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We investigate the energy dependence of the exact muffin-tin-orbital slope matrix in the complex energy
plane. Analytic expressions for the asymptotic behavior of the slope matrix and its first energy derivative for
large imaginary energies are given. We demonstrate that a two-center Taylor type expansion of the slope matrix
accurately reproduces the exact values within a complex energy range covering the usual energy window used
in electronic structure calculations. As an application, we study the composition dependence of the lattice
parameters of the MgY binary system, a candidate material for hydrogen storage applications.
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I. INTRODUCTION

The effort to separate in an electronic structure problem
the information about the crystal structure from the informa-
tion about the particular atoms which compose the material,
can be traced back to the structure and form factors of
pseudopotential theory.1–3 Splitting the problem into poten-
tial and structure dependent parts makes this approach con-
ceptually clean and efficient, since the structural dependent
part can be calculated once and for all for each crystal struc-
ture. One of the most elegant ways to achieve this is offered
by the multiple scattering problem formulated within the
Korringa-Kohn-Rostoker �KKR� method.4,5 In this approach,
the structural information is accumulated in the energy de-
pendent structure constant matrix and the electronic structure
is calculated using the Green’s function formalism.

In the 1970s, Andersen and co-workers introduced the
linear muffin-tin-orbital �LMTO� method.6–10 The KKR and
LMTO methods were shown11 to be closely related within
the atomic sphere approximation.6,12 However, the latter
method provided an alternative way to gain more knowledge
about the KKR approach, and, due to the energy lineariza-
tion, it could be applied to systems containing up to �100
atoms per unit cell. In early 1980s, it was realized that the
bare LMTO structure constants could be transformed into
screened or tight-binding �TB� structure constants.13 Because
of this, it became possible to calculate the LMTO structure
constants in real space and formulate efficient order-N meth-
ods for both bulk14,15 and surface16,17 systems. Later, it
turned out that the long-range bare KKR structure constants
could also be screened in a similar fashion as the TB-LMTO
structure constants, which led to the development of the
screened KKR method.18–21

In most of the applications of the above methods, calcu-
lations were carried out within nonoverlapping muffin-tin or
atomic sphere approximations for the one-electron potential.
The recently developed exact muffin-tin-orbital �EMTO�
theory22 offered a possibility to go beyond these approxima-
tions and properly describe the interstitial region in the case
of overlapping muffin-tin wells. In this formalism, the

screening is realized using infinity high potential spheres
centered on lattice sites. The degree of localization of the
EMTO structure constants is determined by the radii of these
nonoverlapping hard spheres.22 The EMTO method23–25

combined with the full charge density �FCD� technique26 has
proven to produce results in close agreement with those ob-
tained using formally exact but very cumbersome full-
potential methods.25,27–30 As with the KKR, the EMTO
method also uses the Green’s function technique to solve the
multiple scattering problem. This makes the EMTO suitable
for treating the disordered alloys within the coherent poten-
tial approximation �CPA�.31,32 The accuracy of the EMTO-
CPA method33 has been demonstrated in the case of binary
and multicomponent random alloys.33–39

During a self-consistent calculation, the structure constant
matrix has to be computed for complex energies. For in-
stance, due to the Green’s function formalism, integrations
involving the density of states are performed in the complex
energy plane.40 In EMTO method, this is carried out on a
circular or elliptic contour enclosing the valence states below
the Fermi level �F. Moreover, in theories going beyond the
traditional local density approximation, e.g., the dynamical
mean field theory �DMFT�,41–43 the many-body problem is
solved on a linear contour z=�F+ i�n, where �n are the Mat-
subara frequencies. Usually, the maximum frequency in-
cluded is around 2-5 times the bandwidth,44 which for metals
is typically �0.5−1.0 Ry. Therefore, there is a clear demand
for knowledge about the nature of the structure constants and
how they behave in the complex energy plane. The main
purpose of this work is to explore this question in the case of
the EMTO method. A related problem is how the energy
dependence of the structure constants and their energy de-
rivatives can be described within the energy window of in-
terest. Here, we derive an efficient and accurate parametriza-
tion and discuss the consequences of our finding.

