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The property of electronic transport in the Fibonacci array of ideal one-dimensional Aharonov-Bohm rings
is studied utilizing the Landauer formalism and by analyzing the quantity called “the Fibonacci invariant,”
which is derived from renormalization-group ideas. In contrast to previous studies, our invariant is not inde-
pendent of the Fibonacci generation number j in a limited sense despite its expression having the same form
as the previous ones. Even so, this “I-function,” which is a j-dependent invariant, is shown to preserve its
importance in the study of the transport properties of a quasiperiodic system. The line shape of the I-function
at j�15 exhibits a fractal-like behavior within the transmission rift �i.e., fine transmission gap�. This fractal-
like behavior of the line shape of the I-function is characterized by a scaling law. Self-similarity appears in the
trace of the transmission probability, when the scaling index is in good agreement with the scaling index at
another j.
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I. INTRODUCTION

Considerable theoretical and experimental efforts have
gone into the study of transmission properties in one-
dimensional �1D� aperiodic arrays1–20 since Kohmoto et al.21

presented a pioneering study on the 1D Fibonacci array as a
fascinating problem in solid-state physics. One remarkable
feature of aperiodic arrays is that all the one-electron eigen-
states in them are neither extended nor localized �in the stan-
dard meaning� but of an intermediate kind. More precisely,
these states called critical states exhibit multifractal proper-
ties. The transport properties of electrons associated with
critical states has profound implications in applied physics
and materials science.22

Apart from presenting an attractive topic in itself, the
study of nanoscale science in recent years has made it pos-
sible to realize exotic quantum devices whose dimensions
are much smaller than the characteristic lengths, which are
the mean free path and phase-coherence length of an elec-
tron. The quantum devices can be fabricated under precise
control that provides ideally formed low-dimensional objects
with the expected geometry. In ideal quantum devices that
are smaller than the characteristic lengths, the electrons are
not scattered by impurities or phonons, and they maintain
their phase coherence as they ballistically traverse the quan-
tum devices. The transport property in some of the idealized
systems, including such quantum devices, is based on the
principle of quantum interference, and this transport property
can be controlled by the geometrical configuration of the
device. A ring-shaped quantum wire called an Aharonov-
Bohm ring is one of the quantum devices where the relative
phase difference in each arm of the ring is controlled by an
external magnetic field. Since Webb et al.23 experimentally
verified the Aharonov-Bohm �AB� effect on an AB ring
made from a thin film of polycrystalline gold, there have
been extensive theoretical and experimental studies on the
ring-shaped quantum wire under the framework of the quan-
tum waveguide theory.24–33 Besides, studies of the transport
property controlled by the geometrical configuration of the
quantum devices according to the inflation rule have been

subjects of extensive research in the past several
years.10,13,15,17–19

The most salient property of the electronic transport in the
Fibonacci array is to exhibit self-similar trace of the trans-
mission probability, which is formed of three bunch struc-
tures in the enlarged region of wave number, and to have six
cycle for generation number j, which represents the hierar-
chy of the Fibonacci number, in the region of wave number
appearing self-similarity.3,5,10 However, from the sole view-
point of the transmission probability, it is difficult to evaluate
how the behavior of transport properties appears in any re-
gion of wave number. As a powerful tool that can reveal the
behavior of the transport property, there is an invariant asso-
ciated with the aperiodic array; this invariant is obtained by
applying the renormalization-group theory to a class of com-
posite rules proposed by Kohmoto et al.1–3 The invariant
analysis provides a clear and simple physical picture. Ko-
hmoto et al.3 studied the transmission of electromagnetic
waves through Fibonacci dielectric multilayers and indicated
that when the invariant I with an initial condition �i.e., j=0�
attains the maximum value, the transmission spectra at the
optical phase length of a layer has a six cycle for the gen-
eration number depending on the value of the maximum I.
Jin et al.10 studied the electronic transport property in a Fi-
bonacci array of T-stubs by utilizing invariant analysis on the
initial condition and pointed out that when the invariant be-
came a constant value, the self-similarity in the trace of the
transmission probability appeared in the entire region of the
wave number. Nomata et al.19 studied the transport property
in a Fibonacci array of AB rings. In this model, the transmis-
sion probability coexists with self-similarity and absence of
self-similarity depending on the ratio of half-circumferences
of AB rings and the region of wave number, although the six
cycle for the generation number appears in a region of wave
number without self-similarity. The manner in which the
aperiodicity in the Fibonacci rule affects transport properties
in AB rings in the 1D continuous waveguide model is a
puzzle, and the quantity that totally characterizes the trans-
port property of such a Fibonacci array has not been deter-
mined. The aim of this paper is to determine the distinction
between two kinds of behaviors of the transmission probabil-
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ity, i.e., the appearance of self-similarity and its absence.
Thus, we discuss the electronic transport property in the Fi-
bonacci array composed of 1D AB rings by utilizing the
invariant analysis.

The outline of this paper is as follows. In Sec. II, we
introduce the simple model of a ring-shaped quantum wire
reflecting the essence of our problem, and we derive the
relevant transfer matrix for the boundary condition in the 1D
system. Next, we derive a transfer matrix for an array of
rings connected successively according to the Fibonacci rule.
We also introduce an invariant in our model in this section.
In Sec. III, we present comprehensive numerical results to
show the variations of the transmission probability and in-
variant as a function of the wave number of the incident
electron. We also analyze the obtained results in detail. Fi-
nally, we summarize our concluding remarks in the last sec-
tion.

