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Influence of vibrational modes on the electronic properties of DNA
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We investigate the electron (hole) transport through short double-stranded DNA wires in which the electrons
are strongly coupled to the specific vibrational modes (vibrons) of the DNA. We analyze the problem starting
from a tight-binding model of DNA, with parameters derived from ab initio calculations, and describe the
dissipative transport by equation-of-motion techniques. For homogeneous DNA sequences like poly-(guanine-
cytosine), we find the transport to be quasiballistic with an effective density of states which is modified by the
electron-vibron coupling. At low temperatures, the linear conductance is strongly enhanced, but above the
“semiconducting” gap it is much less affected. In contrast, for inhomogeneous (“natural”’) sequences, almost all
states are strongly localized and transport is dominated by dissipative processes. In this case, a nonlocal
electron-vibron coupling influences the conductance in a qualitative and sequence-dependent way.
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I. INTRODUCTION

Transport measurements on DNA display a wide range of
properties, depending on the measurement setup, the envi-
ronment, and the specific molecule, with behavior ranging
from insulating! to semiconducting® to quasimetallic.> The
variance of experimental results as well as ab initio
calculations* suggests that the environment and its influence
via the vibrational modes (vibrons) of DNA are an important
factor for the electronic transport properties of DNA wires.

Numerous recent papers addressed the electronic proper-
ties in a microscopic approach.’~® Typically, the DNA is de-
scribed within a tight-binding model for the electronic de-
grees of freedom, with parameters either taken from ab initio
quantum chemistry simulations**!% or motivated by a fit to
experiments. The variance of qualitatively different tight-
binding models is large, ranging from involved all-atomic
representations to models where each base pair is represented
by only a single orbital.

Several suggestions in the past stressed the importance of
the environment and vibrational modes on the electron
transfer'!? and transport.'>!* However, the vibrons have
been treated so far only within very simple models, where
specifically only a local electron-vibron coupling has been
taken into account.” If the coupling is sufficiently strong, this
leads to the formation of polarons, i.e., a bound state of an
electron with a lattice distortion. While these approaches are
sufficient to describe the transition from elastic (quasiballis-
tic) to inelastic (dissipative) transport, they ignore the fact
that the nonlocal electron-vibron coupling strength is compa-
rable in magnitude to the local one.* Furthermore, as the
nonlocal electron-vibron coupling leads effectively to a
vibron-assisted hopping, the proper inclusion of this cou-
pling can be important for transport through the inhomoge-
neous sequences of “natural” DNA.

In this paper, we study electron transport through double-
stranded DNA wires strongly coupled, both locally and non-
locally, to vibrational modes of the DNA. The DNA base
pairs are represented by single tight-binding orbitals, with
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energies differing for guanine-cytosine (GC) and adenine-
thymine (AT) pairs. The vibrational modes are also coupled
to the surrounding environment (water or buffer solution),
which we represent by a harmonic oscillator bath. This ex-
tension allows for dissipation of energy and opens the possi-
bility of inelastic transport processes. We address the influ-
ence of specific DNA vibrational modes on transport in the
frame of equation-of-motion techniques, with parameters
motivated by ab initio calculations.*'0

Our two main results are the following: (1) For homoge-
neous DNA sequences like poly-(guanine-cytosine) wires,
the vibrons strongly enhance the linear conductance at low
temperatures. At large bias, the vibrons affect the conduc-
tance only weakly, which remains dominated by quasiballis-
tic transport through extended electronic states. (2) For inho-
mogeneous (natural) sequences, almost all states are strongly
localized and transport is dominated by inelastic (dissipative)
processes. In this case, the presence of a nonlocal electron-
vibron coupling, leading to “vibron-assisted” electron hop-
ping, influences the conductance in qualitative and quantita-
tive ways.

The paper is organized as follows: In the following sec-
tion, we introduce the model and sketch briefly the tech-
niques used to derive the transport properties. In Sec. IIT A,
we present our results for homogeneous DNA wires, while in
Sec. III B, we discuss a specific inhomogeneous DNA se-
quence that has been studied in recent experiments. A sum-
mary is provided in Sec. I'V. Details of the applied technique
can be found in the Appendix.