In this paper, we will keep the original name and refer to
the EMTO structure constant matrix as the slope matrix.22 In
Sec. II, we briefly review the theory behind the EMTO basis
sets, the EMTO slope matrix, and the screening transforma-
tions connecting the EMTO slope matrix to the KKR struc-
ture constant matrix. In this Section, two different param-
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etrized formulas are given. In Sec. III, we show how the
slope matrix and its first energy derivative behave in the
complex energy plane, and establish analytical expressions
valid for large imaginary energies. Here we also discuss the
accuracy of the proposed energy parametrizations and dem-
onstrated them in the case of hcp La. The two-center expan-
sion is applied in Sec. IV, where we investigate the variation
of the lattice parameters of Mg-rich MgY alloy. The paper
ends with conclusions.

II. THE EMTO SLOPE MATRIX

In a muffin-tin �MT� method, the effective one-electron
potential v�r� is approximated by the muffin-tin potential
vMT�r�, viz.

v�r� � vMT�r� � v0 + �
R

�vR�rR� − v0� , �1�

where R runs over the lattice sites, and rR�rRr̂R=r−R. The
spherical potentials vR�rR� become equal to v0 outside the
potential spheres of radii sR. For nonoverlapping potential
wells, vR�rR� reduces to the spherical part of v�r� around site
R and v0 to the conventional muffin-tin zero. However, in the
EMTO method large overlaps between muffin-tin spheres are
allowed. It has been demonstrated23,45 that the accuracy of
the MT approximation can be improved substantially by in-
creasing the overlap between the potential spheres. In this
case, the spherical symmetric potentials are chosen in a way
that, together with the parameter v0, to give the best approxi-
mation to the effective one-electron potential. Minimizing
the mean of the squared deviation between the left and the
right hand side of Eq. �1� leads to a set of integral or differ-
ential equations for vR�rR� and v0. For further details about
the optimized overlapping muffin-tin potentials the reader is
referred to Refs. 23 and 45.

According to the MT approximation, the trial one-electron
wave function can be expanded in terms of the usual partial
waves inside the potential spheres and wave-equation solu-
tions outside the spheres. When the linear combination of
these local solutions are joined continuously or differentiable
at the spheres boundary, the obtained wave function will be a
solution for the Schrödinger equation in all space.

A. The basis sets

In the EMTO formalism, outside the potential spheres the
basis set is formed by the screened spherical waves
�RL

a ��2 ,rR�. They are defined as the solutions of the Helm-
holtz wave equation

��2 + �2��RL
a ��2,rR� = 0 �2�

in conjunction with boundary conditions set at nonoverlap-
ping hard spheres with radii aR�l� centered at lattice site R�.
Here �2=�−v0, � is the energy, and L is an abbreviation for
the combined angular momenta L�	lm
. The screened
spherical waves form a complete basis set in the a interstitial.
They behave as a pure real harmonic YL�r̂R� on their own a
spheres, while the YL��r̂R�� projections on all the other a

spheres vanish. With these energy independent boundary
conditions, for �2 below the bottom of the a spheres con-
tinuum, the screened spherical waves have short range and
weak energy dependence.

The �RL
a ��2 ,rR� function centered on site R may be ex-

panded in terms of real harmonics YL��r̂R�� around any site
R� as

�RL
a ��2,rR� = fRl

a ��2,rR�YL�r̂R��RR��LL�

+ �
L�

gRl
a ��2,rR��YL��r̂R��SR�L�RL

a ��2� . �3�

Here the expansion coefficients SR�L�RL
a ��2� are the elements

of the EMTO slope matrix. The two radial functions f and g
can be expressed in terms of Bessel jl��2 ,r� and Neumann
nl��2 ,r� functions46 as follows:

fRl
a ��2,r� = 1tRlnl��2,r� + 2tRljl��2,r� ,

�4�
gRl

a ��2,r� = − 3tRlnl��2,r� − 4tRljl��2,r� ,

where the tRl are the elements of the screening matrix defined
by

�1tRl��
2� 2tRl��

2�
3tRl��

2� 4tRl��
2�
�

= 2
aRl

2

w 

�jl��2,aRl�

�rR
−

�nl��2,aRl�
�rR

1

aRl
jl��2,aRl� −

1

aRl
nl��2,aRl� � , �5�

and w is the average atomic radius. Finally, from the match-
ing condition formulated at the potential and hard spheres
one arrives to the kink cancellation equation