II. THEORY

The model system considered in this paper is a 1D Fi-
bonacci array of AB rings in a 1D quantum wire network, as
shown in Fig. 1. This wire network is composed of the units
� and � that correspond to AB rings with half-
circumferences a and b threaded by a magnetic flux �, re-
spectively. The AB rings are connected serially according to
the Fibonacci rule Sj+1= �Sj ,Sj−1�, where j is the generation
number, S1=� and S2=�� �e.g., S5=S4S3=�������� �see
Fig. 1��. It is noted that the Fibonacci array of AB rings is not
translationally invariant. For simplicity, we take the total
number of units to be N=Fj, where Fj is the Fibonacci num-
ber that satisfies Fj+1=Fj +Fj−1 with F1=F0=1. We assume
that the electron is only scattered at the nodal points of two
adjacent AB rings.

We utilize the transfer matrix method to obtain the trans-
mission probability for the Fibonacci array of AB rings.34 If
we obtain the transmission and reflection amplitudes for a
basic part of the system, we can easily derive a transfer ma-
trix for it and obtain the transmission and reflection ampli-
tudes for the entire system by combining the transfer matri-
ces of all parts of the system. Once we find the transmission
amplitude for the entire system, we can easily obtain the
transmission probability for it. Thus, we first consider the
transmission amplitude for a single AB ring, considering it as
a basic part.

Figure 2 shows one of the basic parts of the Fibonacci
array of a single AB ring with a half-circumference a �unit
�� connected to two ideal leads. To derive the wave func-

tions in this model, we introduce the local coordinate system
for the upper and lower arms in Fig. 2 such that the local
coordinate direction is taken along the electron-current direc-
tion and the origin is taken at the nodal points J1 and J2. We
assume that the current flows from the left to the right in Fig.
2. The choice of the coordinate origin is noncritical since the
interference effect in the AB ring is expressed by the phase
factor of wave functions.

In the local coordinate system, the electron motion in the
1D quantum wire subjected to a magnetic field B�=Bêz� per-
pendicular to the ring plane is governed by the Schrödinger
equation24

1

2m*�− i �
d

dx
− e

�

2a
�2

��x� = E��x� , �1�

where �	 f��0 /2�� is the magnetic flux through the ring
with the quantum unit of flux �0	h /e; f , the flux number
corresponding to the magnitude of the magnetic field; e, the
electronic charge; �, the Dirac constant; and m*, the effective
mass of an electron. Moreover, � /2a corresponds to the vec-
tor potential along the AB ring.

In the local coordinate system, wave functions in the re-
gions 1, 2, 3, and 4 in the AB ring can be obtained from Eq.
�1� and are written as

�1�x1� = eikx1 + r�e−ikx1,

�2�x2� = C2eikIx2 + D2e−ikIIx2,

�3�x3� = C3eikIIx3 + D3e−ikIx3,

�4�x4� = t�eikx4, �2�

where t� �r�� is a transmission �reflection� amplitude, while
C2 �D2� and C3 �D3� are the amplitudes of wave functions in
regions 2 and 3, respectively. k denotes the wave number of
the incident electron having energy E=�2k2 /2m*. It is noted
that in regions 1 and 4 the magnetic flux � is zero. Here, we
assumed that kI is the wave number of an electron moving
along the vector potential direction and kII is the wave num-
ber of an electron moving along the opposite direction in
regions 2 and 3 �i.e., the upper and lower arms in Fig. 2�. The
wave numbers kI and kII are given by kI=k+ f / �2a� and
kII=k− f / �2a�, respectively.

The transmission and reflection amplitudes can be deter-
mined simply by matching the boundary conditions for these
wave functions. Utilizing Griffith’s boundary conditions35 at
nodal points J1 and J2, the continuity of the wave functions
and the conservation of current density are ensured at these

FIG. 1. Schematic diagram of Fibonacci array of AB rings at
j=5 �N=8� comprising units � and � threaded by a magnetic flux
�. The unit � ��� represents a single AB ring with half-
circumference a�b�.

FIG. 2. Schematic diagram of unit � with a half-circumference
a threaded by the magnetic flux � �i.e., single AB ring�. The AB
ring is connected to two ideal leads at nodal points J1 and J2.
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nodal points. The transmission and reflection amplitudes for
unit � are, respectively, given by

t� =
16i

	S�k, f ,a�
sin ka cos

f

2
, �3�

r� =
1

	S�k, f ,a�
�2 − 4 cos f − 3 cos 2ka� , �4�

where a is the half-circumference of the AB ring and
	S�k , f ,a� is given by 	S�k , f ,a�	2+8 cos f −9e−2ika−e2ika.

The transfer matrix M� for unit � is expressed by

M� = � 1/t�
* − r�

*/t�
*

− r�/t� 1/t�
� , �5�

where the asterisk denotes the complex conjugate. We can
also obtain the transfer matrix M� for a single AB ring with
a half-circumference b �unit �� in a similar manner. The total
transfer matrix is given by the product of the transfer matri-
ces of all the basic parts according to the arrangement rule
for the Fibonacci array.

