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In indirect resonant inelastic x-ray scattering �RIXS� an intermediate state is created with a core-hole that
has an ultrashort lifetime. The core-hole potential therefore acts as a femtosecond pulse on the valence
electrons. We show that this fact can be exploited to integrate out the intermediate states from the expression
for the scattering cross section. By doing so we obtain an effective scattering cross section that only contains
the initial and final scattering states. This effective cross section turns out to be a linear combination of the
charge response function S�q ,�� and the dynamic longitudinal spin density correlation function, both with a
resonant prefactor. This result is asymptotically exact for both strong and weak local core-hole potentials and
ultrashort lifetimes. The resonant scattering prefactor is shown to be weakly temperature dependent. We also
derive a sum rule for the total scattering intensity and generalize the results to multiband systems. One of the
remarkable outcomes is that one can change the relative charge and spin contribution to the inelastic spectral
weight by varying the incident photon energy.
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I. INTRODUCTION

Resonant inelastic x-ray scattering �RIXS� is a technique
that develops rapidly due to the recent increase in brilliance
of the new generation synchrotron x-ray sources, where high
flux photon beams with energies that are tunable to resonant
edges are now becoming widely available.1 The probability
for x rays to be scattered from a solid state system can be
enhanced by orders of magnitude when the energy of the
incoming photons is in the vicinity of an electronic
eigenmode—a resonant edge—of the system. RIXS experi-
ments are performed on, e.g., the K-edges of transition metal
ions, where the frequency of the x rays is tuned to match the
energy of an atomic 1s−4p transition, which is around
5–10 keV.2–15 At this resonant energy a 1s electron from the
inner atomic core is excited into an empty 4p state, see Fig.
1.

It is a well-known fact that the 1s core-hole that is created
in this process has an ultrashort lifetime, of the order of
femtoseconds. The reason is that the core-hole has a very
high energy and is prone to decay via all sorts of radiative
and nonradiative processes, severely cutting down the effi-
ciency of RIXS. In the canonical theoretical treatments of
RIXS this lifetime effect is normally introduced as a core-
hole broadening and disregarded from that point on.

In a previous study,16 however, we have shown that from
the theory perspective there is a great advantage to the ex-
tremely short lifetime of the core-hole. The ultrashort life-
time implies that for the electrons in the solid—particularly
for the slow ones that are close to the Fermi energy—the
core-hole potential is almost an instantaneous delta function
in time. Although the core-hole potential by itself can be
large and therefore a strong perturbation to the electrons, the
very short duration of this perturbing potential allows for a
systematic expansion of the scattering cross section in terms
of the core-hole lifetime. Here we present a detailed deriva-

tion and various generalizations of this result. We shall see
that the most important consequence of the ultrashort core-
hole lifetime is that for indirect RIXS the effective scattering
cross section is proportional to the charge structure factor
S�q ,�� and the longitudinal spin structure factor that is as-
sociated with it.

The indirect RIXS process is shown schematically in Fig.
1. In transition metal systems the photoelectron is promoted
from a 1s core-orbital to empty 4p states that are far
�10–20 eV� above the Fermi level, so the x rays do not cause
direct transitions of the 1s electron into the lowest 3d-like
conduction bands of the system. Still RIXS is sensitive to
excitations of electrons near the Fermi level. The Coulomb
potential of 1s core-hole causes, e.g., very low energy
electron-hole excitations in the valence/conduction band: the
core-hole potential is screened by the valence electrons.

FIG. 1. �Color online� Schematic representation of the indirect
resonant inelastic x-ray scattering �RIXS� process. The energy and
momentum of the incoming photon are �in

0 and qin, respectively,
and of the outgoing photon �out

0 and qout. The potential of the core-
hole in the intermediate state scatters the valence and conduction
electrons. The detuning energy �in quantifies how far the incoming
photon energy is tuned away from the resonant edge at �res.
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When the excited 4p-electron recombines with the 1s core-
hole and the outgoing photon is emitted, the system can
therefore be left behind in an excited final state. Experimen-
tally the momentum q and energy � of the elementary exci-
tation is determined from the difference in energy and mo-
mentum between incoming and outgoing photons. Since the
excitations are caused by the core-hole, we refer to this scat-
tering mechanism as indirect resonant inelastic x-ray scatter-
ing �RIXS�.