�
RL

aR��SR�L�RL
a ��2� − �R�R�L�LDRl

a ����vRL
a ��� = 0, �6�

where DRl
a ��� is the logarithmic derivative function calcu-

lated at the aRl sphere and vRL
a ��� are the expansion coeffi-

cients for the trial wave function. This equation yields the
one-electron energies and wave vectors. The number of
states is computed using the overlap matrix expressed in
terms of the first order energy derivative of the slope matrix
and of the logarithmic derivative function. More details
about the EMTO formalism can be found in Refs. 22–25 and
33.

B. Calculation of the slope matrix

The EMTO slope matrix can be obtained from the bare
KKR structure constant matrix SR�L�RL

0 ��2� as22

SR�L�,RL
a ��2� =

1tRl
3tRl

�R�R�L�L

−
1

3tR�l�

�− S0��� −
4tRl
3tRl

�
R�L�RL

−1 2aRl

w3tRl
. �7�

The bare structure constants are defined as
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SR�L�RL
0 ��2� = − 8��

L�

CLL�L�
�2l� − 1�!!

�2l� − 1�!!�2l − 1�!!

��− ��w�2��l�+l−l��/2�− 1�lnL���,R� − R� ,

�8�

where CLL�L� are the real Gaunt numbers. In order to express
the energy derivatives of the slope matrix, we introduce the
dimensionless energy parameter ����w�2. After rearranging
Eq. �7�, we get

�
R�L�

BR�L�R�L����AR�L�RL��� = − 2
aR

w
�R�R�L�L, �9�

where we have introduced the notations

AR�L�RL��� �
1tRl���
3tRl���

�R�R�L�L − SR�L�RL
a ��� �10�

and

BR�L�RL��� � 3tR�l�
����4tRl����R�R�L�L + SR�L�RL

0 ���3tRl���� .

�11�

The screening parameters, likewise the slope matrix, de-
pend on energy through �.22,25 Applying the product rule,
from �9� we obtain the j-th energy derivative of the slope
matrix as

djSa���
d� j = B���−1��

i=0

j−1
j!

�j − i�!i!
dj−iB���

d� j−i

diA���
d�i + 2

a

w
� j,0�

+
dj

d� j

1t���
3t���

, �12�

where the RL subscripts have been dropped and the matrix
multiplication is implied. The energy derivatives of the bare
structure constant S0��� are calculated directly from Eq. �8�.
The derivatives of the screening parameters are obtained
from the energy derivatives of the Bessel and Neumann
functions.

When the slope matrix is calculated on the real energy
axis, one prefers to use as basis functions the Bessel and
Neumann functions for positive � and Bessel and Hankel
functions for negative �. In this case the slope matrix will be
real on the real energy axis. If one needs to calculate the
slope matrix for a general complex energy, it is more conve-
nient to use everywhere the Bessel and Hankel functions. In
this case, the slope matrix is complex everywhere except for
negative real energies.

C. Parametrization of the slope matrix

For a self-consistent calculation, the slope matrix is re-
quired within an energy window that includes energies be-
tween the bottom of the valence band �b and the Fermi level
�F plus �0.2 Ry above the Fermi level. In systems with deep
laying core states and a narrow valence band structure, we
can take �F−�b�1.4 Ry. Since �F−v0 is typically around
�0.6 Ry, for such systems the slope matrix should be calcu-

lated approximately for −0.8 Ry�� /w2�0.8 Ry. Using an
average w2=10 Bohr2, the energy interval of interest in
terms of � turns out to be ±8 around �=0. For these ener-
gies, the slope matrix may be approximated by an n-th order
Taylor expansion23,25 written around �0, viz.

Sa��� � Sn
a��;�0� � Sa��0� +

1

1!

dSa���
d�

�� − �0�

+
1

2!

d2Sa���
d�2 �� − �0�2 + ¯ +

1

n!

dnSa���
d�n �� − �0�n.

�13�

The energy derivatives are obtained using the analytic ex-
pression �12�. In practice, the expansion center �0 is chosen
somewhere close to 0 and n=6.

