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We study the Fermi-surface instabilities of the Pomeranchuk type �Sov. Phys. JETP 8, 361 �1959�� in the
spin-triplet channel with high orbital partial waves �Fl

a�l�0��. The ordered phases are classified into two
classes, dubbed the � and � phases by analogy to the superfluid 3He A and B phases. The Fermi surfaces in the
� phases exhibit spontaneous anisotropic distortions, while those in the � phases remain circular or spherical
with topologically nontrivial spin configurations in momentum space. In the � phase, the Goldstone modes in
the density channel exhibit anisotropic overdamping. The Goldstone modes in the spin channel have a nearly
isotropic underdamped dispersion relation at small propagating wave vectors. Due to the coupling to the
Goldstone modes, the spin-wave spectrum develops resonance peaks in both the � and � phases, which can be
detected in inelastic neutron-scattering experiments. In the p-wave channel � phase, a chiral ground-state
inhomogeneity is spontaneously generated due to a Lifshitz-like instability in the originally nonchiral systems.
Possible experiments to detect these phases are discussed.
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I. INTRODUCTION

The Landau theory of the Fermi liquid is one of the most
successful theories of condensed-matter physics.1,2 It de-
scribes a stable phase of dense interacting fermionic systems,
a Fermi liquid �FL�. The Fermi liquid theory is the founda-
tion of our understanding of conventional, weakly correlated,
metallic systems. Its central assumption is the existence of
well-defined fermionic quasiparticles, single-particle fermi-
onic excitations, which exist as long-lived states at very low
energies, close enough to the Fermi surface. In the Landau
theory, the interactions among quasiparticles are captured by
a few Landau parameters Fl

s,a, where l denotes the orbital
angular momentum partial-wave channel, and s ,a denote
spin-singlet and -triplet channels, respectively. Physical
quantities, such as the spin susceptibility, and properties of
collective excitations, such as the dispersion relation of zero
sound collective modes, acquire significant but finite renor-
malizations due to the Landau interactions. In the FL phase,
except for these finite renormalizations, the effects of the
interactions become negligible at asymptotically low ener-
gies. It has, however, long been known that the stability of
the FL requires that the Landau parameters cannot be too
negative, Fl

s,a�−�2l+1�, a result derived by Pomeranchuk.3

The most familiar of these Pomeranchuk instabilities are
found in the s-wave channel: the Stoner ferromagnetism at
F0

a�−1 and phase separation at F0
s �−1.

It has been realized quite recently that when these bounds
are violated in a channel with a nonvanishing angular mo-
mentum, there is a ground-state instability in the particle-
hole and spin-single channel, leading to a spontaneous dis-
tortion of the Fermi surface. This is a quantum phase
transition to a uniform but anisotropic liquid phase of the
fermionic system.4 In such a phase the electron fluid be-
haves, from the point of view of its symmetries and of their
breaking, very much like an electronic analog of liquid-
crystal phases.5,6 The charge nematic is the simplest example

of such electronic liquid-crystal phases, a concept introduced
in Ref. 7 to describe the complex phases of strongly corre-
lated systems such as doped Mott insulators. The charge
nematic phase has also been suggested to exist in the high Tc
materials near the melting of the �smectic� stripe phases,7,8

and in quantum Hall systems in nearly half-filled Landau
levels.9,10 Experimentally, the charge nematic phase has been
found in ultrahigh mobility two-dimensional electron gases
�2DEGs� in AlAs-GaAs heterostructures and quantum wells
in large magnetic fields, in nearly half-filled Landau levels
for N�2 at very low temperatures.10–13 Strong evidence for
a charge nematic phase has been found quite recently near
the metamagnetic transition of the ultraclean samples of the
bilayer ruthenate Sr3Ru2O7.14,15

Electronic liquid-crystal phases can also be realized as
Pomeranchuk instabilities in the particle-hole channel with
nonzero angular momentum. This point of view has been the
focus of much recent work, both in continuum system4,16–19

as well as in lattice systems,20–24 in which case these quan-
tum phase transitions involve the spontaneous breaking of
the point symmetry group of the underlying lattice. The two-
dimensional �2D� quantum nematic Fermi fluid phase is an
instability in the d-wave �l=2� channel exhibiting a sponta-
neous elliptical distortion of the Fermi surface.4 In all cases,
these instabilities typically result in anisotropic Fermi-
surface distortions, sometimes with a change of the topology
of the Fermi surface. Nematic phases also occur in strong
coupling regimes of strongly correlated systems such as the
Emery model of the high-temperature superconductors.25 If
lattice effects are ignored, the nematic state has Goldstone
modes, which can be viewed as the rotation of the distorted
Fermi surface, i.e., the soft Fermi-surface fluctuations.
Within a random-phase-approximation �RPA� approach,4

confirmed by a nonperturbative high-dimensional bosoniza-
tion treatment,17 the Goldstone modes were shown to be
overdamped in almost all the propagating directions, except
along the high-symmetry axes of the distorted Fermi surface.
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The Goldstone mode couples strongly to electrons, giving
rise to a non-Fermi-liquid behavior throughout the nematic
Fermi fluid phase:4,26 in the perturbation theory, the imagi-
nary part of the electron self-energy is found to be propor-
tional to �2/3 on most of the Fermi surface, except along four
“nodal” directions, leading to the breakdown of the quasipar-
ticle picture. Away from the quantum critical point, this ef-
fect is suppressed by lattice effects but it is recovered at
quantum criticality21 and at high temperatures �if the lattice
pinning effects are weak�. Beyond perturbation theory,26 this
effect leads to a form of “local quantum criticality.”

Richer behaviors can still be found in Pomeranchuk insta-
bilities in the spin triplet and l�0 angular momentum
channels.4,8,27–34 Typically, this class of instabilities breaks
both the spatial �orbital� and spin SU�2� rotation symmetries.
A p-wave channel instability was studied by Hirsch.27,28 The
Fermi surfaces of spin-up and -down components in such a
state shift along opposite directions. The p-wave channel in-
stability was also proposed by Varma31 and Varma and Zhu32

as a candidate for the hidden order appearing in the heavy
fermion compound URu2Si2 below 17 K. Gor’kov and Sokol
studied the non-Néel spin orderings in itinerant systems and
showed their relation to the Pomeranchuk instability.29 In
Refs. 4 and 8 a nematic-spin-nematic phase was proposed,
nematic state in both real space and in the internal spin
space, where the two Fermi surfaces of up and down spins
are spontaneously distorted into two orthogonal ellipses.
Podolsky and Demler35 considered a spin-nematic phase as
arising from the melting of a stripe phase; this phase can also
be a nematic-spin-nematic if it retained a broken rotational
symmetry, as expected from the melting of a stripe �or smec-
tic� phase.7,36 Kee and Kim33 have suggested a state to ex-
plain the behavior of Sr3Ru2O7, which can be shown to be a
lattice version of a partially polarized nematic-spin-nematic
state.

Interestingly, the spin-triplet Pomeranchuk instabilities
can also occur without breaking rotational invariance in real
space, and keep the symmetries of the undistorted Fermi sur-
face. Wu and Zhang30 showed that a state of this sort can
exist in the p-wave channel, with the distortions affecting
only the spin channel. In this state, there are two Fermi sur-
faces with different volumes, as in ferromagnetic systems.
Although both the spatial and spin rotation symmetries are
broken, a combined spin-orbit rotation keeps the system in-
variant; i.e., the total angular momentum is conserved. The
broken symmetry in such a state is the relative spin-orbit
symmetry, which was proposed by Leggett in the context of
superfluid 3He B phase.1 In fact, it is a particle-hole channel
analog of the superfluid 3He B phase, where the pairing gap
function is isotropic over the Fermi surface. The phases with
anisotropic Fermi-surface distortions are the analog of the
3He A phase, where the gap function is anisotropic. The two
possibilities of keeping or breaking the shape of Fermi sur-
faces are dubbed � and � phases, respectively, by analogy
with B and A superfluid phases in 3He systems. An important
difference is, however, that while in the A and B phases of
superfluid 3He, all the Fermi surface is gapped, up to a set of
measure zero of nodal points in the A phase, in the � and �
phases of spin-triplet Pomeranchuk systems no gap in the
fermionic spectrum ever develops.