The transfer matrix M j+1 for the �j+1�th Fibonacci array
is given by a composite rule as follows:

M j+1 = M jM j−1 �j � 1� , �6�

where M0=M� and M1=M�. This composite rule corre-
sponds to the Fibonacci rule. It is noted that the total number
N of AB rings in this array corresponds to the Fibonacci
number. The transfer matrix for the N-connected Fibonacci
array can be expressed by

MN = � 1/tN
* − rN

* /tN
*

− rN/tN 1/tN
� , �7�

where tN is the total transmission amplitude and rN is the
total reflection amplitude. The total transmission probability
for the N-connected Fibonacci array is finally obtained by
TN= tN

* tN. The two-terminal conductance of the entire system
at the zero temperature is obtained by the Landauer formula
GN= �2e2 /h�TN.36

Next, we will obtain an invariant for the Fibonacci array
of AB rings by applying renormalization-group ideas. The
composite rule in Eq. �6� also provides a powerful calcula-
tional scheme since the rule can be regarded as a kind of
renormalization-group equation depending on dynamical
systems determined by the initial conditions M0=M� and
M1=M�.1–3,21 The deduced renormalization-group equation
is as follows:

xj+1 = 2xjxj−1 − xj−2, �8�

where xj =
1
2 Tr M j. The initial condition for this dynamical

system can be taken as

x0 =
1

2
Tr M� =

cos kb

cos�f/2�
,

x1 =
1

2
Tr M� =

cos ka

cos�f/2�
,

x−1 =
1

2
Tr�M�M�

−1�

=
1

4 sin ka sin kb cos2�f/2�


�2 cos2 k�a − b� − 2 cos k�a + b�


cos k�a − b�cos2�f/2� + cos f − 1� . �9�

Furthermore, Kohmoto et al. defined the three-dimensional
space spanned by r j = �xj ,xj+1 ,xj+2� and related Eq. �8� to the
mapping from r j to r j+1. The orbit �r j� is confined on a two-
dimensional manifold determined by an invariant2,21 given
by

I = xj−1
2 + xj

2 + xj+1
2 − 2xj−1xjxj+1 − 1. �10�

We consider that the expression in Eq. �8� can be applied in
our model since the expression is determined by the compos-
ite rule in Eq. �6�. Substituting Eq. �9� into Eq. �10�, the
explicit expression of the invariant at j=0 is given by

I =
1

cos2�f/2�
�cos2 ka + cos2 kb�

+
D�k, f ,a,b�

16 sin2 ka sin2 kb cos4�f/2�


�D�k, f ,a,b� − 2 sin 2ka sin 2kb� − 1, �11�

where D�k , f ,a ,b�	2 cos2 k�a−b�−2 cos2�f /2�cos k�a
+b�cos k�a−b�+cos f −1. By substituting Eq. �8� directly in
Eq. �10�, one can see that this invariant is indeed indepen-
dent of j.

However, here we argue that this is not the case for our I.
The invariant I for the tight-binding model proposed by Ko-
hmoto et al. is determined by the difference between two
values of the potential �hopping matrix elements�; therefore,
the potential is a key parameter to maintain I as an invariant
under the renormalization-group transformation.2,21 How-
ever, the invariant for our model is determined by the half-
circumference of rings, wave number k, and magnetic flux
number f . Thus, I for the tight-binding model is parametrized
by the potential difference only, whereas I for our model has
two extra parameters, k and f , besides the ratio of the half-
circumferences. This multiparameter nature makes our I with
higher j different from Eq. �11� in a limited sense. We ex-
plain our argument. Each matrix element of our transfer ma-
trix M j �Eq. �7�� is a function of the wave number k and the
magnetic flux number f . Due to the fact that the presence of
a magnetic flux breaks the time-reversal symmetry of the
system,37–39 electron state antiresonance can occur and the
transmission amplitude tj �and also its complex conjugate�
may then become zero. Hence, each matrix element of M j
may have some singularities on the k axis, at each of which
not only the matrix element but also xj diverges. The number
of singularities varies depending on f and j. Each singularity
moves as f varies and j increases. Both these singular fea-
tures of M j are associated with the electronic properties of
the present system, such as the transmission probability. The
introduction of singularities in the matrix elements provides
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invariant I with a j dependency. If a singularity is hidden at
a low value of j, I behaves as if it is an invariant; on the other
hand, a higher j exposes that singularity and I then depends
on j. When each matrix element has no singularity at the
initial condition, I remains an invariant even at high values
of j. We assert that while almost all the other systems, in-
cluding the tight-binding model studied previously, do not
have such matrices with singularities, there are some other
systems with a j-dependent I that are different from the
present one.40 Thus, to distinguish between previous forms
of I and the j-dependent invariant, we refer to the latter as
“I-function” in the discussion below. At first glance, this j
dependency of I �I-function� appears to be a negative feature
in the study of the characteristic properties of quasiperiodic
systems. The importance of the I-function lies in the fact that
it is independent of j. Nevertheless, the I-function is a pow-
erful tool to study the electronic properties of the system
under consideration. This will be shown in the following
section.