In a system with large characteristic bandwidth, problems
may occur in the numerical determination of the slope matrix
from the expansion �13�. First, for v0 lying far below the
Fermi energy, i.e., for �F−v0�1.0 Ry or larger, expression
�13� diverges for energies near and above �F. The second
problem arises for bands, where �b	v0. Then Eq. �13�
breaks down for energies near the bottom of the valence
band. In such systems, the semicore states are located with a
few Ry below the Fermi level. A typical energy window for
these elements is approximately 2–3 Ry below v0 and 1 Ry
above v0. Both of the above problems become more pro-
nounced in solids with large w.

The most straightforward way to improve the behavior of
the expansion for a large energy window is to include a
second expansion around a large negative �. Due to the con-
tour integration, joining the two expression may lead to large
errors. To overcome them and assure a reasonable high ac-
curacy, the energy integral should be performed separately
on an upper and a lower energy contour enclosing the va-
lence and the semicore states, respectively. However, in al-
loys and compounds where the band gap between the va-
lence and semicore states contains other states, using
different energy panels is not feasible.

Alternatively, we may introduce additional screening
spheres in the system. This is done by inserting extra screen-
ing spheres E in the interstitial positions in addition to the
original screened spheres A located on the lattice sites. In this
way, one improves on the localization of the screened spheri-
cal waves, and reduces the interstitial region, and thus the
characteristic size of the system. To keep the original repre-
sentation for the potential, we use vanishing potential
spheres on the E sites. By this procedure, the energy window,
where expansion �13� converges, can be increased
significantly.47 Using the Löwdin technique, it is easy to
show47 that the kink cancellation equation �6�, written for the
A+E system, reduces to the original problem written only for
the A spheres. However, in order to avoid the above dis-
cussed convergence problems near the energies far from v0,
one should always use the A+E equation rather than the A
equation. This is because the screening is improved due to
the extra hard spheres and as a consequence the energy de-
rivatives of the slope matrix are computed with higher nu-
merical accuracy than those for the parent lattice. The main
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drawback of the A+E technique is the increased computa-
tional time.

The above approach indicates that the convergence of the
expansion �13� could be improved by increasing the accu-
racy used in the numerical determination of the high order
energy derivatives and possibly by include more terms in the
expansion, i.e., using n
6. In principle, the energy deriva-
tives can be computed directly from Eq. �12�, but in order to
maintain the accuracy with increasing j, one must then also
increase the size of the real space cluster used to solve the
Dyson equation �7�.48 However, the number of surface reso-
nances, due to the finite size of the cluster,22 also increases
with the surface area. Another way to generate accurate high
order derivatives is to use data calculated for different ener-
gies. This can be formulated as a two-center expansion. Here
we consider only the two-center expansion, but of course the
technique can be generalized for an arbitrary number of ex-
pansion centers. We consider two distinct energy points �1
and �2 where the value and derivatives of Sa are known. We
expand Sa��� in such a way that the expansion should repro-
duce exactly the first n derivatives of Sa in �1 and the value
and the first m derivatives of Sa in �2. Mathematically, this
can be formulated as

Sa��� � Sn,m
a ��;�1,�2� = Sn

a��;�1�

+
1

�n + 1�!
an+1�� − �1�n+1 + ¯

+
1

�n + m�!
an+m+1�� − �1�n+m+1, �14�

where Sn
a�� ;�1� is defined in Eq. �13�. The �m+1� coeffi-

cients an+i are obtained from the �m+1� conditions

Sn,m
a ��2;�1,�2� = Sa��2� ,

�dSn,m
a ��;�1,�2�

d�
�

�=�2

= �dSa���
d�

�
�=�2

, . . .

�dmSn,m
a ��;�1,�2�

d�m �
�=�2

= �dmSa���
d�m �

�=�2

. �15�

These conditions lead to a system of linear equations for
an+1 ,an+2 , . . . ,an+m+1. Solving these equations we obtain
Sn,m

a �� ;�1 ,�2�, which is in fact an �n+m+1�-th order expan-
sion for Sa��� around �1.