An important common feature of the � and � phases is
the dynamical appearance of effective spin-orbit �SO� cou-
plings, reflecting the fact that in these phases spin and orbit
degrees of freedom become entangled.37 Conventionally, in
atomic physics, the SO coupling originates from leading-
order relativistic corrections to the Schrödinger-Pauli equa-
tion. As such, the standard SO effects in many-body systems
have an inherently single-particle origin, and are unrelated to
many-body correlation effects. The Pomeranchuk instabili-
ties involving spin we are discussing here thus provide a
different mechanism to generate effective SO couplings
through phase transitions in a many-body nonrelativistic sys-
tem. In the 2D � phase, both Rashba-like and Dresselhaus-
like SO couplings can be generated. In the � phase, the re-
sulting SO coupling can be considered as a mixture of
Rashba and Dresselhaus with equal coupling strengths. Such
SO coupling systems could, in principle, be realized in 2D
semiconductor materials, leading to interesting effects. For
instance, a hidden SU�2� symmetry in such systems was
found to give rise to a long-lived spin spiral excitation with
the characteristic wave vector relating the two Fermi surfaces
together.38 Recently, many proposals have been suggested to
employ SO coupling in semiconductor materials to generate
spin current through electric fields. The theoretical prediction
of this “intrinsic spin Hall effect”39,40 has stimulated tremen-
dous research activity both theoretical and experimental.41,42

Thus, Pomeranchuk instabilities in the spin channel may
have a potential application for the field of spintronics.

A systematic description of the high partial-wave channel
Pomeranchuk instabilities involving spin is still lacking in
the literature. In this paper, we investigate this problem for
arbitrary orbital partial-wave channels in two dimensions,
and for simplicity only in the p-wave channel in three dimen-
sions. We use a microscopic model to construct a general
Ginzburg-Landau �GL� free energy to describe these insta-
bilities, showing that the structure of the � and � phases are
general for arbitrary values of l. The � phases exhibit aniso-
tropic relative distortions for two Fermi surfaces, as pre-
sented in previous publications. We also investigate the al-
lowed topological excitations �textures� of these phases and
find that a half-quantum vortexlike defect in real space com-
bined with spin-orbit distortions. The � phases at l�2 also
have a vortex configuration in momentum space with wind-
ing numbers ±l, which are equivalent to each other by a
symmetry transformation.

We study the collective modes in the critical regime and
in the ordered phases at zero temperature. At the quantum
critical point, as in the cases previously studied, the theory
has the dynamic critical exponent z=3 for all values of the
orbital angular momentum l. In the anisotropic � phase, the
Goldstone modes can be classified into density and spin
channel modes, respectively. The density channel Goldstone
mode exhibits anisotropic overdamping in almost all the
propagating directions. In contrast, the spin channel Gold-
stone modes show nearly isotropic underdamped dispersion
relation at small propagating wave vectors. In the � phase,
the Goldstone modes are relative spin-orbit rotations which
have linear dispersion relations at l�2, in contrast to the
quadratic spin-wave dispersion in the ferromagnet. Both the
Goldstone modes �spin channel� in the � phases and the
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relative spin-orbit Goldstone modes in the � phases couple to
spin excitations in the ordered phases. Thus, the spin-wave
spectra develop characteristic resonance peaks observable in
neutron-scattering experiments, which are absent in the nor-
mal phase.

The p-wave channel Pomeranchuk instability involving
spin is special because the GL free energy contains a cubic
term of order parameters with a linear spatial derivative sat-
isfying all the symmetry requirements. Such a term is not
allowed in other channels with l�1, including the ferromag-
netic instability and the Pomeranchuk instabilities in the den-
sity channel. This term does not play an important role in the
� phase, but in the � phase, it induces a chiral inhomoge-
neous ground-state configuration, leading to a Lifshitz-like
instability in this originally nonchiral system. In other words,
a Dzyaloshinskii-Moriya-type interaction for the Goldstone
modes is generated in the � phase. The effect bears some
similarity to the helimagnet43 and chiral liquid crystal6 ex-
cept that the parity is explicitly broken there but not here.
The spiral pattern of the ground-state order parameter is de-
termined.

The paper is organized as follows: In Sec. II, we construct
the model Hamiltonian for the Pomeranchuk instabilities
with spin. In Sec. III, we present the Ginzburg-Landau free-
energy analysis to determine the allowed ground states. In
Sec. IV, we discuss the results of the mean-field theory. In
Sec. V, we discuss the topology of the broken-symmetry
states and classify the topological defects. In Sec. VI, we
calculate the collective modes at the critical point at zero
temperature. In Secs. VII and VIII, we investigate the Gold-
stone modes in the � and � phases, respectively, and study
the spontaneous Lifshitz instability in the � phase at l=1. In
Sec. IX, we present the magnetic-field effects. In Sec. X, we
show that in the � and � phases in the quadrupolar channel
�l=2�, a spin current can be induced when a charge current
flows through the system. In Sec. XI, we discuss the possible
experimental evidence for Pomeranchuk instabilities involv-
ing spins. We summarize the results of this paper in Sec. XII.
Details of our calculations are presented in two appendixes.
In Appendix A, we specify our conventions for Landau pa-
rameters, and in Appendix B, we give details of the Gold-
stone modes for spin oscillations in the � phase.

II. MODEL LANDAU HAMILTONIAN

We begin with the model Hamiltonian describing the Po-
meranchuk instability in the Fl

a �l�1� channel in 2D. Later
on in the paper, we will adapt this scheme to discuss the
three-dimensional �3D� case, which is more complex. This
model, and the related model for the spin-singlet sector of
Ref. 4 on which it is inspired, has the same structure as the
effective Hamiltonian for the Landau theory of a FL. The
corresponding order parameters can be defined through the
matrix, form as

Q�b�r� = ��
†�r�	��

� gl,b�− i�̂����r� , �2.1�

where the Greek index � denotes the x ,y ,z directions in the
spin space, in two dimensions the Latin index b=1,2 denotes

the two orbital components, and � ,�= ↑ ,↓ label the two spin
projections. �Hereafter, repeated indices are summed over.�
In two dimensions, the operators gl,1± igl,2, which carry the
azimuthal angular momentum quantum number Lz= ± l, are
given by

gl,1�− i�̂� ± igl,2�− i�̂� = �− i�l��̂x ± i�̂y�l, �2.2�

where the operator �̂a is defined as �� a / ���. The 3D counter-
part of these expressions can be written in terms of spherical
harmonic functions. Thus, in three dimensions the Latin la-
bels take 2l+1 values. For the moment, and for simplicity,
we will first discuss the 2D case.