II. MODEL AND TECHNIQUE

Quantum chemistry calculations'>!¢ show that the highest
occupied molecular orbital (HOMO) of a DNA base pair is
located on the guanine or adenine, whereas the lowest unoc-
cupied molecular orbital (LUMO) is located on the thymine
and cytosine. Between HOMO and LUMO there is an ener-
getic gap of approximately 2—3 eV. Experimental evidence
hints to the prevalence of hole transport through DNA.
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TABLE L. Hopping integrals #;; taken from Ref. 10 and adapted
to our model. The notation 5'-XY-3" indicates the direction along
the DNA strand [see, e.g., Fig. 1(b) in Ref. 17].

5'-XY-3' (all in eV)

X\Y G C A T
G 0.119 0.046 —-0.186 —-0.048
C —-0.075 0.119 -0.037 -0.013
A -0.013 —-0.048 -0.038 0.122
T -0.037 —-0.186 0.148 -0.038

Given the energetic and spatial separation of HOMO and
LUMO and considering sufficiently low bias voltage, we can
represent in a minimal model one base pair by a single tight-
binding orbital.

We consider a DNA sequence with N base pairs, the first
and last of which are coupled to semi-infinite metal elec-
trodes. We further allow for a coupling to (in general, mul-
tiple) vibrational modes that can be excited by local and
nonlocal coupling to the charge carriers on the DNA. These
modes, in turn, are coupled to the environment. When per-
forming the numerical calculations later, we will restrict our-
selves to a single vibrational mode of the DNA base pair,
e.g., the “stretch” mode.*

We thus arrive at the Hamiltonian H=H+H ;,+H. iy
+Hy +Hg+Hry +Hpg+Hy,, with

_ i i
Hel—E €a;a;— 2 ta;a;,
i P it

— rof T
HT,L + HT,R - 2 [tincnrai +1,a;Cprl,

in“i
n,k,i

Hyp= 2 0,B.B,.

Hyin= 2 2 Noaja,(B,+Bl) + >, > Aijajaj(Ba"'BZ)-
o i « ijit)

(1)

The index r=L,R describes left and right electrode. The
term H, describes the electrons in the DNA chain with op-
erators a,T,a,- in a single-orbital tight-binding representation
with on-site energies € of the base pairs and hopping f;
between neighboring base pairs. Both on-site energies and
hopping depend on the base pair sequence, e.g., the on-site
energy of a guanine-cytosine base pair differs from the on-
site energy of an adenine-thymine base pair. For the hopping
matrix elements 7;;, we used the values calculated by Sent-
hilkumar et al.,'® who studied intra- and interstrand hopping
between the bases in DNA dimers by density functional
theory. They computed direction-dependent values for all
possible hopping matrix elements in such dimers. Adapting
these results to our simplified model of base pairs, we obtain
the hopping elements denoted in Table 1.2° The number in the
G row and the A column denotes the hopping matrix element
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from a GC base pair to an AT base pair to its “right” (to the
3’ direction), for example.

The terms H j refer to the left and right electrodes. They
are modeled by noninteracting electrons, described by opera-
tors cZL/R,ckL,R, with a flat density of states p, (wideband
limit). The chemical details of the coupling between the
DNA and the electrodes are not the focus of this work. For
our purposes it is fully characterized by Hr;+Hr g, which
leads to a level broadening of the base pair orbitals coupled
to the electrodes characterized by the linewidths I'* and I'R.