At present energy resolutions of about 100 meV can be
reached. In the near future it seems experimentally feasible
for RIXS to become sensitive to the low energy excitations
of the solid, where excitation energies are of the order of
room temperature. Recently it has been shown that also mag-
netic excitations, magnons, can be measured in RIXS.17,18

Other interesting low-lying electronic excitations that poten-
tially can be probed by RIXS are, for example, collective
features such as plasmons, orbitons, and excitons, but also
single-particlelike continua related to the band structure.
RIXS provides a new tool to study these elementary excita-
tions.

In this paper, we derive in detail the dynamical correlation
function that is measured in indirect resonant inelastic x-ray
scattering. We aim to give a full and self-contained deriva-
tion of the results that were presented in a previous Letter16

and we elaborate on several generalizations. In particular we
will show that for local core-hole potentials and ultrashort
lifetimes, the dynamical correlation function is a linear com-
bination of the charge density and longitudinal spin density
response function. For a single band system the actual linear
combination that is measured depends on the energy of the
incoming photons and we determine the precise energy de-
pendence of its coefficients. A sum rule is derived and we
generalize these results to the case of finite temperature and
multiband systems.

II. SERIES EXPANSION OF THE SCATTERING CROSS
SECTION

The Kramers-Heisenberg formula19–22 for the resonant
x-ray scattering cross section at finite temperature is

� d2�

d�d�
�

res
� ��

F

�AFI�2��� + �FI��
T

, �1�

where F and I denote the final and initial state of the system,
respectively. The sum is over all final states and the brackets
denote the statistical average over initial states I for a tem-
perature T. The momentum and energy of the incoming/
outgoing photons is qin/out and �in/out

0 and the loss energy �
=�out

0 −�in
0 is equal to the energy difference between the final

and initial state �FI=EF−EI. In the following we will take
the ground-state energy of our system as reference energy:
Egs�0. The scattering amplitude AFI is given by

AFI = �res�
n

	F�Ô�n
	n�Ô�I

�in − En − i�

, �2�

where �res is the resonant energy, n denotes the intermediate

states, and Ô the �dimensionless� dipole operator that de-

scribes the excitation from the initial to intermediate state
and the deexcitation from the intermediate to final state. The
energy of the incoming x rays with respect to the resonant
energy is �in �this energy can thus either be negative or posi-
tive: �in=�in

0 −�res� and En is the energy of intermediate state
�n
 with respect to the resonance energy. In the intermediate
state a core-hole and a photoexcited electron are present.
When we take the Coulomb interaction between the interme-
diate state core-hole and the valence band electrons into ac-
count, we obtain a finite inelastic scattering amplitude. In
that case there is a nonzero probability that an electron-hole
excitation is present in the final state, see Fig. 1.

Let us list, for clarity, the frequency parameters that are
involved in our formulas so far. The resonant energy �res
represents the energy difference in the solid between the ex-
cited 4p and the core-hole states �5–10 keV�, while �in

0 /�out
0

stand for the incoming/outgoing photon energy, respectively.
The energy that is lost by the photon in the scattering process
is �=�out

0 −�in
0 , which is also equal to the difference in en-

ergy of the final and initial states of the solid �FI=EF−EI,
simply because of the energy conservation. Finally, we de-
fined �in=�in

0 −�res, which is the detuning energy. It is a
measure of the deviation of the incoming photon energy
from the resonant threshold.

Crucial to our further considerations will be the fact that
the intermediate state is not a steady state. The reason is that
the highly energetic 1s core-hole quickly decays, e.g., via
Auger processes and the core-hole lifetime is very short. The
Heisenberg time-energy uncertainty relationship then implies
that the core-hole energy has an appreciable uncertainty. This
uncertainty appears in the formalism above as the core-hole
energy broadening � which is proportional to the inverse
core-hole lifetime, which is of the order of electron volts as
the lifetime is ultrashort, of the order of femtoseconds. Note
that the lifetime broadening only appears in the intermediate
states and not in the final or initial states—these both have
very long lifetimes. This implies that the core-hole broaden-
ing does not present an intrinsic limit to the experimental
resolution of RIXS: the loss energy � is completely deter-
mined by kinematics.

When the energy of the incoming x rays is equal to a
resonant energy of the system �in−En=0, we see from Eqs.
�1� and �2� that the resonant enhancement of the x-ray scat-
tering cross section is ��res /��2, which is �106 for a transi-
tion metal K-edge.22

In a resonant scattering process, the measured system is
generally strongly perturbed. Formally this is clear from the
Kramers-Heisenberg formula �1�, in which both the energy
and the wave function of the intermediate state—where a
potentially strongly perturbing core-hole is present—appear.
This is in contrast with canonical optical/electron energy loss
experiments, where the probing photon/electron presents a
weak perturbation to the system that is to be measured.