III. RESULTS

A. Energy dependence of the slope matrix

To investigate the energy dependence of the EMTO slope
matrix, we consider the face centered cubic �fcc� lattice. The
fcc slope matrix has been calculated using spd basis set and
a real space cluster of 79 lattice vectors. After performing the
Bloch summation, we focus on the ss �L=L�= 	0,0
� diago-
nal element of SLL�

a ��2� and its first energy derivative calcu-
lated in the center of the Brillouin zone. The reason for using
in this test only the ss sub-blocks is that these are the largest

and the most delocalized ones within the real space. These
two functions are plotted in Fig. 1 in terms of energy for an
interval corresponding to the dimensionless parameter �
with real part �x=Re���� between −10 and +10 and imagi-
nary part �y=Im���� between 0 and 10. Since Im�Sa�x
+ iy��=−Im�Sa�x− iy��, valid for the first energy derivative as
well, results are shown only for positive Im���.

Along the real axis, the real part of the slope matrix,
shown in the panel �a� of Fig. 1, follows the trend already
discussed in Ref. 25. In the complex plane, Re�Sa� decreases
with the imaginary energy component for any Re���. Panel
�b� shows the imaginary part of the slope matrix. This is zero
on the negative real axis and very small along the positive
real axis. On the other hand, Im�Sa� rises rapidly as one goes
out into the complex plane.

In panels �c� and �d� of Fig. 1, we show the real and
imaginary parts of the first energy derivative of the slope
matrix. Both of these functions are very small, except for
large positive Re���, where they are already affected by the
presence of the poles. As with Im�Sa�, the imaginary part of
the energy derivative of the slope matrix is zero or almost
zero on the real axis, even if one can see small oscillations
around 8–10�. We note that these oscillations are also
present in the higher energy derivatives. Hence, except for
large positive Re���, the slope matrix and its first energy
derivative exhibit smooth and weak energy dependence,
which indicates that accurate parametrization of these func-
tions exist.

Figure 2 shows the behavior of the ss sub-block of the
slope matrix and its first order energy derivative for Im���
�50. Here, the real part of � was taken to be zero. The
trends from Fig. 2 can be understood by looking to the
asymptotic behavior of the basis functions. As the imaginary
part of the energy increases, the Hankel functions and thus
the bare structure constants go exponentially to zero. The
screening, however, modifies the energy dependence of the
slope matrix, which can easily be seen from Eq. �7�. The
off-diagonal elements of SLL�

a are found to decay exponen-
tially, just as the bare structure constants, while the diagonal
terms behave as

Sll
a��� = l − ��

hl+1���
hl���

, �16�

where hl��� is the Hankel function. In the limit of large
imaginary values of �, this expression goes to �i��−1� for
any l. That is, Re�Sa�→−Im����−1 and Im�Sa�→Re����
when Im���→�. Our calculations performed for Im���
�50 �not shown� demonstrate that Sa approaches its
asymptotic expression within a few percent for Im���
�250–300. Note that for an average w2=10 Bohr2, these �
values correspond to 25–30 Ry imaginary energy, which is
well beyond the maximum Matsubara frequency included in
a DMFT calculation.41–43 For the energy derivative of the
slope matrix, the off-diagonal terms decay exponentially,
while the diagonal terms decay as 1/ ����.
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B. Expansion of the slope matrix

We establish the accuracy of the proposed one-center and
two-center expansions of the slope matrix, by calculating the
relative error of the expansions within the complex plane.
We define the relative error as

Err =
	�Re�Scalc − Sexpan��2 + �Im�Scalc − Sexpan��2
1/2

	�Re�Scalc��2 + �Im�Scalc��2
1/2 , �17�

where Scalc and Sexpan are the ss elements of the calculated
and estimated slope matrices or their first energy derivatives.
This quantity is plotted in Fig. 3 as a function of energy for
the case of the one-center expansion �13� with �0= �0,0�.
Panels �a� and �b� show Err for the slope matrix and its first
derivative calculated using six and five derivatives. In panels
�c� and �d� we give the same quantities obtained using three
and two derivatives, respectively. Obviously, the sixth order
expansion is superior compared to the third order expansion,
but it is difficult to state explicitly for which values of � the
expansion breaks down. There is a gradually increasing error
and whether the expansion works or not depends on the ac-
curacy needed. The sixth order expansion reproduces the cal-

FIG. 1. �Color online� Real �a� and imaginary �b� parts of the ss element of the slope matrix S0,0
a ���, and real �c� and imaginary �d� parts

of its first energy derivative Ṡ0,0
a ��� calculated for the fcc structure �see text for further details�.