The vibronic degrees of freedom are described by H.;,,
with bosonic operators B, and BL for the vibron mode with
frequency w,. H,_,;, couples the electrons on the DNA to the
vibrational modes, where A, and \;; are the strengths for the
local and nonlocal electron-vibron coupling, respectively. We
further restrict the nonlocal coupling terms to nearest neigh-
bors, N;j=N{; j=iz1- Note that the vibron modes and their
coupling to electrons are assumed independent of the base
pairs involved, an approximation that is reasonable for some
modes of interest, including the base pair stretch mode.* The
strength of the electron-vibron coupling for various vibra-
tional modes has been computed in Ref. 4 for homogeneous
dimers and tetramers of AT and GC pairs. Here we consider
also inhomogeneous sequences for which the electron-vibron
couplings are not known. As a model we take Ay and \; as
parameters, independent of the base pairs involved, for
which we choose values in rough agreement with estimates
for the stretch mode of Ref. 4. This should be sufficient for a
qualitative discussion of the effects that arise from the
electron-vibron coupling in DNA.

The vibrons are coupled to the environment, the micro-
scopic details of which do not matter. We model it by a
harmonic oscillator bath H,,y, whose relevant properties are
summarized by its linear (“Ohmic”) power spectrum (or
spectral function) up to a high-frequency cutoff w,.?’ The
coupling of the vibrons to the bath changes the vibron spec-
tra from discrete (Einstein) modes to continuous spectra with
a peak around the vibron frequency. Physically, the coupling
to a bath allows for dissipation of electronic and vibronic
energies. This dissipation is crucial for the stability of the
DNA molecule in a situation where inelastic contributions to
the current dissipate a substantial amount of power on the
DNA itself.

As mentioned before, we only consider a single vibra-
tional mode when performing the numerical calculations.
This vibrational mode with resonance frequency w, coupled
to the bath is then described by a spectral density

D(w) :717'

o) o) )
((w—wo)2+7](w)2 0+ ao+ pwr) ¥

with a frequency-dependent broadening 7(w), which arises
from the vibron-bath coupling. For the Ohmic bath with
weak vibron-bath coupling and cutoff w., we consider
7(@0)=0.0500(w,.— ). Mathematically, the crossover from
the discrete vibrational modes to a continuous spectrum of
a single mode is done by substituting X, dw-w,)
— [ do D(w).
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For the strong electron-vibron coupling predicted for
DNA,* one expects polaron formation, with a polaron size of
a few base pairs. To describe these polarons (a combined
electron-vibron “particle”), theoretically we apply the Lang-
Firsov unitary transformation with the generator function §
to our Hamiltonian (see, e.g., Ref. 18),

_ A
H=¢SHe™S, S=-, —Oajai[Ba - BZ] (3)
ia a

After introducing transformed electron and vibron operators
according to

a_,-=a[)(, (4)
— Ao -
Ba=Ba_2_Oailaiv (5)
_ Ao t
x=exp| 2 —(B,~B) |, (6)

the new Hamiltonian reads (with yx'=x"x=1)

H= 2 (- A)ajai— E tija;raj"' E [fixcraix
i ijiit) rki

. .
+tyeal X ci, ]+ H + Hy + 2, 0,BLB,
a

+> X Njaja(Ba+BY), (7)

a Lji#]

2
A=fde(w)%. (8)

Here we neglected terms with vibron-mediated electron-
electron interaction.'® This is a reasonable approximation for
the low hole density in DNA. The purpose of the Lang-
Firsov transformation is to remove the local electron-vibron
coupling term from the transformed Hamiltonian in ex-
change for the transformed operators and the so-called po-
laron shift A, describing the lower on-site energy of the po-
laron as compared to the bare electron. However, the
nonlocal coupling term remains unchanged and has to be
dealt with in a different way than the local term (see below).
There is an additional electron-vibron coupling due to the
vibron shift generator y in the transformed tunnel Hamil-
tonian from the leads. In this study, we neglect effects arising
from this additional coupling. This is a valid approximation
for I'™R>\, and the usual approximation taken in the
literature.%8
We introduce the retarded electron Green function

Gi(1) = = i0(){ar() x(1),a] X}, (9)

where the thermal average is taken with respect to the trans-
formed Hamiltonian, which does not explicitly include the
local electron-vibron interaction. By applying the equation-
of-motion (EOM) technique, we can derive a self-consistent
calculation scheme for G}5'(7) (see the Appendix). From the