To calculate RIXS amplitudes, one possibility is to nu-
merically evaluate the Kramers-Heisenberg expression. To
do so, all initial, intermediate, and final state energies and
wave functions need to be known exactly, so that in practice
a direct evaluation is only possible for systems that, for ex-
ample, consist of a small cluster of atoms.23 In this paper,
however, we show that under the appropriate conditions we
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can integrate out the intermediate states from the Kramers-
Heisenberg expression. After doing so, we can directly relate
RIXS amplitudes to linear charge and spin response func-
tions of the unperturbed system. For nonresonant scattering,
one is familiar with the situation that the scattering intensity
is proportional to a linear response function, but for a reso-
nant scattering experiment this is a quite unexpected result.

Let us proceed by formally expanding the scattering am-
plitude in a power series,

AFI =
�res

�in − i�
�
l=0

�

Ml, �3�

where we introduced the matrix elements

Ml = �
n
� En

�in − i�

l

	F�Ô�n
	n�Ô�I
 . �4�

The formal radius of convergence of this power series is
given by En

2 / ��in
2 +�2�, so that the series is obviously conver-

gent when the incoming X-ray energy is, e.g., far enough
below the resonance, i.e., when ��in � �0; but also at reso-
nance, when �in=0 the series is convergent for intermediate
energies that are smaller than the core-hole broadening �.
Thus this expansion is controlled for ultrashort core-hole
lifetimes, which implies that � is large. In the following we
will be performing resummations of this series.

We denote the denominator of the expansion parameter
�in– i� by the complex number 	, so that

Ml =
1

	l�
n

	F�Ô�n
�En�l	n�Ô�I
 =
1

	l 	F�Ô�Hint�lÔ�I
 , �5�

where Hint is the Hamiltonian in the intermediate state. We
thus obtain the following series expansion for the resonant
cross section:

� d2�

d�d�
�

res
���

F
��res

	
�
l=0

�

Ml�2

��� − �FI��
T

. �6�

III. INDIRECT RIXS FOR SPINLESS FERMIONS:
T=0

As in Ref. 16, we will first calculate the resonant x-ray
cross section at zero temperature in the case where the va-
lence and conduction electrons are effectively described by a
single band of spinless fermions: spin and orbital degrees of
freedom of the valence electron system are suppressed.
Physically this situation can be realized in a fully saturated
ferromagnet.

The final and initial states of the system are determined by
a Hamiltonian H0 that describes the electrons around the
Fermi level. The generic form of the full many-body Hamil-
tonian is

H0 = �
i,j

tij�ci
†cj + cj

†ci� + ci
†ciVijcj

†cj , �7�

where i and j denote lattice sites with lattice vectors Ri and
R j. Note that the sum is over each pair i , j once, with i , j

ranging from 1 to N, where N is the number of sites in the
system. The hopping amplitudes of the valence electrons are
denoted by tij and the c /c† operators annihilate/create such
electrons. The Coulomb interaction between valence elec-
trons is Vij =V�Ri−Rj�

, as the Coulomb interaction only de-
pends on the distance between two particles.

The intermediate states are eigenstates of the Hamiltonian
Hint=H0+Hc, where Hc accounts for the Coulomb coupling
between the intermediate state core-hole and the valence
electrons:

Hc = �
i,j

sisi
†Vij

c cj
†cj , �8�

where si creates a core-hole on site i. We assume that the
core-hole is fully localized and has no dispersion. We will
see shortly that this leads to major simplifications in the the-
oretical treatment of indirect RIXS. The core-hole–valence
electron interaction is attractive: Vc
0. The dipole operators
are given by

Ô = �
i

e−iqin·Risipi
† + eiqout·Risi

†pi + H.c., �9�

where p† creates a photoexcited electron in a 4p state and
H.c. denotes the Hermitian conjugate of both terms.

A. Short lifetime approximation: Algebraic form

In order to calculate the cross section, we need to evaluate
the operator �Hint�l= �H0+Hc�l in Eq. �5�. A direct evaluation
of this operator is complicated by the fact that �H0 ,Hc��0.
We therefore proceed by approximating Hint

l with a series
that contains the leading terms to the scattering cross section
for both strong and weak core-hole potentials—as long as the
core-hole lifetime is short. After that we will do a full resum-
mation of that series. This approximation is central to the
results in this paper.

Expanding �H0+Hc�l gives a series with 2l terms of the
form

Hint
l = Hc

l + �
n=0

l−1

Hc
nH0Hc

l−n−1 + ¯ + �
n=0

l−1

H0
nHcH0

l−n−1 + H0
l .