FIG. 2. Real �a� and imaginary �b� parts of the ss element of the
slope matrix S0,0

a ���, and real �c� and imaginary �d� parts of its first

energy derivative Ṡ0,0
a ��� calculated for the fcc structure as func-

tions of the imaginary values of ���.
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culated values Scalc with an accuracy better than �1% within
a radius of �5 around the expansion center �Fig. 3�a��. For a
radius of �10, the error of the expansion still is below 5%.
However, around �= �−10,10� the relative error reaches one
third of Scalc. The situation is much worse in the case of the
first order energy derivative �Fig. 3�b��. Here, the relative
error remains below a few percent for ���
5, but it increases
to �30% for ���=10 and to �250% around �−10,10�. The
expansion can not be improved significantly by choosing the
expansion center out in the complex plane. This is illustrated
in Fig. 4, where the expansion center was set at �0= �3,3�
instead of �0, 0� used for Fig. 3. As one can see, the conver-
gence of the expansion is roughly the same as the one ob-
served in the case of real �0.

The two-center expansion �14� is demonstrated in Fig. 5.
The two expansion centers were set in �1= �0,0� and
�2= �−10,0�, and the expansion was carried out to n=m=6.
The small error near �0, 0� on panel �a� is due to the fact that
the ss element of the fcc structure constant passes through
zero near this point. The first thing we can observe from this
figure is that the relative error remains below �1% for the
slope matrix �panel �a�� and below �2% for its energy

derivative �panel �b�� within a radius of ����10 around
��−8,0�. What is interesting is that the two-center form not
only improves Sexpan for points near the expansion centers,
but dramatically improves Sexpan for points at the other end of
the energy mesh, as well as out in the complex plane. In fact,
it has turned out that using a two-center expansion with
n�m�6, for an average w2�10 Bohr2 one can accurately
map an energy window as large as �0.5 Ry above and, de-
pending on �2, 2–6 Ry below the Fermi level.

From the above results, we conclude that a Taylor expan-
sion around real energies can be used to compute with high
accuracy the elements of the slope matrix for an arbitrary
complex energy. Furthermore, the two-center expansion
seems to offer a way to improve on the one-center expansion
in the case of wide bands.

C. A case in point: hcp La

Early transition metals are typical systems which have
large characteristic bandwidth at ambient pressure. In these
elements, the semicore states are located with �1–2 Ry be-
low the bottom of the valence band. In most cases, these

FIG. 3. �Color online� Relative error of the expansion �13� for �a� the slope matrix using six derivatives, �b� its first energy derivative
using five derivatives, �c� the slope matrix using three derivatives, and �d� its first energy derivative using two derivatives. The error is
defined in Eq. �17� and the expansion center is �0= �0,0�. Values over 0.5 have been removed for clarity.
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states must be included in the self-consistent calculations
directly rather than being frozen in the core or treated as
atomiclike soft-core states. As an example, we consider the
hexagonal close packed �hcp� La.

We illustrate the problem that may show up in connection
with a large bandwidth by calculating the total energy of hcp
La as a function of volume using different parametrizations
for the slope matrix. In this test, we adopted the generalized
gradient approximation49 �GGA� for the exchange-
correlation functional. The density of states for hcp La cal-
culated at the experimental volume, is plotted in Fig. 6 as a
function of energy with respect to the Fermi level. The 5p
semicore states of La can be seen as the peaks in the density
of states around −1.2 Ry. Therefore, in order to treat the
semicore states on equal footing with the valence states, the
contour used for the energy integration must be expanded
from 0 down to approximately −1.5 Ry. We note that putting
the 5p states in the core and thereby making it possible to
use a small energy contour, fails completely in getting a rea-
sonable equation of state for hcp La.