Green function obtained by this scheme, we extract the
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physical quantities of interest, such as the density of states
and the current. The EOM technique for an interacting sys-
tem generates correlation functions of higher order than ini-
tially considered, resulting in a hierarchy of equations that
does not close in itself. Therefore, an appropriate truncation
scheme needs to be applied. In our case, we close the hier-
archy on the first possible level by neglecting all higher-
order Green functions beyond the one defined above. In par-
ticular, our approximations are perturbative to first order in
N\, (for details see the Appendix), restricting our study to
relatively weak nonlocal electron-vibron coupling strengths.
For a DNA chain with N bases, the density of states is

N
1
A(E) = - W—NE Im{G'(E)}. (10)
i=1

In the wideband limit, the retarded electrode self-energies are
constant and purely imaginary: EiLj:iFL@léjl and 25
:iFRaiN&jN‘

We evaluate the current using the relation?!

I= % f de(te{[fL(T" ~ fr(TRUG™(€) = G*"(€))}

+tr{[T*-TRIG=(e)}), (11)

where f;(e) and fR(€) are the Fermi distributions in the left
and right leads, respectively.

To compute the “lesser” Green function G<(€), we use the
relation'8

G=(6) =G™(e)[Z =+ IR=+ 35, (]G M(e).  (12)

While the lesser electrode self-energies, such as L= can be
determined easily within the above approximation for any
applied bias, we have to approximate the behavior of the
lesser self-energy due to the vibrons E:ib. Extending the
known relation for the equilibrium situation we write

Sop(€) = = fu( LS50 (6) = S0 (e)], (13)

with an effective electron distribution f.=[f1(€)+fr(€)]/2,
multiplying the equilibrium expressions for 3%t 3%V Com-
bining all terms we obtain a concise expression for the cur-
rent, which can be separated into “elastic” and “inelastic”
parts as

1= % f deTy(€) + Tia(e)]lfLle) — fr(E], (14)

where we identify the elastic and inelastic transmission
functions®>?’

Ty(€) =2 tr{TRG™(e) T G ()}, (15)

Tinel(€) = itr{(l“ R+ THG™(I[ZN(6) - 235 (016 (e)}.

(16)

Note that also the elastic transmission depends on the effects
of vibrons, since the self-consistent evaluation of the Green
function is performed in the presence of vibrons and envi-
ronment. The inelastic contribution can also be termed “in-
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FIG. 1. (Color online) Density of states and transmission of
poly-(GC) with 26 base pairs and the following parameters: Base
pair on-site energy €5=-0.35 eV, Fermi energy Er=0 eV, vibra-
tional energy fwy,=0.01 eV, cutoff Aw,=0.03 eV, linewidth I
=0.1 eV, and room temperature kz7=0.025 eV. The strong asym-
metry of the curves with respect to the band center is a consequence
of the nonlocal electron-vibron coupling \;.

coherent,” as typically the electrons will leave the DNA at a
lower energy than they enter it.

III. RESULTS

In this section, we analyze the effect of vibrations on the
electronic properties of DNA, i.e., we determine the density
of states, the transmission, and the current. As explicit ex-
amples we consider homogeneous and inhomogeneous DNA
sequences of 26 base pairs in the presence of a single vibra-
tional mode as described in the previous section. For sim-
plicity, we couple the left and right electrodes symmetrically
to the DNA, so I'*=I'R=T", and we choose I'=0.1 eV. We
further assume that the bias voltage V,, drops symmetrically
across both electrode-DNA interfaces.

A. Homogeneous poly-(GC) DNA

For a homogeneous DNA consisting of 26 guanine-
cytosine base pairs, we obtain a bandlike density of states as
displayed in Fig. 1. With the fairly small hopping element of
0.119 eV (see Table I) for this finite system, one can still
resolve the peaks due to single electronic resonances, espe-
cially near the Van-Hove-type pileup of states near the band
edges. All states are delocalized over the entire system. The
inset displays the elastic transmission, showing that the states
have a high transmission of T~ 0.5, with the states at the
upper band edge showing the highest values. Both density of
states and elastic transmission show a strong asymmetry,
which is a direct consequence of the nonlocal electron-
vibron coupling in this model.