�10�

Using H0Ô�I
= ÔH0�I
�0, this series reduces to

Hint
l Ô�I
 = �Hc

l +�
n=0

l−2

Hc
nH0Hc

l−n−1 + ¯ + H0
l−1Hc
Ô�I
 .

�11�

Using in addition that 	f �ÔH0= 	f �H0Ô=Ef	f �Ô, we find

	F�ÔHint
l Ô�I
 = 	F�Ô�Hc

l + EFHc
l−1+�

n=1

l−2

Hc
nH0Hc

l−n−1 + ¯

+ EF
l−1Hc
Ô�I
 . �12�

For strong core-hole potentials, the leading term of Hint
l is

Hc
l . Corrections to this term contain at least one factor of H0
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and are therefore smaller by a factor of t /Vc. For weak core-

hole potentials, the term H0
l vanishes because �H0 , Ô�=0.

The leading term for this limit therefore is EF
l−1Hc. Correction

terms contain at least two factors of Hc, which make them at
least a factor of Vc / t smaller.

Let us now consider the approximate expression

Hint
l Ô�I
 � �

m=0

l

H0
mHc

l−mÔ�I
 . �13�

From the arguments above, it is easy to see that the leading
order terms for both strong �m=0� and weak �m= l−1� core-
hole potentials are included in the sum; but a large series of
other terms are included as well; they can be neglected in the
case that we strictly consider either limit. Including them,
however, means that we consider in addition a set of higher
order scattering processes. A major advantage of including
these is that the terms will give rise to a smooth interpolation
between the two extreme limits. Note that the m= l term in
Eq. �13� is 0, so that it can be removed from the sum. After
performing the same manipulations as above, we obtain

	F�Ô�
m=0

l−1

H0
mHc

l−mÔ�I
 = �
m=0

l−1

EF
m	F�ÔHc

l−mÔ�I


= 	F�Ô�Hc
l + EFHc

l−1

+ ¯ + EF
l−1Hc�Ô�I
 . �14�

Comparing Eqs. �12� and �14�, it can be seen that the ap-
proximation �13� is exact in the limit of both strong and
weak core-hole potentials.

B. Short lifetime approximation: Graphical representation

We can also represent the series expansion and its ap-
proximation graphically �Fig. 2�. When we expand �A+B�l,
where A and B are noncommuting operators, each term in the
series corresponds to a graph on the grid of Fig. 2�1�. Each
graph occurs only once and can be constructed by starting at
the lower left corner of the grid and moving either to the
right, representing an A, or up, representing a B. At the next
vertex a new move �right or up� is made. We perform this
procedure l times and in this way we can obtain 2l distinct
graphs, each corresponding to a term in the expansion of
�A+B�l. For example, moving l times to the right represents
the term Al and moving l times up corresponds to Bl, see
Figs. 2�2� and 2�3�. All other terms in the series can be con-
structed by moving up and right a different number of times
and in different order. As we consider a fixed value of l �l
=8 in Fig. 2�, all graphs must end on the diagonal of the

triangle that forms the grid. In the series for �H0+Hc�lÔ�I
 �
H0=A and Hc=B� we have the simplification that terms end-
ing with H0 acting on the ground state give zero. These terms
can thus be removed from the expansion. The graphs for this
expansion now live on a reduced grid where the horizontal
grid-lines at the diagonal of the triangle are absent, see Fig.
2�5�: these represent all terms ending on A.

In Fig. 2 we also represent the approximate series of the
right-hand side of Eq. �13�. Graphically this sum corresponds

to the set of graphs on the reduced grid of Fig. 2�5�, with
either one kink �Figs. 2�6�, 2�7�, 2�8�, and 2�9�� or without
kinks �Figs. 2�2� and 2�3��. Thus in our approximation in Eq.
�13� of the exact series for �H0+Hc�l we neglect all graphs
with two or more kinks �Figs. 2�4�, 2�10�, 2�11�, and 2�12��.
In the limit of either very A or very large B, the graphs that
we neglect correspond to subleading order corrections. When
A is largest then the leading terms are, first, Fig. 2�2�, which
is however zero because it ends on A. The leading term is
therefore of the order A7 and shown in Fig. 2�6�. Other
higher order terms are shown Figs. 2�7�, 2�8�, 2�10� and
2�11�. The last two graphs are neglected in our approximate
expansion. In case B is dominating, the leading term is B8,
Fig 2�3�, and next to leading is Fig 2�9�, with B7. The highest
order terms that are neglected in our approximate series are
of the type shown in Fig. 2�12�.