Using the experimental atomic radius of double-hcp
La,50,51 the above energy window for La corresponds to
−16
�
7 �see the upper horizontal axis in Fig. 6� in units
of the dimensionless parameter �= ��−v0�w2. Hence, the
slope matrix has to be parametrized either with more than
one one-center expansion �13� or with the two-center expan-
sion �14�. If we opt for two one-center expansions, we need
to use two different �0 values, one set around the muffin-tin
zero and another close to the semicore states. In this case,
special attention must be paid when choosing the energy
contour in order to avoid the errors coming from energies
joining the two analytic expressions. The usual circular en-
ergy contour can lead to oscillations in the total energy, as
illustrated by the dashed line from Fig. 7. We can get rid of
this unphysical oscillations by dividing the original circular
contour into two small contours, one energy window enclos-
ing the valence states �−0.5
�
0� and the other the semi-
core states �−1.5
�
−1.0�. On the other hand, the two-
center expansion is expected to offer a more elegant solution
to the above problem. Indeed, as it can be seen in Fig. 7

FIG. 4. �Color online� Relative error of the
one-center expansion �13� for �a� the slope matrix
using six derivatives and �b� its first energy de-
rivative using five derivatives. The expansion
center is �0= �3,3�. Values over 0.5 have been
removed for clarity.
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�solid line�, the two-center expansion �14� produces a smooth
energy versus atomic radius curve.

In a self-consistent calculation, the electron count is real-
ized via the overlap matrix, and thus via the energy deriva-
tive of the slope matrix.47 On the other hand, in the FCD
formalism,26 the total number of electrons is found directly
by integrating the electron density within the unit cell. In an
ideal situation, this integral should give exactly the total
number of electrons. However, in practice there is always a
charge misfit �e. When all the numerical parameters control-
ling the real space integration are set to their converged val-
ues, the requirement �e→0 is one of the most severe test for
the accuracy of the slope matrix and its energy derivative.
Using two one-center expansions, we obtain �e=0.0108 for
hcp La near the equilibrium volume. At the same time, this
figure decreases to 0.0006 when the two-center expansion
�14� is employed. This clearly demonstrates the superiority
of Eq. �14� compared to Eq. �13� in the case of systems with
large bandwidth.

IV. COMPOSITIONAL DISORDER IN MgY THIN FILMS

In systems containing elements with semicore states, even
when the one-center expansion works reasonably well for the
pure elements, the effect of alloying may lead to the semi-
core states hybridizing with the valence states and thus cre-
ating large errors in the calculations. In contrast to the one-
center expansion, the proposed two-center expansion can be
applied to such systems as well. Here we illustrate this in the
case of hcp MgY alloys.

Hydrogen storage is an important research area, since ma-
terials, which can both store hydrogen and later release it, are
imperative for the future fuel cell techniques. Magnesium is
a material with very high hydrogen uptake.52 Unfortunately,
pure Mg has thermodynamic and kinetic limitations,53 which
may be overtaken by alloying. In a recent paper,54 it was
suggested that one could use Y, since Y hydrides form very
easily. In bulk samples, the solubility limit of Y in Mg is less
than 1% at room temperature and �4% at 800 K.55 Surpris-
ingly, in samples obtained by sputtering Mg and Y onto a

FIG. 5. �Color online� Relative error of the
expansion of �a� the slope matrix and �b� its first
energy derivative using the two-center expansion
�14�. The two expansion centers are �1= �0,0�
and �2= �−10,0�. Values over 0.5 have been re-
moved for clarity.
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glass substrate,54 measurements indicated the possibility to
obtain an hcp solid solution between Mg and Y up to an Y
concentration of 17%. The lattice parameter c of this hcp
Mg-Y system was measured as a function of alloy composi-
tion. Here, we calculate the concentration variation of the
lattice parameters of Mg-Y as function of Y content and
compare the obtained hexagonal lattice parameter with the
above mentioned experimental data.