To further elucidate this connection, we take a closer look
at the upper and lower band edges of the density of states
(see Fig. 2). Without electron-vibron coupling (solid curve)
we see the electronic resonances of equal height, positioned
at the energies corresponding to the “Bloch-type” states of
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FIG. 2. (Color online) Density of states of poly-(GC) with 26
base pairs and parameters as in Fig. 1. The solid line shows the
purely electronic resonances. Inclusion of only a local electron-
vibron coupling A\, reduces the weight at the original electronic
resonance in favor of “vibron satellites” (dashed line). The addition
of a nonlocal electron-vibron coupling \; (dash-dotted line) intro-
duces shifts of the resonance peaks “outside” (changing the effec-
tive bandwidth) as well as a strong asymmetry in the height of the
resonances.

this finite-size tight-binding chain. If we include only local
electron-vibron coupling (dashed line), vibron satellite states
appear, and the spectral weight of the original electronic
resonances decreases, consistent with the spectral sum rule.
Note that the displayed vibron satellites are not satellites of
the displayed electronic states, but emerge from other states
at higher and lower energies. Indeed the difference in peak
positions is not equal to 7wy. Inclusion of the nonlocal cou-
pling \; shifts the original electronic resonance positions
(dashed-dotted line). In the present example, with positive
sign of N\, the resonances are shifted “outside,” correspond-
ing to an effective increase in bandwidth; for the opposite
sign of A\, the resonances shift “inside.” Furthermore, a dis-
tinct asymmetry of the resonances is observed, i.e., the upper
band-edge states have a larger peak height than the lower
band-edge states. This asymmetry in the density of states
comes with a corresponding asymmetry in the elastic trans-
mission, see Fig. 1 for the overall view.

As shown in Fig. 3, the coupling to vibrons strongly in-
creases the zero-bias conductance at low temperatures,
whereas at high temperatures the conductance slightly de-
creases (dashed and dash-dotted lines). This effect has been
observed before, e.g., in Ref. 7. At low temperatures, the
conductance is increased since the density of states at the
Fermi energy is effectively enhanced due to (broadened) vi-
bronic “satellite” resonances. The transport remains elastic,
i.e., electrons enter and leave the DNA at the same energy
[first contribution to the current Eq. (14)]. At sufficiently
high temperatures, however, the backscattering of electrons
due to vibrons reduces the conductance in comparison to
situation without electron-vibron coupling (solid line).

The inset of Fig. 3 shows a typical I-V characteristic for
the system. A quasisemiconducting behavior is observed,
where the size of the conductance gap is determined by the
energetic distance of the Fermi energy to the (closest) band
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FIG. 3. (Color online) Zero-bias conductance and I-V character-
istics for poly-(GC) with 26 base pairs and parameters as in Fig. 1.
The inclusion of vibrons increases the zero-bias conductance at low
temperatures (kgT roughly below 7iw,) by several orders of magni-
tude. At room temperature, however, the zero-bias conductance is
slightly reduced. Inset: The /-V characteristics show a “semicon-
ducting” behavior at room temperature. The nonlocal electron-
vibron coupling A\ increases both the nonlinear conductance in the
gap and around the threshold, leading to a slightly enhanced
current.

edge. After crossing this threshold, the current increases
roughly linearly with the voltage until at larger bias it satu-
rates when the right chemical potential drops below the
lower transmission band edge. Small steplike wiggles due to
the “discrete” electronic states are visible at low temperature
(not shown), but are smeared out at room temperature. The
current is dominated by the elastic transmission, as expected
for a homogeneous system.