In momentum space �i.e., a Fourier transform�, we can
write the operators of Eq. �2.2� in the form gl,1�k��=cos l
k

and gl,2�k��=sin l
k, where 
k is the azimuthal angle of k� in
the 2D plane. In momentum space, Q�b�q�� is defined as

Q�b�q�� = �
k�
��

†�k� +
q�

2
�	��

� gl,b�k�����k� −
q�

2
� . �2.3�

It satisfies Q�b�−q��=Q�b*�q��; thus, Q�b�r�� is real.
We generalize the Hamiltonian studied in Refs. 4 and 30

to the Fl
a channel with arbitrary values of l as

H =	 d2r���
†�r������� � − �����r�� +

1

2
	 ddr�ddr��f l

a�r� − r���

��
�b

Q̂�b�r��Q̂�b�r��� , �2.4�

where � is the chemical potential. For later convenience, we
include the nonlinear momentum dependence in the single-
particle spectrum up to the cubic level as

��k�� = vF
k�1 + a�
k/kF� + b�
k/kF�2 + ¯ � , �2.5�

with 
k=k−kF. Here, vF and kF are the Fermi velocity and
the magnitude of the Fermi wave vector in the FL.

The Fourier transform of the Landau interaction function
f�r� is

f�q�� =	 dr�eiq�r�f l
a�r� =

f l
a

1 + ��f l
a�q2 , �2.6�

and the dimensionless Landau parameters are defined as

Fl
a = N�0�f l

a�q = 0� , �2.7�

with N�0� the density of states at the Fermi energy. This
Hamiltonian possesses the symmetry of the direct product of
SOL�2� � SOS�3� in the orbit and spin channels.

The Landau-Pomeranchuk �LP� instability occurs at Fl
a

�−2 at l�1 in two dimensions. For the general values of l,
we represent the order parameter by a 3�2 matrix,

n�,b = �f l
a� 	 d2k�

�2��2 
��
†�k��	��

� gl,b�k�����k��� . �2.8�

It is more convenient to represent each column of the matrix
form n�,b �b=1,2� as a 3-vector in spin space as
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n�1 = n�,1, n�2 = n�,2. �2.9�

For l=1, n�1,2 are just the spin currents along the x ,y direc-
tions, respectively. When l�2, n�1,2 denote the spin multipole
components at the level l on the Fermi surface. n�1± in�2 carry
the orbital angular momenta Lz= ± l, respectively. In other
words, n�1,2 are the counterpart of the spin moment in the lth
partial-wave channel in momentum space.

The mean-field Hamiltonian, i.e., for a state with a uni-
form order parameter, can be decoupled as

HMF =	 d2k�

�2��2��
†�k�����k�� − � − �n�1 cos�l
k�

+ n�2 sin�l
k�� · 	� 
���k�� +
�n1�2 + �n2�2

2�f l
a�

. �2.10�

This mean-field theory is valid when the interaction range
�����f l

a� is much larger than the interparticle distance d
�1/kF. The actual validity of mean-field theory at quantum
criticality requires an analysis of the effects of quantum fluc-
tuations, which are not included in the mean-field theory.44,45

In this theory, just as the case of Ref. 4, the dynamic critical
exponent turns out to be z=3 and the mean-field theory ap-
pears to hold even at quantum criticality.

Taking into account that �f1
a��1/N�0� around the transi-

tion point, we introduce a dimensionless parameter � to de-
note the above criterion as

� =
�kF

2

N�0�
� 1. �2.11�

Finally, notice that, in the p-wave channel, the Hamiltonian
�Eq. �2.10�� can be formally represented through an SU�2�
non-Abelian gauge field minimally coupled to the fermions,

HMF =	 d2r�
1

2m
�†�r���− i��a − mAa

��r��	��2��r��

−
m

2
�†�r����r��Aa

��r��Aa
��r�� , �2.12�

where the gauge field is defined as

Aa
��r��	� = n�a�r��	�. �2.13�

Notice, however, that this is an approximate effective local
gauge invariance, which only holds for a theory with a linear
dispersion relation, and that it is manifestly broken by non-
linear corrections, such as the quadratic term of Eq. �2.12�
and the cubic terms included in the dispersion ��k�� of Eq.
�2.5�.

III. GINZBURG-LANDAU FREE ENERGY

A. 2D systems

In order to analyze the possible ground-state configuration
discussed in Sec. I, we construct the GL free energy in two
dimensions in the arbitrary l-wave channel. The symmetry
constraint to the GL free energy is as follows. Under time-
reversal �TR� and parity transformations, n�1,2 transform, re-
spectively, as

Tn�1,2T−1 = �− �l+1n�1,2, Pn�1,2P−1 = �− �ln�1,2. �3.1�

Under the SOS�3� rotation R�� in the spin channel, n�1,2 trans-
form as

n�,1 → R��n�,1, n�,2 → R��n�,2, �3.2�

On the other hand, under a uniform rotation by an angle 

about the z axis, in the orbital channel, the order parameters
n�a transform as

n�1 → cos�l
�n�1 + sin�l
�n�2,

n�2 → − sin�l
�n�1 + cos�l
�n�2. �3.3�

Thus, the order-parameter fields n�1 and n�2 are invariant under
spatial rotations by 2� / l and change sign under a rotation by
� / l. In the � phase, this change can be compensated by
flipping the spins.

In order to maintain the SOL�2� � SOS�3� symmetry, up to
quartic terms in the order-parameter fields n�a, the uniform
part of the GL free energy has the form,

F�n� = r tr�nTn� + �v1 +
v2

2
��tr�nTn��2 −

v2

2
tr��nTn�2�

= r��n�1�2 + �n�2�2� + v1��n�1�2 + �n�2�2�2 + v2�n�1 � n�2�2.

�3.4�

The coefficients r, v1, and v2 will be presented in Eq. �4.12�
by evaluating the ground-state energy of the mean-field
Hamiltonians �Eqs. �4.1� and �4.7��. The Pomeranchuk insta-
bility occurs at r�0, i.e., Fl

a�−2�l�1�. Furthermore, for
v2�0, the ground state is the � phase, which favors n�1 �n�2,
while leaving the ratio of �n�1� / �n�2� arbitrary. On the other
hand, for v2�0 we find a � phase, which favors n�1�n�2 and
�n�1�= �n�2�.

The gradient terms are more subtle. We present the gradi-
ent terms of the GL free energy for l=1 as follows:

Fgrad�n� = �1 tr��anT�an� + �2����n�an�b�an�b

= �1��an�b · �an�b� + �2���xn�2 − �yn�1� · �n�1 � n�2�� .

�3.5�

For simplicity, as in Ref. 4, we have neglected the difference
between two Franck constants and only present one stiffness
coefficient �1. �This approximation is accurate only near the
Pomeranchuk quantum critical point.� More importantly, be-
cause n�,b is odd under parity transformation for l=1, a new
�2 term appears, which is of cubic order in the order-
parameter field n�,b, and it is linear in derivatives. This term
is allowed by all the symmetry requirements, including time
reversal, parity, and rotation symmetries. This term has no
important effects in the disordered phase and in the � phase,
but it leads to a Lifshitz-like inhomogeneous ground state
with spontaneous chirality in the � phase, in which parity is
spontaneously broken. We will discuss this effect in detail in
Sec. VIII. The coefficient of �1,2 will be presented in Eq.
�8.19�. Similarly, for all the odd values of l, we can write a
real cubic �2 term satisfying all the symmetry constraints as
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�2����n�an�b�i�lga��̂�n�b. �3.6�

However, this term corresponds to high-order corrections,
and is negligible �irrelevant� for l�3.