The calculations were carried out using the EMTO
method, which has been proven to be accurate enough for the
optimization of the c /a ratio in random alloys.33,38 Since Y
has semicore states, for the slope matrix we used the sug-
gested two-center Taylor expansion in order to assure a good
description of the energy dependence. This is especially im-

portant since we had to minimize the total energy with re-
spect to c /a ratio for the hcp lattice. In the basis set we
included s , p ,d , f orbitals, and the k-space sampling was
done using 1573k points in the irreducible part of the Bril-
louin zone. For the exchange correlation we used GGA
functional.49

The calculated lattice parameter c is plotted in Fig. 8 to-
gether with the experimental values from Ref. 54. The theo-
retical prediction for the a lattice parameter is also shown
�inset�. We note that for pure Mg the calculated values of the
lattice parameters a and c, 3.19 and 5.20 Å, respectively, are
in excellent agreement with the experimental values of
a=3.21 Å and c=5.21 Å.51,54 As it can be seen, the slope of
the calculated concentration dependence of the lattice param-
eter c agrees with the slope of the experimental curve very
well up to �4% Y. At higher Y concentrations, a new branch
seems to appear at the experimental curve, with a substan-
tially different slope. On the other hand, our calculations
show that for random Mg-Y alloys with high Y content, c
follows the same curve as for diluted alloys, with a constant
slope. As a matter of fact, this should be expected if the alloy
stays in a single solid solution phase. Our theoretical value
for Y, a=3.68 Å and c=5.81 Å, are slightly higher than the
experimental values a=3.65 Å and c=5.73 Å.51. However,
an extrapolation of the experimental branch above �5% Y
towards pure Y leads to an estimate of the lattice parameter c
around 5.4 Å. This is much lower than the experimental
value for pure Y, mentioned above. Thus, the increasing dif-
ference between the theoretical and experimental curves at
high Y concentration could indicate that the experimental
films are no longer in a single solid solution phase, and may
contain some precipitates of the second phase. Perhaps fur-
ther investigation of the alloy would be of interest.

Finally, we would like to note that our test calculations,
performed by considering the semicore states of Y as a part
of the core and thus using one-center expansion for the slope

FIG. 6. Calculated density of states for hcp La. The 5p semicore
states are located around an energy of −1.2 Ry. The energy in the
bottom axis is shown in Ry �relative to the Fermi energy�. The
upper horizontal axis shows it in units of �.

FIG. 7. Equation of state for hcp La, calculated using a two-
center expansion �solid line� or two one-center expansions �dashed
line� for the energy dependence of the slope matrix. The vertical
line indicates the experimental Wigner-Seitz radius for dhcp La
taken from Ref. 51.

FIG. 8. Calculated �circles� and experimental �squares� values of
the hexagonal lattice parameter c for the hcp Mg1−xYx alloy as a
function of x. The experimental values are taken from Ref. 54. The
inset shows the theoretical prediction of the concentration depen-
dence of the lattice parameter a for the same system.
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matrix, gave results in worse agreement with experiment
than those from Fig 8. For instance, at 4% Y, for c we ob-
tained 5.219 Å using the one-center expansion, which should
be compared to 5.231 Å obtained using the two-center form
or 5.235 Å reported in experiment. This is of course to be
expected both with regards to the sensitivity of the c /a mini-
mization, the problem with the hybridizing semicore states of
Y, and the increase in accuracy in general due the two-center
expansion.

V. CONCLUSIONS

We have investigated the behavior of the EMTO slope
matrix and its first energy derivative in the complex energy
plane. We have shown that although the bare structure con-
stants decay exponentially for large imaginary parts of the
energy, the screening introduces another energy dependence
of the slope matrix. This is calculated numerically and ana-
lytical formulae for the energy dependence in this energy
region are derived. We have found that for large imaginary
energies, the diagonal elements of the EMTO slope matrix
converge towards �i��−1�.

We have investigated the accuracy of the one-center and
two-center expansions for the energy dependence of the
slope matrix and its first energy derivative. We have found
that one can safely use the Taylor expansion from the real

axis, provided that one uses enough terms in the expansion
and not expand too far from the expansion center/centers. We
have demonstrated that the two-center expansion works well
for a larger energy window and can be used to describe sys-
tems with large bandwidth. Furthermore, there are cases,
here exemplified by hcp La, where special care must be paid
when using separate expansions for the valence and semicore
states. The two-center expansion is found to offer a more
elegant and more accurate solution to treat such systems.

We also investigated the Mg rich Mg-Y alloys, which is a
material of interest for hydrogen storage applications. Calcu-
lations agree well with experimental values for Y concentra-
tion below �4% and show that in thin films a single phase
solid solution is probably stable only up to 4–5% of Y in hcp
Mg.
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