C. Resummation of series for scattering cross section

In order to obtain Ml and from there the scattering ampli-
tude AFI and finally the scattering cross section, in Eq. �14�
we need to evaluate expressions of the kind

Hc
nÔ�I
 = Hc

n−1�
i,l,j

slsl
†Vlj

c cj
†cje

−iqin·Risipi
†�I
 . �15�

In the initial state no core-hole is present: just one core-hole
is created by the dipole operator. We therefore have that
slsl

†si�I
=�l,isisi
†si�I
=�l,isi�I
. Inserting this in Eq. �15�, we

obtain

Hc
nÔ�I
 = Hc

n−1�
i

e−iqin·Risipi
†�

j

Vij
c cj

†cj�I
 �16�

and by recurrence

Hc
nÔ�I
 = �

i

e−iqin·Risipi
†��

j

Vij
c cj

†cj�n
�I
 . �17�

FIG. 2. Graphical representation of the expansion of �A+B�l,
where A=H0 and B=Hc are two noncommuting operators. In this
example l=8.
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Let us for the moment consider the strong core-hole po-
tential limit and keep in the expansion Eq. �13� only the term
m=0. Inserting the results above in Eq. �5�, we find that

Ml�Vc � t� =
1

	l 	F��
i

eiq·Ri��
j

Vij
c cj

†cj�l
�I
 , �18�

where the transferred momentum q�qout−qin.
The first important observation is that the term l=0 does

not contribute to the inelastic x-ray scattering intensity be-
cause M0= 	F��ie

iq·Ri�I
=N�q,0�F,I, which only contributes to
the elastic scattering intensity at q=0 and other multiples of
the reciprocal lattice vectors. From inspection of Eq. �4� we
see immediately that the l=0 term actually vanishes irrespec-
tive of the strength of the core-hole potential. This is of
relevance when we consider the scattering cross section in
the so-called “fast-collision approximation.”24 This approxi-
mation corresponds to the limit where the core-hole lifetime
broadening is the largest energy scale in the system ��→�
or, equivalently, Im�	�→−��. In this limit only the l=0 term
contributes to the indirect RIXS amplitude and the resonant
inelastic signal vanishes. In any theoretical treatment of in-
direct resonant scattering one therefore needs to go beyond
the fast-collision approximation.

Physically this vanishing of spectral weight is ultimately
due to an interference effect. If we study a process in which
we start from the initial state and reach a certain final state,
we need to consider all different possible paths for this
excitation-deexcitation process. When the core-hole broaden-
ing is very large we can reach the final state via any inter-
mediate state and in order to obtain the scattering amplitude
we thus add up coherently the contributions of all interme-
diate states. We then obtain A=�n	F �n
	n � I
. When the set
of intermediate states that we sum over is complete �which
by definition is the case when �→��, this leaves us with
A= 	F � I
 which is, because of the orthogonality of eigen-
states, only nonzero when the initial and final state are equal,
hence only when the scattering is elastic.

The second observation is that Ml is a 2l-particle correla-
tion function. If we measure far away from resonance, where
�Re�	���0, the scattering cross section is dominated by the
l=1, two-particle, response function. When the incoming
photon energy approaches the resonance, gradually the four,
six, eight, etc. particle response functions add more and more
spectral weight to the inelastic scattering amplitude. Gener-
ally these multiparticle response functions interfere. We will
show, however, that in the local core-hole approximation the
multiparticle correlation functions in expansion �13� collapse
onto the dynamic two-particle �charge-charge� and four-
particle �spin-spin� correlation function.

D. Local core-hole potentials

In hard x-ray electron spectroscopies one often makes the
approximation that the core-hole potential is local. This cor-
responds to the widely used Anderson impurity approxima-
tion in the theoretical analysis of, e.g., x-ray absorption and
photoemission, introduced in Refs. 25–27. This approxima-
tion is reasonable as the Coulomb potential is certainly larg-

est on the atom where the core-hole is located.
In the present case, moreover, we can consider the poten-

tial generated by both the localized core-hole and photoex-
cited electron at the same time. As this exciton is a neutral
object, its monopole contribution to the potential vanishes
for distances larger than the exciton radius. The multipolar
contributions that we are left with in this case are generally
small and drop off quickly with distance.