Similar to the approximate gauge symmetry for the fermi-
ons in Eq. �2.12�, the �2 term can also be reproduced by a
non-Abelian gauge potential defined as

iAa
��x��T���� = ����n

�a�x� , �3.7�

where T��
� =−i���� is the generator of the SU�2� gauge group

in the vector representation. Then, Eq. �3.5� can be written as

Fgrad�n� = �1���a��� − igAa
��T�����n�b
2 + �1g2�����n�an�b�2

= �
ab

��1��an�b + gn�a � n�b�2 − �1g2�n�a � n�b�2� , �3.8�

with g=�2 / �2�1�

B. 3D systems

In three dimensions, the order parameter in the Fl
a channel

Pomeranchuk instabilities can be similarly represented by a
3� �2l+1� matrix. Here we only consider the simplest case
of the p-wave channel instability �l=1�, which has been stud-
ied in Refs. 4, 27, 30, and 32 under different contexts. In the
F1

a channel, the order parameter n�,i is a 3�3 real matrix
defined as

n�,b = �f1
a� 	 d3k�

�2��3 
��
†�k�	��

� kb���k�� . �3.9�

The difference between n�,i and the triplet p-wave pairing
order parameter in the 3He system1,46 is that the former is
defined in the particle-hole channel, and thus is real. By con-
trast, the latter one is defined in the particle-particle channel
and is complex. Each column of the matrix form n�,b �b
=x ,y ,z� can be viewed as a 3-vector in the spin space as

n�1 = n�,1, n�2 = n�,2, n�3 = n�,3, �3.10�

which represents the spin current in the x, y, and z directions,
respectively. The GL free energy in Ref. 30 can be reorga-
nized as

F�n� = r tr�nTn� + �v1� +
v2�

2
��tr�nTn��2 −

v2�

2
tr��nTn�2�

= r���n�1�2 + �n�2�2 + �n�3�2� + v1���n�1�2 + �n�2�2 + �n�3�2�2

+ v2���n�1 � n�2�2 + �n�2 � n�3�2 + �n�3 � n�1�2� , �3.11�

where the coefficients r�, v1,2� will be presented in Eq. �4.19�.
Similarly, the � phase appears at v2�0, which favors that
n�1 �n�2 �n�3 and leaves their ratios arbitrary. The � phase ap-
pears at v2�0, which favors that vectors n�1,2,3 are perpen-
dicular to each other with equal amplitudes �n�1�= �n�2�= �n�3�.

Similarly, we present the gradient terms in the GL free
energy as

Fgrad�n� = �1� tr��anT�an� + �2�����n�in�j� jn
�i, �3.12�

where the coefficient �1,2� will be presented in Eq. �8.36�.
Again, we neglect the difference among three Franck con-
stants. The �2� term can be represented as

�2����xn�2 − �yn�1� · �n�1 � n�2� + ��yn�3 − �zn�2� · �n�2 � n�3�

+ ��zn�1 − �xn�3� · �n�3 � n�1�� . �3.13�

It can also be represented in terms of the non-Abelian gauge
potential as in Eq. �3.8�.

IV. MEAN-FIELD PHASES IN THE Fl
a CHANNEL

In this section, we discuss the solution to the mean-field
Hamiltonian �Eq. �2.10�� for the ordered � and � phases in
both two and three dimensions.

A. 2D � phases

The � phase is characterized by an anisotropic distortion
of the Fermi surfaces of up and down spins. In this phase, sz
is a good quantum number. It is a straightforward generali-
zation of the nematic Fermi liquid for the case of the spin
channel.4 For example, the Fermi-surface structures at l
=1,2 are depicted in Fig. 1. The quadrupolar, l=2, case is
the nematic-spin-nematic phase.4,8 Without loss of generality,
we choose n�1= n̄ẑ and �n2�=0. The mean-field Hamiltonian
H� for the � phase becomes

H�,l =	 d2k

�2��2�
†�k�����k�� − � − n̄ cos�l
k�	z���k�� .

�4.1�

The dispersion relations for the spin-up and -down electrons
become

�↑,↓�k�� = ��k� − �� n̄ cos�l
k� . �4.2�

The value of n̄ can be obtained by solving the self-consistent
equation in the � phase,

n̄

�f l
a�0��

=	 dk�

�2��2 �nf„�↑�k��… − nf„�↓�k��…�cos�l
k� , �4.3�

where nf(�↑�k�) and nf(�↓�k�) are the Fermi functions for the
up and down electrons, respectively. The distortions of the
Fermi-surfaces of the spin-up and spin-down bands are given
by an angle-dependent part of their Fermi wave vectors:

FIG. 1. �Color online� The � phases in the F1
a and F2

a channels.
The Fermi surfaces exhibit the p- and d-wave distortions,
respectively.

FERMI LIQUID INSTABILITIES IN THE SPIN CHANNEL PHYSICAL REVIEW B 75, 115103 �2007�

115103-5



�kF↑,↓�
�
kF

=
2a − 1

4
x2 ± �x +

a − 2a2

2
x3�cos l


− ax2 cos2 l
 ± �2a2 − b�x3 cos3 l
 + O�x4� ,

�4.4�

where we introduced the dimensionless parameter x
= n̄ / �vFkF�, where vF and kF are the Fermi velocity and the
magnitude of the Fermi wave vector in the FL phase. This
solution holds for small distortions and it is accurate only
when close to the quantum phase transition. By inspection,
we see that in the � phases the total spin polarization van-
ishes. More importantly, under a rotation by � / l, the charge
and spin components of the order parameter both change
sign; i.e., a rotation by � / l is equivalent to a reversal of the
spin polarization.

The single-particle fermion Green’s function in the �
phase at wave vector k� and Matsubara frequency �n is

G�k�,i�n� =
1

2� 1 + 	z

i�n − �↑�k��
+

1 − 	z

i�n − �↓�k��
� . �4.5�

B. 2D � phases

The � phase appears for v2�0, which favors n�1�n�2 and
�n1�= �n2�. Similar to the case of ferromagnetism, the Fermi
surfaces split into two parts with different volumes, while
each one still keeps the round shape undistorted. However,
an important difference exists between the � phase at l�1
and the ferromagnetic phase. In the ferromagnet, the spin is
polarized along a fixed uniform direction, which gives rise to
a net spin moment. On the other hand, in the � phase with
orbital angular momentum l�1, the spin winds around the
Fermi surface, exhibiting a vortexlike structure in momen-
tum space. Consequently, in the � phase the net spin moment
is zero, just as it is in the � phase. �Naturally, partially po-
larized versions of the � and � phases are possible but will
not be discussed here.� In other words, it is a spin-nematic,
high partial-wave channel generalization of ferromagnetism.
In the previously studied cases of the F1

a channel in Ref. 30,
it was shown that in this phase, effective Rashba and
Dresselhaus terms are dynamically generated in single-
particle Hamiltonians. The ground-state spin configuration
exhibits, in momentum space, a vortex structure with wind-
ing number w= ±1 depicted in Fig. 2.