The nonlocal coupling has a quantitative effect on the
nature of the I-V curve. The zero-bias conductance as well as
the nonlinear conductance around the threshold are increased
by close to a factor 1.2. This increase is directly related to the
enhancement of the density of states and elastic transmission
around the upper band edge (see Figs. 1 and 2).

B. Inhomogeneous DNA

Inhomogeneous DNA sequences show a transport behav-
ior which differs significantly from that of the homogeneous
poly-(GC) sequence. As a specific example, we analyze the
sequence 5'-CAT TAA TGC TAT GCA GAA AAT CTT AG-
3’ (plus complementary strand), which has been investigated
experimentally by Cohen et al.?® The density of states is
displayed in Fig. 4. Rather than traces of bands, it now
shows discrete “bunches” of states due to the disorder in the
sequence. All states are strongly localized, extending over at
most a few base pairs.>* The rightmost (largest energy)
bunch of states is due to the GC base pairs. Two of these GC
pairs are the only base pairs that are directly coupled to the
metallic electrodes. Note that the equilibrium Fermi level is
set at Ep=0 eV, roughly 0.35 eV above these states. The first
states with mostly AT character are located around —0.7 eV.

As to be expected the elastic transmission through these
localized states is extremely low. The largest contribution to
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FIG. 4. (Color online) Density of states of an inhomogeneous
DNA with sequence (5'-CAT TAA TGC TAT GCA GAA AAT CTT
AG-3’). We chose the following parameters: GC on-site energy
€;=-0.35 eV, AT on-site energy €,=-0.86 ¢V, Fermi energy Er
=0 eV, vibron energy %wy=0.01 eV, cutoff Aw,=0.03 eV, line-
width I'=0.1 eV, and room temperature kz7=0.025 eV. The den-
sity of states is fragmented into “bunches” of strongly localized
states with very low elastic transmission.

the elastic transmission stems from the AT-like states around
an energy €,=—0.86 eV (note that the considered sequence is
AT rich). But even these states have an elastic transmission
of less than 107'* for the parameters we use. Consequently,
the elastic quasiballistic transmission of electrons is com-
pletely negligible for the considered sequence.

In spite of the localization of the electron states, a rather
significant current can be transmitted, as displayed in Fig. 5.
It is due to the inelastic contributions to transport, where
electrons dissipate (or absorb) energy during their motion
through the DNA. Roughly speaking, the transported elec-
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~
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FIG. 5. (Color online) I-V characteristics and differential con-
ductance for an inhomogeneous DNA with sequence (5'-CAT TAA
TGC TAT GCA GAA AAT CTT AG-3’). Parameters are the same
as in Fig. 4. The inclusion of a nonlocal electron-vibron coupling \;
leads to changes in the conductance, depending on the nature of the
relevant state.
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trons excite the vibrons which, in turn, either dissipate their
energy to the environment or “promote” other electrons, thus
increasing their probability to hop to neighboring but ener-
getically distant base pairs. This inelastic transmission
strongly depends on the specific states (in contrast to the
bandlike transmission for the homogeneous sequence). As a
consequence, the inelastic transmission of different states can
differ by several orders of magnitude. Together with the
bunched density of states, this leads to the steplike behavior
for the current displayed in Fig. 5. The first step centered
around V,~0.7 V roughly corresponds to states with GC
character, whereas the second step corresponds to states with
mixed AT-GC character at —0.7 eV. Here, the GC states dis-
play a larger inelastic transmission as can be seen from the
large nonlinear conductance peak around V,~0.6-0.7 V
(see inset of Fig. 5).

The nonlocal electron-vibron coupling \; for this se-
quence leads to qualitative change of the I-V characteristics,
depending on the details of the nature of the states and there-
fore explicitly on the DNA sequence. The current on the
lowest bias plateau is increased relative to the case with only
local electron-vibron coupling, although the GC states do
barely shift toward the Fermi energy. However, the inelastic
transmission of the states is slightly increased (see inset),
leading to an increased current on the first plateau (dashed
line).

