. The corresponding Feynman diagram is shown on the top of �b�.

FIG. 4. DOS at U=4.0 and �=12.
FIG. 5. Momentum-specified Lehmann spectra at U=4.0 and

�=12.
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tron system, we cannot distinguish the one-body and many-
body components in the ARPES spectrum. However, the
broad peak strongly suggests the dominance of the many-
body component. To clarify this point theoretically, we con-
sider an electron system with a finite energy gap in the mag-
netic excitation, which is easily obtained by adding the
following one-body magnetic potential to the Hubbard
model:

HM = ��
i

�− 1�i�ni↑ − ni↓� . �14�

We should note that this is an artificial potential just to open
the energy gap in the magnetic excitation. In the real corre-
lated materials, � is usually equal to zero. By calculating the
Lehmann spectra for different �, we can estimate how much
of the spectrum is constituted of one-body or many-body
components in the limit of �=0.

Figure 6 shows the � dependence of the Lehmann spec-
trum at k= �� /2 ,� /2�, which corresponds to the top of the
occupied lower Hubbard band. Since this state is the closest
to the Fermi energy, it should have the largest one-body com-
ponent among the occupied states, if it has one at all. When
� is large, as shown in Fig. 6�a�, the Lehmann spectrum has
a single sharp peak, whose energy is explained by the
Hartree-Fock approximation. Therefore, this sharp peak, de-
noted by a black triangle, consists of the one-body compo-
nent free from the magnetic excitation. In Fig. 6, the hori-
zontal axis is shifted so that the energy of this sharp peak
comes to zero. In each figure, the shifted energy is given by
Ecp, and the Hartree-Fock energy is denoted by an upward
arrow. At �=0.75, we can see, from Fig. 6�b�, a broad peak
appears on the left side of the sharp peak. This broad peak,
denoted by an open triangle, originates from the coupling
between a hole and magnetic excitations. Since the present
model has a finite energy gap in the magnetic excitation, we
can clearly distinguish the sharp one-body peak free from the
magnetic excitation and broad many-body peak caused by
the coupling with magnetic excitations. As � is decreased,
the energy gap in the magnetic excitation is decreased. From
Figs. 6�b�–6�d�, we can see that the intensity of the sharp
one-body peak is decreased, while that of the many-body
peak is increased. At �=0.25, as shown in Fig. 6�d�, the
one-body component becomes much smaller than the many-
body component. From this � dependence, we can safely say
that in the simple Hubbard model with �=0, the Lehmann
spectrum is predominated by the many-body component.

To extract the weight of the one-body component in the
Lehmann spectrum, the one-body peak is fitted by a � func-
tion plus Gaussian broadening, while the many-body peak is
fitted by an asymmetric Lorentzian plus Gaussian broaden-
ing. As shown in a previous paper,23 this fitting is quite nice.
The obtained � dependence of the weight of the one-body
component Z is shown in Fig. 7. Here, the vertical axis is
logarithmically scaled. 2� / �2�+U� in the horizontal axis
corresponds roughly to the ratio of the artificial gap coming
from Eq. �14� to the total charge gap. We estimate Z at �
=0 by the extrapolation of the two points nearest to �=0,
and obtain Z=0.01. Since the � dependence of Z has a con-
vex structure, this extrapolation would give the highest esti-

mation for Z at �=0. Thus, we can conclude that more than
99% of the Lehmann spectrum is dominated by the many-
body component. In a previous paper, we obtained
Z=0.018 for an 8�8 system. The present result indicates
that Z is decreased with the increase of the system size.
Therefore, the ARPES spectra for bulk systems, such as

FIG. 6. � dependence of the momentum specified Lehmann
spectra at k= �� /2 ,� /2�. U and � are fixed at 4 and 12,
respectively.
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copper-oxides and halogen-bridged Ni complex, would lose
the one-body component almost completely.

Before ending this section, we would like to emphasize
that the photoemission spectrum directly reflects the strength
of the electron-electron interaction as we have shown. When
the interaction is weak, the angle-integrated photoemission
spectrum has a multipeak structure, and the sharp peak near
the Fermi energy is constituted of the one-body component.
On the other hand, when the interaction is strong, the ARPES
spectrum, as well as the angle-integrated photoemission
spectrum, have a single broad peak and they are predomi-
nated by the many-body component. Therefore, we can ob-
tain valuable information on the electron-electron interaction
through the structures of the photoemission spectrum.