Here, we generalize the vortex picture in momentum
space in the F1

a channel to a general Fl
a channel. We assume

�n1�= �n2�= n̄. Without loss of generality, we can always per-
form an SO�3� rotation in spin space to set n�1 � x̂ and n�2 � ŷ.
Then, much as in the B phase of 3He, the mean-field Hamil-
tonian H�,l for the � phase in angular momentum channel l
can be expressed through a d vector, defined by

d��k�� = „cos�l
k�,sin�l
k�,0… , �4.6�

as follows:

H�,l =	 d2k

�2��2�
†�k�����k�� − � − n̄d��
k� · 	� ���k�� , �4.7�

where d��
k� is the spin quantization axis for single-particle
state at k�. The saddle point value of n̄ can be obtained by
solving the self-consistent equation,

2n̄

�f l
a�0��

=	 d2k�

�2��2 �nf„�↑�k��… − nf„�↓�k��…� , �4.8�

where the single-particle spectra read

�↑,↓�k�� = ��k�� − � ± n̄ , �4.9�

which is clearly invariant under spatial rotations. The Fermi
surface splits into two parts with

�kF,↑,↓
kF

= ± x −
x2

2
± �a − b�x3 + O�x4� . �4.10�

The single-particle Green’s function in the � phase reads

FIG. 2. �Color online� The � phases in the F1
a channel. Spin

configurations exhibit the vortex structures in the momentum space
with winding number w= ±1, which correspond to Rashba and
Dresselhaus SO couplings, respectively.
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G�k�,i�n� =
1

2
� 1 + 	� · d̂

i�n − �↑�k��
+

1 − 	� · d̂

i�n − �↓�k��
� , �4.11�

where 	� ·d��k̂� is the lth order helicity operator. Each Fermi
surface is characterized by the eigenvalues ±1 of the helicity

operators 	� ·d��k̂�.
From the mean-field theory of � and � phases, we can

calculate the coefficients of the GL theory, Eq. �3.4�, as

r =
N�0�

2
� 1

�Fl
a�

−
1

2
� ,

v1 =
N�0�
32

��N��0�
N�0� �2

−
N��0�
2N�0�� = �1 − a − 2a2 + 3b�

N�0�
32vF

2kF
2 ,

v2 =
N��0�

48
= �− a + 2a2 − b�

N�0�
8vF

2kF
2 , �4.12�

where v1,2 do not depend on the value of l at the mean-field
level. N��0� and N��0� are the first- and second-order deriva-
tives of density of states at the Fermi energy Ef, respectively.
They are defined as

N��0� = �dN

d�
�
�=EF

= �1 − 2a�
N�0�
vFkF

,

N��0� = �d2N

d�2 �
�=EF

= 6�− a + 2a2 − b�
N�0�
vF

2kF
2 . �4.13�

Both of them only depend on the nonlinear dispersion rela-
tion up to the cubic order as kept in Eq. �2.5�.

It is worth it to stress that the coefficients of Eq. �4.12�
were calculated �within this mean-field theory� at fixed den-
sity. Similar coefficients were obtained in the spinless system
analyzed in Ref. 4 at fixed chemical potential. There is a
subtle difference between these two settings in the behavior
of the quartic terms. At fixed chemical potential, the sign of
b, the coefficient of the cubic term in the free fermion dis-
persion relation, is crucial for the nematic phase to be stable.
However, as can be seen in Eq. �4.12�, the sign of the coef-
ficient of the quartic term v1 is determined by several effects:

the coefficients a and b, and that of an extra �additive� con-
tribution, which originates from the curvature of the Fermi
surface and hence scales as N�0� /kF

2 . It has been noted in
Refs. 23, 47, and 48 that the nematic instability for lattice
systems may be a continuous quantum phase transition or a
first-order transition, in which case it involves a change in
the topology of the Fermi surface. As shown above, this
dichotomy is the result of the interplay of the single-particle
dispersion and effects due to the curvature of the Fermi sur-
face. The same considerations apply to the coefficients that
we will present in the following subsection.

The ground-state spin configuration in the � phase exhib-
its a vortex structure with winding number w= l in momen-
tum space. The case of w=2 is depicted in Fig. 3�a�. Inter-

estingly, in the case of l=3, after setting d� = (cos�3

+� /2� , sin�3
+� /2� ,0), the effective single-particle Hamil-
tonian becomes

HMF�k� = ��k� + n̄�− sin�3
k�	x + cos�3
k�	y� . �4.14�

This single-particle Hamiltonian has the same form as that of
the heavy-hole band of the two-dimensional n-doped GaAs
system,49,50 which results from SO coupling.

Now we discuss the general configuration of the d vector
in the � phase in the Fl

a channel. n�1 and n�2 can be any two
orthogonal unit vectors on the S2 sphere. The plane spanned
by n�1,2 intersects the S2 sphere at any large circle, as depicted
in Fig. 4, which can always be obtained by performing a
suitable SO�3� rotation from the large circle in the xy plane.
The spin configuration around the Fermi surface maps to this
large circle with the winding number of l. Furthermore, the
configurations of winding number ±l are equivalent to each
other up to rotation of � around a diameter of the large
circle. For example, the case of w=−2 is depicted in Fig.
3�b�, which can be obtained from that of w=2 by performing
such a rotation around the x̂ axis. Similarly, with the SOS�3�
symmetry in the spin space, the configurations with w= ± l
are topologically equivalent to each other. However, if the
SOS�3� symmetry is reduced to SOS�2� because of the exis-
tence of an explicit easy-plane magnetic anisotropy �which is
an effect of SO interactions at the single-particle level�, or by

FIG. 3. �Color online� The �
phases in the F2

a channel. Spin
configurations exhibit the vortex
structure with winding number w
= ±2. These two configurations
can be transformed to each other
by performing a rotation around
the x axis with the angle of �.
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an external magnetic field B� , then the two configurations
with w= ± l belong to two distinct topological sectors.

C. 3D instabilities of the p-wave spin-triplet channel

The mean-field theory for the Pomeranchuk instability in
the F1

a channel has been studied in Ref. 30. To make the
paper self-contained, here we summarize the main results.

In the � phase, taking the special case n�a= n̄��z�az, the
mean-field Hamiltonian reads

H3D,� =	 d3k

�2��3�
†�k�����k�� − � − n̄	z cos 
k���k�� ,

�4.15�

where 
 is the angle between k� and the z axis. The Fermi
surfaces for the two spin components are distorted in the
opposite way as


kF↑,↓�
�
kF

=
1

3
�1 − a�x2 ± �x +

2

3
a�1 − a�3x3�cos 


− ax2 cos2 
 ± �2a2 − b�x3 cos3 
 + O�x4� .

�4.16�

In the � phase, rotational symmetry is preserved and a SO
interaction is dynamically generated. With the ansatz n�a

= n̄��a, the MF Hamiltonian reduces to

H3D,� = �
k

�†�k����k� − � − n̄	� · k̂���k� . �4.17�

The single-particle states can be classified according to the

eigenvalues ±1 of the helicity operator 	� · k̂, with dispersion
relations �B�k�↑,↓=��k�−�± n̄. The Fermi surfaces split into

two parts, but still keep the round shape for two helicity
bands with


kF↑,↓
kF

= ± x − x2 ± �2a − b�x3 + O�x4� . �4.18�

The � phase is essentially isotropic. The orbital angular mo-

mentum L� and spin S� are no longer separately conserved, but

the total angular momentum J� =L� +S� =0 remains conserved
instead. For the general case of n�a= n̄D�a, it is equivalent to
a redefinition of spin operators as S�� =S�D�a�a�; thus Fermi-

surface distortions remain isotropic and J��=L� +S�� is con-
served.

From the above mean-field theory, we can calculate the
coefficients in Eq. �3.11� as

r� =
N�0�

2
� 1

�F1
a�

−
1

3
� ,

v1� =
N�0�
24

�1

3
�N��0�

N�0� �2

−
N��0�
5N�0��

=
N�0�

180vF
2kF

2 �7 − 2a − 8a2 + 9b� ,

v2� =
N2�0�

90
=

N�0�
45vF

2kF
2 �1 − 6a + 6a2 − 3b� , �4.19�

where

N��0� = �dN

d�
�
�=EF

=
2 − 2a

vFkF
N�0� ,

N��0� = �d2N

d�2 �
�=EF

=
2�1 − 6a + 6a2 − 3b�

vF
2kF

2 N�0� .

�4.20�

Once again, the caveats of the previous subsection on the
sign of the coefficients of the quartic terms apply here too.