III. RESULTS AND DISCUSSION

In this section, we present the numerical results of the
transmission probability and I-function as a function of k /�.
First, we discuss the transmission properties for a single ring
and double ring at f =0. After comparing the transmission
probability in a single ring with that in a double ring, we
present the transmission probability in Fibonacci arrays of
rings at f =0 by utilizing the invariant �I-function� analysis.
Next, we discuss transmission properties in a single AB ring
and double AB ring at f =0.5�. Finally, we present the rela-
tionship between the trace of the transmission probability
and the line shape of the I-function in the Fibonacci array of
AB rings at f =0.5�. Throughout the numerical calculation,
we have confined the half-circumference of AB rings to rela-
tively prime and chosen units where e= � =2m*=1.

A. The case of f=0

In the case of a single ring with a half-circumference a at
f =0, the transmission probability TS is obtained from Eq. �3�
as follows:

TS =
16

25 − 9 cos2 ka
, �12�

where k is the wave number of an incident electron. TS os-
cillates as a function of ka. In the case of k=n� /a
�n=0, ±1, ±2, ±3, . . . �, perfect transmission �i.e., TS�1� oc-
curs in the single ring and the electron travels from region 1
to region 4 smoothly. Here, the wave number satisfies the
periodic boundary condition ei2ka=1 and standing waves de-
velop in between the nodal points due to this boundary con-
dition.

For double rings with half-circumferences a and b at
f =0, the transmission probability TD is derived as

TD =
16

25 − 9 cos2 k�a + b�
, �13�

utilizing the transfer matrix method.

Comparing Eq. �12� with Eq. �13�, the expression for TD
is identical to the expression for TS except for the term con-
taining the half-circumference �a+b�. Here, we assume that
the expression for the transmission probability TFj

in the Fi-
bonacci array is also identical to the expression for TS except
for the term containing the half-circumference as in the case
of Eq. �13�; the transmission probability TFj

for the Fi-
bonacci array at f =0 can be expressed by

TFj
=

16

25 − 9 cos2 k�aFj + bFj−1�
, �14�

where Fj and Fj−1 are Fibonacci numbers that satisfy
Fj+1=Fj +Fj−1 with F0=F1=1. Indeed, the result of the nu-
merical calculation for the arrangement of rings in Fig. 3
indicates that the trace of TFj

for the Fibonacci array accords
fully with the trace of TS for a single ring.

To elucidate the behavior of the transmission probability
TFj

in the Fibonacci array, we apply the invariant �I-function�
analysis proposed by Kohmoto et al.2,21

Substituting f =0 into Eq. �9�, the initial condition on the
mapped dynamical system in Eq. �11� is given by
x−1=cos k�a−b�, x0=cos kb, and x1=cos ka. From this initial
condition, the I-function at f =0 becomes zero. In addition, in
the case of a=b �i.e., periodic array� and f with an arbitrary
flux number, the I-function is again zero from Eq. �11� ana-
lytically. This implies that the I-function has no singularity at
the initial condition. As mentioned in Sec. II, the absence of
a singularity for I ensures that the I-function of the initial
condition is sufficient for the analysis. Thus, in the invariant
�I-function� analysis we focus on the I-function for the initial
condition.

From the above consideration, the zero value of I at
f =0 can provide a clear and simple physical picture. Figure
3�a� shows the schematic diagram for the Fibonacci array of
rings composed of S4=����� with a :b=1:2. From the in-
variant �I-function� analysis, all single rings with b=2 can be
replaced with two single rings with b=1 �i.e., the half-
circumference of the single ring with b=2 is halved�, and the

FIG. 3. Schematic diagram of array of rings at f =0. �a� Fi-
bonacci, �b� periodic and �c� single ring. The single ring with a
half-circumference b=2 can be replaced by double rings with a
half-circumference a=1, and the Fibonacci and periodic arrays of
rings can be replaced by a single ring.
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Fibonacci array of rings composed of S4=����� with
a :b=1:2 can be equivalent to a periodic array of seven rings
with a :b=1:1 �see Fig. 3�b�� and vice versa �i.e., the peri-
odic array with a :b=1:1 can be replaced with the Fibonacci
array with a :b=1:2�. Now, from the dividing rule discussed
above, the arrangement of rings in Figs. 3�a� and 3�b� can be
replaced with a single ring with a=7 as shown in Fig. 3�c�.

Utilizing the I-function analysis for the initial condition,
we find that the expression for TFj

in the Fibonacci array of
rings is identical to the expression for TS except for the half-
circumference term. Therefore, the behavior of the transmis-
sion probability at f =0 is independent of the arrangement
rule for rings.

B. The case of f=0.5�

The transmission probability TS for a single AB ring at
f =0.5� is derived from Eq. �3� as follows:

TS =
8 sin2 ka

9 − 14 cos2 ka + 9 cos4 ka
, �15�

TS at f =0.5� oscillates as a function of the period a� as in
the case of the single ring at f =0. As shown in Figs. 4�a� and
4�b�, it is characteristic that resonance points �i.e., TS=1�
appear in the trace of the transmission probability whenever
the wave number k equals n� /a �n=0, ±1, ±2, ±3, . . . � at
f =0, while antiresonance points �i.e., TS=0� appear in the
trace of the transmission probability whenever the wave
number k equals n� /a at f =0.5�. The antiresonance at these
wave numbers is caused by the breakdown of the time-
reversal symmetry.37–39

For a double AB ring at f =0.5�, the transmission prob-
ability TD is derived from the transfer matrix method as fol-
lows:

TD =
16 sin2 ka sin2 kb

	D�k,a,b�
, �16�

where 	D�k ,a ,b� is given by

	D�k,a,b� 	 4 − 2 cos k�a + b�cos k�a − b� + 9 cos2 k�a + b�

+ cos2 k�a − b� − 6 cos3 k�a + b�cos k�a − b�

+ 3 cos2 k�a + b�cos2 k�a − b� − 9 cos4 k�a + b� .