We insert a local core-hole potential Vij
c =U�ij in our equa-

tions and aim to resum the approximate series expansion in
Eq. �13� for arbitrary values of the local core-hole potential.
We find from Eq. �17� that

Hc
nÔ�I
 = �

i

e−iqin·Risipi
†Un�ci

†ci�n�I
 . �19�

Using that for fermions �ci
†ci�n=ci

†ci, we obtain for our spin-
less fermions

Ml
sf =

1

	l 	F��
i

eiq·Rici
†ci�I
�

m=0

l−1

EF
mUl−m. �20�

The sum over m can easily be performed:

�
m=0

l−1

EF
mUl−m = Ul�

m=0

l−1

�EF/U�m =
Ul − EF

l

1 − EF/U
�21�

and we obtain

Ml
sf =

1

	l

Ul − EF
l

1 − EF/U
	F��

i

eiq·Rici
†ci�I
 . �22�

Using that �ie
iq·Rici

†ci=�kck−q
† ck��q is the density operator,

we have to perform the sum over l in Eq. �3�. The l=0 term
is zero, as we discussed above, so that the scattering ampli-
tude is

AFI =
�res

	
�
l=1

�

Ml. �23�

Using

�
l=1

�

�U/	�l − �EF/	�l = 	
U − EF

�	 − U��	 − EF�
�24�

we finally find that the indirect resonant inelastic scattering
amplitude for spinless fermions is

AFI
sf = P1��,U�	F��q�I
 , �25�

where the resonant enhancement factor is P1�� ,U�
�U�res��	−U��	−���−1 and �=EF. For spinless fermions
with a local core-hole potential the scattering cross section
thus turns out to be the density response function—a two-
particle correlation function—with a resonant prefactor
P1��� that depends on the loss energy �, the resonant energy
�res, on the distance from resonance �in�=Re�	��, on the
core-hole potential U, and on the core-hole lifetime broaden-
ing ��=−Im�	��. We see that the resonant enhancement is
largest when the energy of the incoming photons is either
equal to the core-hole potential ��in=U� or to the loss energy
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��in=��, which one could refer to as a “final-state reso-
nance.”

The density response function is related to the dielectric
function ��q ,�� and the dynamic structure factor S�q ,��,28

so that we obtain for the resonant scattering cross section

� d2�

d�d�
�

res

sf

� − �P1����2 Im� 1

Vq��q,��� � �P1����2S�q,�� ,

�26�

for a fixed value of the core-hole potential U. Vq is the Fou-
rier transform of the Coulomb potential. For weak core-hole
potentials the total scattering intensity is proportional to U2

and for strong core-hole potentials, where �U���, the scat-
tering intensity at resonance ��in=0� is to first order inde-
pendent of the strength of the core-hole potential. Far away
from the edge, however, where ��in�� �U�, the scattering in-
tensity is again proportional to U2, just as for weak core-hole
potentials. Integrating �P1����2 over all incoming photon en-
ergies, we obtain the integrated inelastic intensity at fixed
loss energy � and momentum q,

�
−�

�

d�in� d2�

d�d�
�

res

sf

�
2
U2�res

2

��4�2 + �U − ��2�
S�q,�� . �27�

It seems that the resonant enhancement factor of the inte-
grated intensity has a maximum when the loss energy is
equal to the core-hole potential. However, the core-hole po-
tential is attractive and therefore lower than zero, and the
loss energy � is by definition greater than zero. So the inte-
grated intensity is maximal at energy loss �=0.

IV. INDIRECT RIXS FOR SPINLESS FERMIONS:
FINITE T

In this section, we generalize the previous calculation to
the case of finite temperature. The starting point is as before

� d2�

d�d�
�

res
�

1

Z
�

I
�
F

�AFI�2��� − �FI�e−�EI , �28�

where Z=�Ie
−�EI is the partition function and �=1/kBT.

Equation �28� represents the statistical average over all the
initial states �I
, where now the more general relation H0�I

=EI�I
 holds.

We expand the scattering amplitude AFI, using again the
ultrashort lifetime of the core-hole as in Eq. �3�. We are left
with the evaluation of the operator �Hint�l. We proceed by
expanding it in the following way:

�Hint�lÔ�I
 = �H0 + Hc�lÔ�I


� �
n=0

l−1

�
m=0

l−n−1

�H0�m�Hc�l−m−n�H0�nÔ�I
 , �29�

where we neglected the term H0
l , as it will not contribute to

the inelastic scattering cross section. This approximation re-
produces the correct leading order terms, which represent the
strong and weak coupling case, respectively. Moreover, it is
a generalization of Eq. �13� that takes into account that the

initial state is no longer the ground state so that H0�I

=EI � I
. In our graphical representation, with respect to the
T=0 case, it corresponds to retain all the additional terms,
having more than one kink, that start and finish with a hori-
zontal step. In doing this, we are neglecting again the sub-
leading order terms Hc

l−1−nH0Hc
n.