V. GOLDSTONE MANIFOLDS AND
TOPOLOGICAL DEFECTS

In this section, we will discuss the topology of the broken
symmetry � and � phases and their associated Goldstone
manifolds in two and three dimensions. We will also discuss
and classify their topological defects. We should warn the
reader that the analysis we present here is based only on the
static properties of the broken-symmetry phases and ignores
potentially important physical effects due to the fact that in
these systems the fermions remain gapless �although quite
anomalous�. In contrast, in anisotropic superconductors the
fermion spectrum is gapped �up to possibly a set of measure
zero of nodal points of the Fermi surface�. The physics of
these effects will not be discussed here.

FIG. 4. �Color online� The spin configurations on both Fermi
surfaces in the � phase �Fl

a channel� map to a large circle on an S2

sphere with the winding number l.
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A. Topology of the � phases

1. 2D � phases

For the 2D � phases, for which we can set 
n�a�
= n̄��z�a1, the system is invariant under SOS�2� rotation in
the spin channel, the Zl rotation with the angle of 2� / l in the
orbital channel, and a Z2 rotation with the angle of � around
the x axis in the spin channel combined with an orbital rota-
tion at the angle of � / l. Thus, the Goldstone manifold is

�SOL�2� � SOS�3��/�SOS�2� › Z2 � Zl�

= �SOL�2�/Zl� � �S2/Z2� , �5.1�

giving rise to three Goldstone modes: one describes the os-
cillation of the Fermi surface, while the other two describe
the spin precession. Their dispersion relation will be calcu-
lated in Sec. VII A.

Due to the Z2 structure of the combined spin-orbit rota-
tion, the vortices in the 2D � phase can be divided into two
classes. The first class is the 1/ l vortices purely in the orbital
channel without distortions in the spin channel. This class of
vortices has the same structure as that in the Pomeranchuk
instabilities in the density channel dubbed the integer quan-
tum vortex. On the other hand, another class of vortices as
combined spin-orbital defects exists. This class of vortices
bears a structure similar to that of the half-quantum vortex
�HQV� in a superfluid with internal spin degrees of
freedom.51–53 An example vortex at l=1 of this class is de-
picted in Fig. 5, where the � disclination in the orbit channel
is offset by the rotation of � around the x axis in the spin
channel. To describe the vortex configuration for the case of
the p-wave channel, we set up a local reference frame in spin
space and assume that the electron spin is either parallel or
antiparallel to the z axis of this frame, at a point x� in real
space. Let �=0 be the angular polar coordinate of x� with
respect to the core of the vortex. As we trace a path in real
space around the vortex, the frame in spin space rotates so
that the spin flips its direction from up to down �or vice
versa� as we rotate by an angle of �. �In the d-wave channel,
the vortex involves a rotation by � /2.� Such behavior is a
condensed-matter example of the Alice-string behavior in the
high-energy physics.54,55 Another interesting behavior of
HQV is that a pair of half-quantum vortex and antivortex can
carry a spin quantum number. This is a global example of the
Cheshire charge in the gauge theory.51,53 The electron can
exchange spin with the Cheshire charged HQV pairs when it
passes in between the HQV pairs.

Due to the SO�2�L�SOS�2� symmetry in the Hamil-
tonian, the fluctuations in the orbital channel are less severe
than those in the spin channel. In the ground state, the spin
stiffness should be softer than that in the orbital channel. As
a result, an integer-valued vortex should be energetically fa-
vorable to fractionalize into a pair of HQV. However, at finite
temperatures, in the absence of magnetic anisotropy �an ef-
fect that is ultimately due to spin-orbit effects at the atomic
level� the spin channel is disordered with exponentially de-
caying correlation functions, and thus without long-range or-
der in the spin channel. However, the orbital channel still

exhibits the Kosterlitz-Thouless behavior at two-dimensions,
where the low-energy vortex configurations should be of
HQV.

2. 3D � phases

Similarly, the Goldstone manifold in the 3D � phase for
l=1 can be written as

�SOL�3� � SOS�3��/�SOL�2� � SOS�2� › Z2� = �SL
2

� SS
2�/Z2,

�5.2�

where again the Z2 operation is a combined spin-orbit rota-
tion at the angle of � to reverse the spin polarization and
orbital distortion simultaneously. This Goldstone mode
manifold gives rise to two Goldstone modes in the density
channel responsible for the oscillations of the distorted Fermi
surfaces and another two Goldstone modes for the spin pre-
cessions. The fundamental homotopy group of Eq. �5.2�
reads �1�SL

2
� SS

2� /Z2=Z2. This means that the � disclination
exists as a stable topological line defect. On the other hand,
for the point defect in 3D space, the second homotopy group
of Eq. �5.2� reads �2��SL

2
� SS

2� /Z2�=Z � Z. This means that
both the orbit and the spin channels can exhibit monopole �or
hedgehog� structures characterized by a pair of winding
numbers �m ,n�. As a result of the Z2 symmetry, �m ,n� de-
notes the same monopoles as that of �−m ,−n�.

B. Topology of the � phases

In the 2D � phase with l=1 and w=1 in the xy plane, the
ground state is rotationally invariant; thus, Lz+	z /2 is still
conserved. Generally speaking, the 2D � phases with the
momentum space winding number w is invariant under the
combined rotation generated by Lz+w	z /2. The correspond-
ing Goldstone manifold is

�SOL�2� � SOS�3��/SOL+S�2� = SO�3� . �5.3�

Three Goldstone modes exist as relative spin-orbit rotations
around the x, y, and z axes on the mean-field ground state.
Similarly, for the 3D � phase with l=1, the Goldstone mode
manifold is

�SOL�3� � SOS�3��/SO�3�L+S = SO�3� , �5.4�

with three branches of Goldstone modes. The dispersion re-
lation of these Goldstone modes will be calculated in Sec.
VIII. The vortexlike point defect in two dimensions and the
line defect in three dimensions are determined by the funda-
mental homotopy group �1(SO�3�)=Z2. On the other hand,
the second homotopy group �2(SO�3�)=0; thus, as usual, no
topologically stable point defect exists in three dimensions.

VI. THE RPA ANALYSIS IN THE CRITICAL REGION
AT ZERO TEMPERATURE

In this section, we study the collective modes in the Lan-
dau FL phase as the Pomeranchuk quantum critical point is
approached, 0�Fl

a�−2 in two dimensions and 0�Fl
a�−3

in three dimensions. These collective modes are the high
partial-wave channel counterparts of the paramagnon modes
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in the 3He system. The picture of collective modes in the
p-wave channel at two dimensions is depicted in Fig. 6.

For this analysis, it is more convenient to employ the path
integral formalism and perform the Hubbard-Stratonovich
transformation to decouple the 4-fermion interaction term of
the Hamiltonian presented in Eq. �2.4�. After integrating out
the fermionic fields, we arrive at the effective action,

Seff�n�b� = −
1

2
	

0

�

d�	 dr�dr���f1
a�−1�r� − r���n�b�r�� · n�b�r���

+ tr ln� �

��
+ ���� � − n�b�r�� · 	� gl,b�− i�� �� . �6.1�

In the normal FL state, we set n̄=0, the fluctuations at the
quadratic level are given by the effective action,

SFL
�2��n� =

1

2V�
�

q� ,i�n

n�a�q� ,i�n�L�a,�b
�FL� �q� ,i�n�n�b�− q� ,− i�n� ,

�6.2�

where we have introduced the fluctuation kernel
L�a,�b�q� , i�n�, which is given by

L�a,�b
�FL� �q� ,i�n� = − �f1

a�−1�q�����ab + 
Q�,a�q� ,i�n�

�Q�,b�− q� ,− i�n��FL, �6.3�

and


Q�,a�q� ,i�n�Q�,b�− q� ,− i�n��FL

=
1

V�
�

k�,i�n�

tr�G�FL��k� + q� ,i�n� + i�n�	�ga�k̂�

�G�FL��k�,i�n��	
�gb�k̂�� �6.4�

is the correlation function of the Q�,a operators, defined in
Eq. �2.3�, in the FL phase �i.e., a fermion bubble�. Here,

G�FL��k�,i�n� =
1

i�n − ��k��
�6.5�

is the fermion Green’s function in the FL phase, and it is
diagonal in spin space.