Comparing Eq. �13� with Eq. �16�, the transmission prob-
ability TD at f =0 does not become zero in the entire region

of k, while TD at f =0.5� becomes zero at k=n� /a or
k=n� /b. Here, it is noted that the wave numbers for which
n /a or n /b is an integer are removed from the entire region
of k since the transmission probability approaches infinity at
the k values that equal an integral multiple of �. The zero
transmission at these wave numbers is caused by the break-
down of the time-reversal symmetry as in the case of a single
ring. There are a couple of research works that help in un-
derstanding the characteristics of electron flow near the sin-
gular points of transmission probabilities in multiply-
connected open AB rings.33

Figures 4�a� and 4�b� show traces of TD as a function of
k /� for a :b=1:3 and a :b=2:3, respectively. The solid line
represents traces of TD at f =0.5�, and the dashed line rep-
resents traces of TD at f =0. In the cases where the half-
circumferences a and b of AB rings are relatively prime, the
transmission probability has the period � in both the periodic
and Fibonacci arrays of AB rings.19 Thus, we discuss only
the region k� �0,�� for the double AB ring. As shown in
Fig. 4�a� for a :b=1:3, the trace of the transmission prob-
ability for f =0.5� exhibits four dips at k=��, � /3, 2� /3,
and �1−���, and in Fig. 4�b� for a :b=2:3 the trace for
f =0.5� exhibits five dips at k=��, � /3, � /2, 2� /3, and
�1−���, where � is a positive infinitesimal quantity. There-
fore, the number of dips �i.e., TD=0� for k� �0,�� is given
by �a+b�. Here, we again notice that a and b are relatively
prime.

Next, we discuss the transmission property in a Fibonacci
array of rings at f =0.5�. Figure 5 shows the numerical re-
sults of the transmission probability TFj

as a function of k /�.

The generation number is fixed at j=17 �which corresponds
to 2584 units comprising � and ��. Figures 5�a� and 5�b�
show the traces of the transmission probability for a :b
=1:3 and a :b=2:3, respectively. It is noteworthy that the
number of transmission gaps in Fig. 5�a� corresponds to four,
k=��, � /3, 2� /3, and �1−��� for k� �0,��, and the num-
ber of transmission gaps in Fig. 5�b� corresponds to five, k
=��, � /3, � /2, 2� /3, and �1−��� for k� �0,��. Thus, in
the Fibonacci array of AB rings, the relationship between the
number of AB rings and gaps for k� �0,�� is given by
�a+b� as in the case of the double AB ring with f =0.5�.

In previous works by Jin et al., the electronic transport
property in quantum wires with serial T-stubs was studied
utilizing the transfer matrix method.10 They found that the
trace of the transmission probability exhibited self-similarity
formed of three bunch structures and a six cycle for the gen-
eration number j. The transport property in a Fibonacci array
composed of AB rings is based on the principle of quantum
interference effect as in the case of the Fibonacci array com-
posed of T-stubs. Thus, the feature of self-similarity and the
six cycle can be observed in the traces of the transmission
probability of the Fibonacci array composed of AB rings.

Figure 5�c� shows the trace of the transmission probability
with a :b=1:3 in the enlarged region of 0.791
k /�

0.852 in Fig. 5�a�, and Fig. 5�e� is the trace of the trans-
mission probability in the enlarged region of 0.813
k /�

0.828 in Fig. 5�c�. Figure 5�d� shows the trace of the trans-
mission probability with a :b=2:3 in the enlarged region of
0.823
k /�
0.898 in Fig. 5�b�, and Fig. 5�f� is the trace of

FIG. 4. Transmission probability TD vs wave number k /� in
double AB rings. �a� a :b=1:3, �b� a :b=2:3. The dashed line is the
trace of the transmission probability at f =0, while the solid line is
the trace at f =0.5�.
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the transmission probability in the enlarged region of 0.864

k /�
0.880 in Fig. 5�d�. As shown in Figs. 5�c� and 5�e�,
the traces of transmission probability exhibit self-similarity
of three bunch structures. However, Figs. 5�d� and 5�f� do
not exhibit self-similarity.

Figure 6 shows traces of the transmission probability at
j=11, 14, and 17. In Figs. 6�a�, 6�c�, and 6�e�, the ratio of
half-circumferences is fixed at a :b=1:3, while it is a :b
=2:3 in Figs. 6�d�–6�f�. The trace of the transmission prob-
ability in Fig. 6�a� is similar to that in Fig. 6�e�, while the
trace of the transmission probability in Fig. 6�b� is similar to
that in Fig. 6�f�; this holds despite the regions k /� in these
traces of transmission probability being different from each
other. These results of Fig. 6 indicate that the traces of trans-
mission probability exhibit six cycle behavior for the genera-
tion number j. Moreover, it is remarkable that six cycle for j
appears in the traces of transmission probability regardless of
the appearance of self-similarity. This result in the transmis-
sion behavior indicates that the six cycle behavior for j is an
intrinsic character of the transport property of Fibonacci
arrays. Here, we turn to the I-function analysis. The
electronic transport property in the region of transmission
minibands is also discussed utilizing the I-function. First, we
consider the I-function for the initial condition j=0. Substi-
tuting f =0.5� into Eq. �9�, the initial condition for the
mapped dynamical system is given by x0=
2 cos kb, x1