After inserting expansion �29� in the expression �5� for
Ml, we finally have to evaluate

	F�Ô�
n,m

�H0�m�Hc�l−m−n�H0�nÔ�I
 = �
n,m

EF
mEI

n	F�ÔHc
l−m−nÔ�I
 .

�30�

In the local core-hole approximation, we can resum this ap-
proximate series expansion. By using the results of Eqs. �19�,
we obtain for spinless fermions

Ml
sf =

1

	l 	F��q�I
�
n,m

EF
mEI

nUl−m−n. �31�

By performing the sums over n and m

�
n,m

EF
mEI

nUl−m−n = Ul�
n=0

l−1

�EI/U�n �
m=0

l−n−1

�EF/U�m, �32�

and after summing over l, we finally obtain

AFI
sf = P1�EF,U�

	

	 − EI
	F��q�I
 . �33�

This equation clearly shows that one of the main effects of
finite temperature is to modify the resonant enhancement
factor, nevertheless preserving the same structure for the
scattering amplitude.

At this point we observe that at resonance �	�=�, which
is of the order of electron volts and thus several orders of
magnitude larger than EI, even at high temperature. This al-
lows us to approximate the prefactor in Eq. �33� as

P1�EF,U�
	

	 − EI
� P1��,U��1 +

EI

	 − �
+ ¯ . 


��1 +
EI

	
+ ¯ . 
 . �34�

At the lowest order in EI /�, the prefactor is not modified by
T at all, hence we conclude that the major modifications to
the cross section are induced by thermal averaging of the
correlation function. After integrating over all the incoming
photon energies, we get the following approximate expres-
sion for the thermal average of the inelastic intensity at loss
energy � and momentum q:

� d2�

d�d�
�

res,T
� �P1����2	S�q,��
T. �35�

In this expression the temperature dependence is entirely
due to the temperature dependence of S�q ,��. The prefactor
is in leading order temperature independent. Note that at fi-
nite temperatures also energy gain scattering occurs: the pho-
ton can gain an energy of the order of kBT from the system,
which corresponds to a negative energy loss.
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V. FERMIONS WITH SPIN

We generalize the calculation above to the situation where
the electrons have an additional spin degree of freedom. In
the Hamiltonians �7� and �8� we now include a spin index �
�with �=↑ or ↓� to the annihilation and creation operators:
ci→ci� and cj→cj�� and sum over these indices, taking into
account that the hopping part of the Hamiltonian is diagonal
in the spin variables. In order to resum the series in Eq. �13�
we now need to evaluate expansions of the number operators
of the kind �n↑+n↓�l. Using

�n↑ + n↓�l = n↑ + n↓ + n↑n↓�
p=1

l−1 � l

p

 = n↑ + n↓ + �2l − 2�n↑n↓,

�36�

for l�0, we obtain

AFI = 	F�P1�����q − 2�q
↑↓� + 2P2����q

↑↓�I
 , �37�

with P2�� ,U�= P1�� ,2U� /2 and �q
↑↓��ie

iq·Rini↑ni↓. We see
that in the case that each site can only be occupied by at most
one valence electron, this equation immediately reduces to
Eq. �25� with �q=�q

↑ +�q
↓. The two terms in the scattering

amplitude can also be written in terms of density and spin
operators. Using �ni↑−ni↓�2= �2Si

z�2= 4
3Si

2, we obtain �q

−2�q
↑↓=Sq

2, where we introduce the longitudinal spin density
correlation function Sq

2 � 1
S�S+1��kSk+q ·S−k. In terms of these

correlation functions the scattering amplitude for spinfull fer-
mions is

AFI = �P1��� − P2����	F�Sq
2�I
 + P2���	F��q�I
 . �38�

Clearly the contributions to the scattering rate from the dy-
namic longitudinal spin correlation function and the density
correlation function need to be treated on equal footing as
they interfere.29,30 Moreover, the spin and charge correlation
functions have different resonant enhancements, see Fig. 3.
For instance, when Re�	�=U, the scattering amplitude is
dominated by P1��� and hence by the longitudinal spin re-
sponse function. At incident energies where Re�	�=2U, on
the other hand, P2��� is resonating so that the contributions
to the inelastic scattering amplitude of charge and spin are
approximately equal.