After performing the Matsubara frequency summation,
we find that the fluctuation kernel in the FL phase is given by
the expression,

L�a,�b
�FL� �q,�� = − �f l

a�−1�q�����ab

+ 2���	 ddk

�2��d

nf��k−q/2� − nf��k+q/2�
� + i� + �k−q/2 − �k+q/2

Aab,

�6.6�

where we have performed an analytic continuation to real
frequency �, and Aab is an angular form factor to be defined
below.

A. Two dimensions

In two dimensions, without loss of generality, we can
choose the direction of q� along the x axis where the azi-
muthal angle 
=0. The fluctuation kernels are given by

L�a,�b
�FL� �q,w� = �ab�����q2 + �

+
N�0�

2
	

−1

1 d


2�

s

s + i� − cos 

Aab�ab� ,

s = �/�vFq�, � = N�0�� 1

�F1
a�0��

−
1

2
�� 0, �6.7�

where, as before, � ,�=x ,y ,z are the components of the spin
vector, and a ,b=1,2 are the two orbital components. The
diagonal components of the angular form factors are Aaa

= �cos2 l
 , sin2 l
�. For s�1, the angular integral can be per-
formed to yield

	
0

2� d


2�

s

s + i� − cos 

�cos2 l


sin2 l

�

=
s

2i�1 − s2
�1 ± �s − i�1 − s2�2l� . �6.8�

For s�1, we can expand the above integral and find, for l
odd,

L�a,�b
�FL� �q,�� = �ab�����q2 + � + N�0��

� �− ls2 − il2s3 for a = 1

ls2 − is for a = 2.
� �6.9�

Here, since we have chosen q� along the x axis, the compo-
nent a=1 denotes the longitudinal component �parallel to the
direction of propagation q�� and a=2 is the transverse com-
ponent. Similarly, for l even, we get

L�a,�b
�FL� �q,�� = �ab�����q2 + � + N�0��

� �ls2 − is for a = 1

− ls2 − il2s3 for a = 2.
� �6.10�

FIG. 5. The half-quantum vortex with the combined spin-orbit
distortion for the � phase at l=1. The triad denotes the direction in
the spin space.
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When l is odd, the transverse modes are overdamped and
the longitudinal modes are underdamped. For example, in
the case of l=1, the dispersion relation at the critical point
�→0+ can be solved as

�2�q� = − i
�vFq3

N�0�
, �6.11�

for the transverse mode, and

�1�q� =� �

N�0�
vFq2 − i

�

2N�0�
vFq3, �6.12�

for the longitudinal mode. In contrast, when l is even, such
as the instability in the F2

s channel, the transverse part is
underdamped and the longitudinal part is overdamped.4 The
difference is due to the different behaviors of the angular
form factors for l even and l odd, respectively.

In both cases, just as it was found in Ref. 4, the dynamic
critical exponent is z=3. By the power counting, the bare
scaling dimension of the quartic terms in the GL free energy,
with effective coupling constants v1 and v2, is �d+z�−4,
where d is the spatial dimension, while the scaling dimension
of the �2 term linear in spatial derivatives is �d+z� /2−2. All
of these operators are irrelevant at zero temperature in two
and three dimensions. Thus, the critical theory is Gaussian, at
least in the perturbation theory. However, it is possible that
the above naive scaling dimensional analysis may break
down at the quantum critical point. Various authors have
found nonanalytic corrections to Fermi liquid quantities at
the ferromagnetic quantum critical point.56 This may also
occur here as well. We will defer a later research for the
study of these effects. At finite temperatures, the critical re-
gion turns out to be non-Gaussian.45 Both the terms whose
couplings are �2 and v1,2 now become relevant. The rel-
evance of the �2 term does not appear in the usual ferromag-
netic phase transitions,57 and we will also defer the discus-
sion of this effect to a future publication.

B. Three dimensions

In three dimensions, we can choose the z axis along the
direction of q� . The diagonal part of the angular form factors
is now Aaa= �sin2 
 /2 , sin2 
 /2 ,cos2 
�. Assuming that �q�
�kF, the fluctuation kernel can be approximated as

L�a,�b
�FL� �q,�� = �ab�����q2 + �

+
N�0�

2
	

−1

1

d cos 

s

s + i� − cos 

Aaa� ,

s = �/�vFq�, � = N�0�� 1

�F1
a�0��

−
1

3
�� 0, �6.13�

where � ,�=x ,y ,z are once again the three components of
the spin vector. For the l=1 �p-wave� case, a ,b=1,2 ,3 are
the three orbital components. Using the formula

ln� s + 1

s + i� − 1
� = ln� s + 1

s − 1
� − i���s � 1� , �6.14�

we arrive at

L�a,�b
�FL� �q,�� = �ab�����q2 + ��

+ �ab����N�0��s2 − i
�

4
s� for a = 1,2

− N�0��s2 + i
�

2
s3� for a = 3, �

�6.15�

where only the leading-order contribution to the real and
imaginary parts is kept. The dispersion relation at the critical
point �→0+ can be solved as

�1,2�q� = − i
4vF

�

�q3

N�0�
, �6.16�

for the transverse modes, and

�3�q� =� �

N�0�
vFq2 − i

�

4

�

N�0�
vFq3, �6.17�

for the longitudinal mode. Similar to the case in two dimen-
sions, the longitudinal channel is weakly damped and the
other two transverse channels are overdamped. Again the
dynamic critical exponent z=3; thus, naively the critical
theory is Gaussian at zero temperature.

VII. GOLDSTONE MODES IN THE � PHASE

At the RPA level, the Gaussian fluctuations around the
mean-field saddle point of the � phase are described by an
effective action of the form,

S�
�2��n� =

1

2V�
�

q� ,i�n

�n�aL�a,�b
��� �q� ,i�n��n�b. �7.1�

The fluctuation kernel in the � phase is

FIG. 6. The p-wave counterpart of paramagnon modes in 2D.
Taking into account the spin degrees of freedom, there are three
�six� transverse triplet modes in 2D �3D� and three longitudinal
modes, respectively.
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L�a,�b
��� �q� ,i�n� = − �f1

a�−1�q�����ab + 
Q�,a�q� ,i�n�

�Q�,b�− q� ,− i�n���, �7.2�

where


Q�,a�q� ,i�n�Q�,b�− q� ,− i�n���

=
1

V�
�

k�,i�n�

tr�G����n̄,k + q,i�n� + i�n�	�gl,a�k̂�

�G����n̄,k,i�n��	
�gl,b�k̂�� �7.3�

is the correlator of the operators Q�a in the mean-field theory
ground state of the � phase �again a fermion bubble�. Here,
G����n̄ ,k� , i�n� is the fermion propagator in the � phase with
an expectation value of the �nematic-spin-nematic for the l
=2 case� order parameter equal to n̄,

G����n̄,k�,i�n� = �i�n − ���k�, n̄��−1, �7.4�

where

���k�, n̄� = ��k�� − 
n�b�� · 	� gl,b�k̂� ,

gl,1�k�� = cos l
k�, gl,2�k�� = sin l
k� �7.5�

is the fermion dispersion, a matrix in spin space, and 
n�b��
= n̄ẑ�b,1 is the mean-field expectation value of the order pa-
rameter in the � phase.