=
2 cos ka, and x−1= �2 cos2 k�a−b�−cos k�a+b�cos k�a
−b�−1� / �2 sin ka sin kb� at f =0.5�. Therefore, the
I-function for the initial condition at f =0.5� is expressed as

FIG. 5. Transmission probability TFj
vs wave

number k /� in Fibonacci array of AB rings at j
=17 and f =0.5�. �a� 0
k /�
1 with a :b=1:3,
�b� 0
k /�
1 with a :b=2:3, �c� 0.791
k /�

0.852 with a :b=1:3, �d� 0.823
k /�
0.898
with a :b=2:3, �e� 0.813
k /�
0.828 with
a :b=1:3, and �f� 0.864
k /�
0.880 with a :b
=2:3.

FIG. 6. Transmission probability TFj
vs wave number k /� in

Fibonacci array of AB rings at f =0.5�. The ratio of the half-
circumferences of AB rings is a :b=1:3 ��a�, �c�, and �e�� and
a :b=2:3 ��b�, �d�, and �f��. The total numbers of AB rings are �a�
and �b� N=144 �j=11�, �c� and �d� N=610 �j=14�, and �e� and �f�
N=2584 �j=17�.
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I =
1

4 sin2 ka sin2 kb

 �1 − cos k�a + b���1 + cos k�a + b��


 �1 − cos k�a − b���1 + cos k�a − b�� . �17�

For Eq. �17�, the I-function becomes zero at k=n� / �a+b� or
k=n� / �a−b� �n=0, ±1, ±2, ±3, . . . �. In addition, the
I-function approaches infinity at k=n� /a or k=n� /b. Fig-
ures 7�a� and 7�b� show the traces of transmission probability
and the line shape of the I-function as a function of k /�. The
dashed lines represent the line shape of the common loga-
rithm of the I-function for the initial condition, while the
solid lines represent the traces of transmission probability.
The traces of transmission probability in Figs. 7�a� and 7�b�
are the same as those in Figs. 5�a� and 5�b�.

As shown in Figs. 7�a� and 7�b�, each line shape of the
I-function exhibits dips approaching −15 in the region of the
transmission minibands. The dips in Fig. 7�a� are located at
k=� /4, � /2, and 3� /4, and those in Fig. 7�b� are located at
k=� /5, 2� /5, 3� /5, and 4� /5. On the other hand, the line
shape of the I-function exhibits peaks approaching 15 at k
=� /3 and 2� /3, and the line shape of the I-function in Fig.
7�b� exhibits peaks approaching 15 at k=� /3, � /2, and
2� /3. As discussed in the case of the double AB ring at f
=0.5�, the resonance points in k� �0,�� appear in the trace
of the transmission probability when the wave number k
equals � /4, � /2, and 3� /4 with a :b=1:3 and � /5, 2� /5,
3� /5, and 4� /5 with a :b=2:3. In addition, the antireso-
nance points in k� �0,�� appear in the trace of the transmis-
sion probability when the wave number k equals � /3 and
2� /3 with a :b=1:3 and � /3, � /2, and 2� /3 with a :b
=2:3. As shown in Figs. 5�a� and 5�b�, the transmisson gaps
in the Fibonacci array of AB rings are located at the wave
number at which the dips appear. We consider that the reso-
nance points in the Fibonacci array of AB rings also corre-
spond to those in double AB rings. Thus, the divergent be-
havior of the I-function indicates that the resonance points
appear when the line shape of the I-function exhibits dips,
while antiresonances �the transmission gaps� appear when
the line shape of the I-function approaches infinity. There is
a research study that investigated the behavior of conduc-

tance in relation to the underlying chaotic map and its
invariant.8 Moulopoulos et al. analytically provided that
resonances occur at special points associated with the van-
ishing of invariant I of the underlying dynamical map.

In Sec. II, we mentioned that the singular features of M j
are associated with the invariant I with j dependency
�I-function�, and the line shape of the I-function at a higher j
can exhibit peaks within the transmission gaps in the region
of the transmission minibands. The Fibonacci system pro-
posed by Kohmoto et al. or almost all the other Fibonacci
systems studied previously do not have singularities in the
matrix elements. In these systems, the I-function is indepen-
dent of j. Thus, the manner in which the behavior of the
I-function in the system having singularities in the matrix
elements is characterized by the generation number for j
�0 should be clarified, and it is attractive to study how the
line shape of the I-function is affected by the generation
number for j�0. Finally, we discuss the behavior of the
I-function by utilizing the I-function analysis for j�0.

Figure 8 shows the trace of the transmission probability as
a function of k /� at j=10 �dashed line�, and the line shapes
of the I-function are shown as a function of k /� at j=0
�dotted line� and j=10 �solid line�. We find two features: �i�
The line shape of the I-function at j=10 accords with that at
j=0 in the region of the transmission minibands. �ii� The line
shape of the I-function at j=10 exhibits peaks unlike that at

FIG. 7. Transmission probability TFj
and the I-function for the initial condition vs wave number k /� in Fibonacci array of AB rings at

f =0.5� and j=17. The ratio of the half-circumferences of AB rings is a :b=1:3 in �a�, while it is a :b=2:3 in �b�. The solid line is the trace
of the transmission probability and the dashed line is the line shape of common logarithm of the I-function at j=0.