VI. MULTIBAND SYSTEMS

Let us consider systems with more than one band and take
as an explicit example a transition metal with a 3d and a 4s
band. The Coulomb attraction between the 1s core-hole and
an electron in the 3d state �Ud� is much larger than the in-
teraction with a 4s electron �Us�. Neglecting spin degrees of
freedom we would naively expect that the indirect RIXS
response in the two-band system is simply the sum of the
responses of the two individual electronic systems, with pos-
sible interference between the two scattering channels: we
expect the scattering amplitude to be equal to

AFI
s+d = P1��,Ud�	F��q

d�I
 + P1��,Us�	F��q
s �I
 . �39�

However, already from the calculation for the spinfull fermi-
ons we know that the situation should be more complicated,

as in that case the full response function is not just the sum
of the two response functions for spinless fermions. The
point is that when both a 3d and 4s electron screen the core-
hole, the intermediate state is at a lower energy �at �in=Ud
+Us� compared to the situation where only a single d /s elec-
tron screens the core-hole �with a resonance at �in=Ud /Us,
respectively.� In the situation that both electrons screen the
core-hole, the resonance therefore appears at a different in-
coming photon energy.

According to Eq. �17�, we now need to evaluate expres-
sions of the sort �Udnd+Usn

s�l for l�0. After using the bi-
nomial theorem and summing the resulting series, we obtain

�Udnd + Usn
s�l = Ud

l nd + Us
lns + ndns��Ud + Us�l − Ud

l − Us
l� ,

�40�

which leads to a scattering amplitude

AFI
sd = AFI

s+d + �P1��,Ud + Us� − P1��,Ud� − P1��,Us��

�	F��q
ds�I
 , �41�

where �q
ds��ie

iq·Rini
dni

s. This is an interesting term, physi-
cally, as it directly measures the density correlations between
the d and s electron density on a transition metal atom.

VII. CONCLUSIONS

On the basis of the ultrashort lifetime of the core-hole in
the intermediate state we presented a series expansion of the
indirect resonant inelastic x-ray scattering amplitude, which
is asymptotically exact for both small and large local core-
hole potentials. This algebraic series is also given in a
graphical representation. By resumming the terms in the se-
ries, we find the dynamical charge and spin correlation func-
tions that are measured in RIXS. The resonant prefactor is

FIG. 3. �Color online� Prefactors to the scattering intensity at
fixed loss energy � as a function of incoming photon energy �in /�
for different values of the local core-hole potential U /�. The black
line refers to �P1�U��2 while the blue line �dark gray� to �P2�U��2.
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only weakly temperature dependent. We have also derived a
sum rule for the total scattering intensity and considered
RIXS in both single and multiband systems. On the basis of
our results, the charge and spin structure factor that is ob-
tained from ab initio density functional calculations or from,
e.g., Hubbard-like model Hamiltonians can directly be com-
pared to experimental RIXS spectra. Moreover, our results
open up the possibility to compare the measurements of
S�q ,�� by RIXS and, for instance, electron energy loss spec-
troscopy. In this way one can actually determine experimen-
tally the resonant scattering prefactors that we have calcu-
lated.

We should stress that four basic assumptions underly our
results, which otherwise are general. First, the RIXS process
that we consider is indirect, i.e., in the scattering process
electrons are not directly promoted into the conduction band
of the solid. Rather the inelastic scattering that we consider is
due to the potential of the core-hole which is present in the
intermediate state. This situation arises, for instance, at the
K-edge of transition metal atoms, but can also occur at the
L-edge of lanthanide ions. We assumed, furthermore, that the
core-hole is localized and that its lifetime is short—very rea-
sonable premises for the deep core-holes that are involved.
The final assumption is that scattering is dominated by the
coupling between the core-hole and electrons �of d character
if we consider a transition metal K-edge� on the same atom.
This is a good approximation when the d electrons are local-
ized and the on-site Coulomb interaction is much larger than

the one between neighboring atoms. In that sense our ul-
trashort lifetime expansion is expected to work very well for
3d systems and possibly less so for the 4d or 5d transition
metal ions.

Finally, we assumed that the charge and longitudinal spin
responses of the system that we consider are not vanishing,
i.e., they are the leading order response function. In insula-
tors at energies below the gap, however, these two response
functions do vanish. This in principle opens a way to observe
correlation functions beyond the ones that we have consid-
ered here, for instance, transversal spin or orbital response
functions and thus to measure magnon dispersions or even
orbiton properties with RIXS—a very exciting prospect in-
deed.
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