In contrast, the conductance due to states with mixed
AT-GC nature is much reduced (almost by a factor of 2, see
middle peak in the inset of Fig. 5), which leads to a smaller
increase of the current for the middle step. Obviously, the
transmission of these mixed states is reduced by the “vibron-
assisted electron hopping.” On the other hand, the last step at
~2 V is almost unaffected.

While the changes of the I-V characteristics due to non-
local electron-vibron coupling are relatively small for the
present sequence and model parameters, the observed sensi-
tivity of the inelastic transmission suggests that other se-
quences could display much larger effects. Furthermore,
quantum chemistry calculations* suggest that the local and
nonlocal electron-vibron couplings can be of the order of
~10 meV, i.e., larger than what we considered here. Inho-
mogeneities in the electron-vibron coupling, not covered in
the present calculation, might have a further impact.

The DNA sequence we considered was investigated in
transport experiments, and we should compare the experi-
mental and theoretical results. As some important factors are
still not well determined, a quantitative comparison is not
feasible. However, we observe both in experiment and theory
roughly semiconducting /-V characteristics with (sometimes)
steplike features. The size of the currents is roughly compa-
rable, of the order of ~80 nA at a bias of V,=1 V. As the
choice of the position of the Fermi energy defines the size of
the semiconducting gap, this gap could be adjusted to fit the
experiment. On the other hand, the value of the current for
this sequence (with parameters derived from quantum chem-
istry calculations) cannot be simply scaled by changing a
single “free” parameter such as the electrode-DNA coupling
I.

For the case of the homogeneous sequence, the current at
a given bias (say, at V,=1 V) grows monotonically with in-
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FIG. 6. Current at a bias of V,,=1 V as a function of electrode-
DNA coupling I' for the inhomogeneous DNA with sequence
(5'-CAT TAA TGC TAT GCA GAA AAT CTT AG-3’). Other pa-
rameters are the same as in Fig. 4. The current is a nonmonotonous
function of I' and peaks around a value I',,,,, where the imaginary
part of the vibron self-energy 3.;, is of the same size as T

creasing I' (as long as I' is smaller than the hopping ampli-
tude #;), as is expected from quasiballistic Landauer-type
transport. In contrast, for the inhomogeneous sequence, the
current is a nonmonotonic function of I', see Fig. 6. In par-
ticular, the current at the first plateau (at V,=1 V) initially
grows as we decrease I' from the value used in the above
figures (I'=0.1 eV), up to a point at which the imaginary part
of the vibron self-energy 2., is of the same size as I'. This
happens around I',,,,~0.01 eV. The current at I, is of the
order of ~500 nA. If I' is decreased further, the current
drops rapidly from the maximal value.?® On the other hand,
if I" is increased above the value I'=0.1 eV, the current also
drops initially, before at very large I" quasiballistic transport
becomes dominant and the current increases again (not
shown in the figure).

Summarizing these results, we conclude that for the given
model parameters, i.e., for values of I" in the large range
1-200 meV, likely to be realistic for present day transport
experiments in DNA, the current at the first plateau lies in
the range of 50—500 nA.

IV. SUMMARY

To summarize, we have presented a technique that allows
the computation of electron transport through short se-
quences of DNA, including local and nonlocal coupling to
vibrations and a dissipative environment. Using an equation-
of-motion approach, we identify elastic and inelastic contri-
butions to the current. For homogeneous DNA sequences,
the transport is dominated by elastic quasiballistic contribu-
tions through a bandlike density of states (Figs. 1 and 2),
which display an asymmetry due to the nonlocal electron-
vibron coupling. The coupling to vibrations strongly en-
hances the zero-bias conductance at low temperatures. The
current at finite bias above the “semiconducting” gap, how-
ever, is only quantitatively modified by the nonlocal
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electron-vibron coupling (Fig. 3). For inhomogeneous DNA
sequences, the transport is almost entirely due to inelastic
processes, the effectiveness of which is strongly sequence
dependent (Fig. 4). For the considered example sequence, the
nonlocal electron-vibron coupling qualitatively modifies the
I-V characteristics (Fig. 5). We also point out that the current
through inhomogeneous DNA sequences depends nonmono-
tonically on the electrode-DNA coupling I' (Fig. 6).
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APPENDIX: EQUATION OF MOTION