FIG. 8. The I-function log10 I vs wave number k /� in Fibonacci
array of AB rings at f =0.5�, a :b=1:3. �a� The dashed line is the
trace of TFj

at j=10. The dotted and solid lines are line shapes of
log10 I for j=0 and j=10, respectively.
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j=0 in the region of the transmission gaps. This remarkable
discrepancy in the I-function behavior indicates that the
value of the function is independent of the generation num-
ber for �xj � 
1, while the value of the function is dependent
on the generation number for �xj � �1. Thus, the I-function
behavior is exhibited only for �xj � 
1. Here, to distinguish
between the transmission gap where the line shape of the
I-function at j=0 approaches infinity and the region where
the line shape of the function for j�0 exhibits peaks in the
region of the transmission gaps, we define the transmission
gaps in the region of the transmission minibands as a trans-
mission rift. These peaks of the line shape of the I-function
imply that the transmission gaps are caused by breaking the
time-reversal symmetry, and the transmission rifts are caused
by the influence of the Fibonacci array of rings.

Figure 9�a� shows the line shape of the I-function as a
function of k /� at j=19, and Fig. 9�b� is the line shape of the
function in the enlarged region of 0.8197
k /�
0.8222 in
Fig. 9�a�. As shown in Figs. 9�a� and 9�b�, the line shape of
the I-function suggests a fractal-like behavior. Figure 9�c�
shows the line shape of the function as a function of k /� at
j=15 �solid line�, j=17 �dashed line�, and j=19 �dotted line�.
The line shapes of the I-function in Fig. 9�c� show that as the
generation number increases, the magnitude of the peak that
appears within the transmission rifts increases. In addition,
Fig. 9�d� shows the relationship between the maximum val-
ues of the peaks of the line shapes of the I-function and the
number of AB rings corresponding to the Fibonacci number.
The maximum values of the peak at j=15, 17, and 19 are

fitted in a straight line �i.e., Imax at the wave number having
the maximum value of the peaks increases exponentially as
the Fibonacci number increases�. Here, we are led to antici-
pate that the self-similarity feature emerging in the transmis-
sion rifts can be associated with the fractality of peaks of the
I-function. Thus, in order to verify this behavior of the func-
tion, we introduce a quantity called the local maximum
value, which is the height of each local peak of the common
logarithm of the I-function within the transmission rift. We
further divide the local maximum value by the system size N
�see Fig. 9�d��. Thus, the reduced local maximum value �max
is defined as follows:

�max 	
1

N
log10 Imax. �18�

It is noted that Eq. �18� is applied in the region of k where
the trace of the transmission probability exhibits transmis-
sion rifts. If the relationship between the local maximum
value �max and the width of the transmission rift wr exhibits
a fractal behavior, a scaling law for the Fibonacci array of
AB rings can be obtained.41,42 In addition, the scaling index
for the relationship between �max and wr can be independent
of the generation number.

Next, we investigate the relationship between the local
maximum value �max and the width of the transmission rift
wr. Figure 10 shows �on a log-log scale� the relationship
between the variation of �max and the width of the transmis-
sion rift wr for several j. Figures 10�a� and 10�b� show the

FIG. 9. Fractal-like behavior of log10 I. �a� log10 I vs k /� in Fibonacci array of AB rings at f =0.5�, a :b=1:3. �b� The line shape of
I-function in the enlarged region of 0.8197
k /�
0.8222 in �a�. �c� The solid line, the dashed line, and the dotted line are the line shapes
of log10 I for j=15, j=17, and j=19, respectively. �d� log10 Imax vs the number of AB rings N.
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results of the least-squares fit to the data for ��max, wr� with
a :b=1:3 and a :b=2:3. The fits in Figs. 10�a� and 10�b� are
represented by the solid �j=15�, dotted �j=17�, and dashed
lines �j=19�. The slopes of the lines �R in Fig. 10�a� 0.894
�j=15�, 0.830 �j=17�, and 0.854 �j=19�, while the slopes of
the lines �R in Fig. 10�b� are 0.814 �j=15�, 1.04 �j=17�, and
1.15 �j=19�. From Fig. 10, we deduce that the relationship
between �max and wr is given by

�max � �wr��R, �19�

where the scaling index �R is affected by the half-
circumference and the number of AB rings corresponding to
the generation number j. Therefore, we find that the relation-
ship between �max and wr is characterized by the scaling law
�19� in the Fibonacci array of AB rings. In addition, the
slope of the line �i.e., scaling index� for j=15 in Fig. 10�a� is
in good agreement with those for j=17 and j=19, while the
slope of the line for j=15 in Fig. 10�b� is in disagreement
with those for j=17 and j=19. This correspondence of �R
indicates that the appearance of fractal behavior for the line
shape of the I-function is closely related to the appearance of
self-similarity for the trace of the transmission probability.
Indeed, the trace of the transmission probability for a :b
=1:3 exhibits self-similarity, while that for a :b=2:3 does
not exhibit self-similarity. Therefore, we claim that self-
similarity appears in the trace of the transmission probabil-
ity when �R is in good agreement with �R at another gen-
eration number, and it is essential to pick out the relevant

parameters, which are the ratio of the half-circumferences of
AB rings and the value of the magnetic flux number, to ob-
serve the self-similarity. This correspondence of the scaling
index at each generation number presents an approach for
characterizing the self-similarity of the transmission prob-
ability. The invariant I proposed by Kohmoto et al. plays a
pivotal role as a diagnostic tool in the study of electronic
transport properties, notwithstanding its j dependency in our
system concerned here.