IV. SUMMARY

We have clarified how the electron-electron interaction
affects the Lehmann spectrum of the one-body Green func-
tion by taking Mott-type insulators as examples. In the
weakly interacting electron system, the DOS has a multipeak
structure, that is, sharp peaks near the Fermi energy and
broad peaks on their sides away from the Fermi energy. As
for the momentum-specified Lehmann spectrum, we have
shown that near the Fermi energy, the energy dependence of
the peak width is explained by second order perturbation
theory with the spin-density-wave reference. Therefore, the
sharp peak near the Fermi energy is mainly constituted of the
one-body �coherent� component. These results also indicate
that, in the weak interaction regime, the electron state of the
Mott-type insulator can be explained by the one-body picture
or low-order perturbation theory from the one-body state. On
the other hand, the momentum-specified Lehmann spectrum
for the strongly interacting electron system has been shown
to be predominated by the many-body �incoherent� compo-
nent. This indicates that the electron state in the strongly
correlated system is quite far from the one-body picture or
low-order perturbation theory because of the strong coupling
between the charge and the gapless magnetic excitations. In
experiment, the presence or absence of the one-body compo-
nent directly affects the structure of the photoemission spec-
trum. Therefore, we can conclude that photoemission spec-
troscopy is a valuable probe to clarify the strength of the
electron-electron interaction.

ACKNOWLEDGMENTS

We would like to thank K. Shimada and J. Kai for valu-
able discussion. This work was supported by Grant-in-Aid
for Scientific Research No. 18540327 and the Next Super
Computing Project, Nanoscience Program, MEXT, Japan.
Numerical calculation in this work was partially supported
by Yukawa Institute Computer Facility.

APPENDIX

In practical calculations, Eq. �10� is discretized,

Ḡ�k,
i� =
��

2�
�

j

e−
i�jA�k,� j�
e−��j + 1

. �A1�

Here, the index i runs 1 through M, where M denotes the
number of the Trotter decomposition, while the index j runs
the relevant energy range ���=� j+1−� j�. Usually, M is
smaller than the number of unknown values Aj’s and, there-
fore, the simultaneous equations given by Eq. �A1� become
indefinite. Therefore, we add a constraint for each Aj that
Aj �0. These constraint conditions make the least squares
method possible, such as

S = �
i=1

M
1

�i
2 �ḠQMC�k,
i� − Ḡ�k,
i��2, �A2�

where ḠQMC�k ,
i� is a Green function obtained by the quan-
tum Monte Carlo calculation and �i denotes its deviation due
to the sampling. In addition to the least squares method, we
often add extra constraints on the spectral momenta given by

�m = 	
−	

	

d��mA�k,�� . �A3�

The analytic continuation employing these constraint condi-
tions is called the maximum entropy method �MEM�.

Here, we discuss this analytic continuation. According to
Eq. �A1�, the analytic continuation might not be sensitive in
high energy spectral structures, since the numerator in Eq.
�A1� e−
i�j could become very small when � j is large. As a
result, the analytic continuation procedures sometimes smear
out fine structures in the spectral function especially in the
high energy regime. Thus, we should be very careful when
we discuss the fine structures obtained by the quantum
Monte Carlo and MEM calculations.

On the other hand, the DOS in the weak correlation re-
gime has extra sharp peaks near the Fermi energy compared
to the DOS in the intermediate correlation regime, which is
consistent with the LDA + dynamical mean field theory.6

Furthermore, in a previous paper,24 we have shown that the
light absorption spectrum obtained by the quantum Monte
Carlo and MEM calculations has a side band structure on the
high energy side of the main peak, which also agrees with
the exact diagonalization result for a small cluster.25 Thus,
the quantum Monte Carlo and MEM calculations can repro-
duce substantial structures in the spectral function.

The single particle Lehmann spectra obtained by the

FIG. 7. � dependence of the one-body component Z in the
momentum-specified Lehmann spectrum. The solid line represents
the extrapolation from the two points nearest to �=0.
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quantum Monte Carlo + MEM calculations were also com-
pared to the exact Lanczos results for 4�4 systems.12,26 Be-
cause of the spike structures characteristic of the small clus-
ters in the exact calculations as well as the insensitivity to the
fine structures in the MEM calculations, the coincidence was
not perfect. However, we could see agreement with the sub-
stantial structures especially near the Fermi energy. A similar
coincidence could also be seen in our previous result27 and

the exact calculation19 for the one-dimensional halogen-
bridged Ni complex, when we focus on d electrons near the
Fermi energy, though the exact calculation was performed
for the multiband model.

Thus, the quantum Monte Carlo+MEM calculation can
reproduce substantial spectral structures near the Fermi en-
ergy, though we should be very careful when we discuss fine
structures especially in the high energy regime.
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