Before applying the equation of motion, we separate the
retarded electron Green function into two parts,

Gi(0) == 0 {a (D x(D,a/x'})

=~ i60{a)x(afx") = i60{a] X' a)x(@)).
Gl

G(Z)(t)
(A1)

This is necessary, because for G,S)(t) and G,(j)(t) self-
consistency equations can be derived via the equation-of-
motion (EOM) technique. [ The equation of motion applied to
the retarded Green function GJ'(7) leads to an equation con-
taining not only the retarded Green function.] The EOM
technique for an interacting system generates a hierarchy of
correlation functions that does not close in itself. Therefore,
an appropriate truncation scheme needs to be applied. Here
we close the hierarchy at the first possible level, i.e., we
neglect all higher-order Green functions beyond the one de-
fined above.

From the equation of motion, we obtain the following
expression for G(l)(t defined in Eq. (Al):

2 [(lg - fk) Oj+ tkj:| Gj('zl)(l)

j
= 8 {aa)) + i 0 Ma() x(Da) X"

-0y 2 Nla;(D[Bo(1) + BL(1) Ix(Dajx")
jFka

+ 2 Mofad ) B x(Da] xT)

+3 3 2l aox0alx)

a ijij#ti Do
+ 2 Nolar(®)x(DBL(1)a) X1 + E V. e (tajxi >}

(A2)

and a similar relation for G,(j)(t).
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The expressions (a;(1)B (1) X(t)a}x*} and similar higher-
order correlation function are approximated by assuming

(a}(0B(Ox()a] XD = F(0a ()x(Da]x"yq.  (A3)

The function F,(¢) is obtained by considering a Hamil-
tonian H, without electron-vibron coupling and calcula-
ting the same higher-order correlation function
(a;(t)B (1) X(t)a;)f)Ho, where now the average is taken with
respect to H. Then the electronic and vibronic correlators
factorize,

(@) (OBOx(Daix Vi, = a0 e B x (DX i,
(A4)
where Hgl and Hgib are the electronic and vibronic parts of
H,.

After some straightforward algebra (cf. Ref. 19), we ob-
tain

(Bo(OX(OX o = Fo (1) X e, (A5)

and consequently,
(a (DB ()x(Da] X"y, = Fot)a () x(Da) x Vg, (A6)

Because the strength of the electron-vibron coupling in H is
proportional to A, this approximation is valid for not too
large values of A;.

Expressions like (afx*ak(t)aj(t)aj(t))((t)> are treated in a
mean-field-like manner:

(ay(al(Da () x(Da]x") = (a(B)af () a () x(a) x")
—{a(Dal ()X () xDaix").
(A7)

Using the above approximations, we obtain after Fourier
transformation and crossover to the continuous spectrum

Z [(E - &) 5 + ka]G(l)(E)

2 2 <ajaj->

i jFi

=<aka> AG (E)+deD(w){—

lewuc B+3S <aka*>—LG<“(E)

i j#i

E {f dt e"F[F,(t,w) - I]Gj(-ll)(t)]

jFk

[ ariocte]
+; dt e' ’F(tw)G (1)

+ 235G (E) + 2 SRGY(E) (A8)
J

with

Fi(t,0) = (N(w) + 1)e™ — N(w)e', (A9)
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and Xy are the right and left electrode self-energies. A simi-
lar relation holds for G,(j)(E).
We can now identify

(E- &) 8+t +i0"=[GF ()], . (A10)

PHYSICAL REVIEW B 75, 115125 (2007)

where G{'(E) is the retarded Green function for the iso-
lated DNA without electron-vibron interaction. The validity
of this equation can easily be seen by computing the equa-
tion of motion for G™(r) for the isolated DNA without
electron-vibron coupling.
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