IV. SUMMARY AND REMARKS

The property of electric transport in the Fibonacci array of
1D AB rings are studied by utilizing a transmission probabil-
ity derived from the transfer matrix method and an invariant
�I-function� derived from renormalization-group ideas. From
the trace of transmission probability and I-function as a func-
tion of wave number, we have found the following charac-
teristic features: �i� the expression for TFj

in the Fibonacci
array of rings is identical to the expression for TS except for
the half-circumference term, and the behavior of the trans-
mission probability at f =0 is independent of the arrangement
rule for rings. �ii� In the region of k which the line shape of
I-function exhibits smooth curve approaching to zero at f
=0.5�, six cycle for j appears in the traces of transmission
probability regardless of the appearance of self-similarity
formed by three bunch structures. Therefore the six cycle
behavior for j is an intrinsic character of the transport prop-
erty of Fibonacci arrays. �iii� The resonance points appear
when the line shape of the I-function exhibits dips, while
antiresonances �the transmission gaps� appear when the line
shape of the I-function approaches infinity. �iv� The value of
the I-function is independent of the generation number in the
region of the transmission minibands, while the value of the
I-function is dependent on the generation number within the
transmission rift. �v� The line shape of the I-function within
the transmission rift exhibits fractal-like behavior. �vi� The
relationship between local maximum value and the width of
transmission rift is characterized by scaling law, where the
scaling index is affected by the half-circumference and the
number of AB rings corresponding to the j. �vii� Self-
similarity appears in the trace of the transmission probability
when �R is in good agreement with �R at another generation
number, and it is essential to pick out the relevant param-
eters, which are the ratio of the half-circumferences of AB
rings and the value of the magnetic flux number, to observe
the self-similarity.

There is a paper that demonstrated essential differences
between a standard tight-binding model and a full continuous
model.8 In addition, Chakrabarti et al.18 presented that in the
quasiperiodic system of AB rings based on tight-binding
model, the value of the invariant should not necessarily cor-
respond to zeros at the energy that the resonance occurs.
Thus, the relationship between the resonance and the vanish-
ing of the I-function could be presented by an idealized
model �a full continuous model� of AB rings.

In general, it will be necessary to take into account inter-
actions such as electron-electron, spin-orbit, and electron-
phonon in real AB ring systems. Indeed, studies on the inter-

FIG. 10. The local maximum value �max vs the width of trans-
mission rift wr. The straight lines show least-square fits to the data
for j=15 �solid line�, j=17 �dotted line�, and j=19 �dashed line�.
The ratio of units � and � are �a� a :b=1:3 and �b� a :b=2:3.
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actions have considered 1D aperiodic arrays.43,44 It is
attractive to study the effect of such interactions; however,
the subject of our study is to elucidate the property of elec-
tronic transport controlled by the geometrical configuration
of the AB rings according to the Fibonacci rule. Thus, we
applied to the ideal 1D AB ring except for the interactions
such as electron-electron, spin-orbit, and electron-phonon in
our study.

We add some remarks. The magnetic flux number for
f �0 was fixed at 0.5� in our discussion. The reason why we
fixed the magnetic flux number at f =0.5� is as follows. In
the case of f =ne� �ne, an even number�, Eqs. �3� and �4�
correspond to the case of f =0. Thus, the transmission prob-
ability at f =ne� is identical to that at f =0, and besides, the
trace of the transmission probability at f =ne� is independent
of arrangement rule of rings. Meanwhile, Eq. �3� in the case
of f =no� �no, an odd number� becomes zero. The transmis-
sion probability in double AB rings when the wave number
and half-circumference of the rings are fixed is given by
TD=g�cos f�cos4�f /2� /h�cos f�. Thus, the transmission prob-
ability at f =no� becomes zero. As discussed in Sec. III, we
found that the resonance and antiresonance state in double
AB ring at f =0.5� retain these states in the Fibonacci array
of AB rings at f =0.5�. We consider that the resonance and

antiresonance points at f =� /2 retain the same points for
another f except for f =n� �n, an even number�. Therefore,
these results indicate that the transmission probability at f
=� /2 expresses the most effective transport properties af-
fected by both the phase shift due to the external field and
the multiple scattering at the nodal points for the arrange-
ment of AB rings according to the Fibonacci rule.

In a previous study, there were features such as the stable
and the transient gaps observed in the electronic spectra for
the strongly modulated tight-binding Hamiltonian.45 The fea-
tures such as stable and transient gaps may coexist within the
transmission rift in our model. In addition, the invariant
�I-function� analysis obtained by the application of
renormalization-group ideas in our study on the Fibonacci
array of AB rings may be applicable to a 1D aperiodic sys-
tem that is defined in terms of other inflation rules;46,47 work
along these lines is in progress.
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