Since in the � phase there are spontaneously broken con-
tinuous symmetries, in both two and three dimensions, the
collective modes will consist of gapped longitudinal modes,
i.e., along the direction of the condensate, and gapless, Gold-
stone, modes transverse to the direction of spontaneous sym-
metry breaking, both in the density and spin channels. We
will discuss the Goldstone modes in the � phase in the next
section.

We next comment on the stability of the � phase in the
p-wave channel. The GL energies �Eqs. �3.5� and �3.12��
contain a cubic term linear in derivatives. In the ordered
state, it might induce a linear derivative coupling between
the massless Goldstone mode at the quadratic level through
the condensate longitudinal mode, thus leading to a Lifshitz
instability in the ground state. As we will show, this indeed
occurs in the p-wave � phase. However, we will see that in
the � phase, the spin �density� channel Goldstone modes
have the same orbital �spin� indices as those of the longitu-
dinal mode; thus, they cannot be coupled by Eqs. �3.5� and
�3.12�. Instead, the Goldstone modes couple to other gapped
modes at the quadratic level through linear derivative terms,
which do not lead to instability at weak coupling, but can
renormalize the stiffness of the Goldstone modes.

A. 2D � phases

We consider the 2D � phases assuming the order-
parameter configuration as 
n�b�= n̄��z�b1. The order param-
eter is thus the operator nz,1 of Eqs. �2.1� and �2.2�. As stud-
ied in Sec. IV A, the Goldstone mode manifold S2

�SOL�2� results in one branch of Goldstone mode in the

density channel and two branches of Goldstone modes in the
spin channel. The fluctuation kernel of the � phases, L�a,�b

��� ,
is a 6�6 matrix. Its eigenvalues will thus yield six collective
modes of which three are the above-mentioned Goldstone
modes. The other three modes are gapped, and are associated
with the structure of the order parameter in the � phases. In
the low-frequency regime, �� n̄, we can neglect the mixing
between the Goldstone modes and other gapped modes.

The density channel Goldstone mode is associated with
the field nz,2, conjugate to the bilinear fermion operator Qz,2,
which is longitudinal in the spin sector and transverse in the
charge sector,

Qz2�r�� = ��
†�r���	z,���− i�y�����r�� , �7.6�

and describes the Fermi-surface oscillation in the 2-direction
while keeping the spin configuration unchanged. On the
other hand, the spin channel Goldstone modes nsp,x±iy, con-
jugate to the fermion bilinears Qx±iy,1= �Qx,1± iQy,1� /2, de-
scribe spin oscillations while keeping the Fermi surface un-
changed.

1. Density channel Goldstone mode

The density channel Goldstone field nz,2 behaves similarly
to its counterpart in the density channel Pomeranchuk
instability.4 The same approximation as in Ref. 4 can be used
to deal with the anisotropic Fermi surface, i.e., keeping the
anisotropy effect in the static part of the correlation function,
but ignoring it in the dynamic part. This approximation is
valid at small values of the order parameter, i.e., x
= n̄ / �vFkF��1, where n̄= 
nz,1�. We define the propagation
wave vector q� with the azimuthal angle � as depicted in Fig.
7 for the l=1 case.

The effective fluctuation kernel for the charge channel
Goldstone mode, which we label by fs, reduces to

Lfs
����q� ,�� = �q2 − N�0�

�� is sin2�l�� − ls2 cos�2l�� �l even�
is cos2�l�� + ls2 cos�2l�� �l odd� ,

�
�7.7�

where s=� /vFq. Similar to the results Ref. 4, this Goldstone
mode corresponding to Fermi-surface oscillation is over-
damped almost on the entire Fermi surface except on a set of
directions of measure zero: for l even, the charge channel
Goldstone mode is underdamped in the directions �=n� / l,
n=0,1 , . . . , l, which are just the symmetry axes of the Fermi
surface; for l odd, it is underdamped instead in the directions
�=��n+1/2� / l, and in this case the Goldstone mode is
maximally damped along the symmetry axes.

2. Spin channel Goldstone modes

On the other hand, the spin channel Goldstone fields
nx±iy,1 behave very differently. They only involve “interband
transitions,” leading instead to a fluctuation kernel of the
form,
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Lx+iy,1�q� ,�� = �q2 +
1

�f1
a�

+ 2	 d2k

�2��2 cos2�l
k�

�
nf��↓�k� − q�/2�� − nf��↑�k� + q�/2��

� + i� + �↓�k� − q�/2� − �↑�k� + q�/2�
,

�7.8�

where �1,2�k�=��k��−�� n̄ cos�l
k�. They satisfy the relation

Lx−iy,1�q� ,�� = Lx+iy,1�− q� ,− �� . �7.9�

A detailed calculation, presented in Appendix B, shows that
for � / n̄ ,vFq / n̄�1, the kernel Lx±iy,1 reads

Lx±iy,1�q� ,�� = �q2 −
N0

2�Fl
a�
�2

n̄2 , �7.10�

which gives rise to a linear and undamped spectrum:

�x±iy,1�q�� =�2��Fl
a�

N�0�
n̄�q� � . �7.11�

Equation �7.11� has to two important features �due to the
interband transition�: the isotropy of dispersion relation at
� / n̄ ,vFq / n̄�1 in spite of the anisotropic Fermi surfaces,
and the underdamping of the Goldstone modes. The contri-
bution to the integral comes from the region around Fermi
surfaces with the width of about 2n̄ cos�l
k� /vF. The depen-
dence of the integral on q� can be neglected at vFq / n̄�1
because a small q� changes the integration area weakly, and it
thus matters only for high-order corrections in q� . The contri-
bution to damping comes from the region where two bands
become nearly degenerate, i.e., cos�l
k��0. However, the
angular form factor also takes the form of cos�l
k�, which
tends to suppress damping. As vFq becomes comparable to n̄,
the anisotropy and damping effects become more important.

The linear dispersion relation for the spin channel Gold-
stone modes at vFq / n̄�1 holds regardless of whether l is
odd or even. This fact is closely related TR and parity sym-
metry properties of the order parameter n�a. For l odd, n�a is
even under TR transformation, and hence terms linear in time
derivatives cannot appear in the effective action. On the
other hand, for l even, although n�a is odd under TR, in two
dimensions, we can still define the combined transformation
T� as

T� = TR��/l� , �7.12�

under which n�a is even. Here, R�� / l� is a real-space rota-
tion by an angle of � / l. Thus, also in this case, terms, which
are linear in time derivative are not allowed in the effective
action. In contrast, for the case of a ferromagnet at l=0, TR
symmetry is broken, and no other symmetry exists to form a
combined operation T� that will leave the system invariant.
As a result, terms linear in time derivatives appear in the
effective action of a ferromagnet. The same arguments apply
for phases with mixed ferromagnetic and spin-nematic order
�and its generalizations�. Furthermore, in the presence of
time-reversal-violating terms, the two transverse components
of spin fluctuation become conjugate to each other as in the
presence of ferromagnetic long-range order. In this case, only

one branch of spin-wave Goldstone mode exists with a qua-
dratic dispersion relation �FM�q2.

3. Spin-wave spectra

We assume that the F0
a channel is off-critical; thus, in the

normal state no well-defined spin-wave modes exist. How-
ever, in the � phase the spin channel Goldstone modes carry
spin, and thus induce a well-defined pole in the spin-wave
spectrum. This can be understood from the commutation re-
lation between spin modes and the spin channel Goldstone
modes

�Sx ± iSy,Qx�iy,1� = ± 2Qz,1. �7.13�

In the � phase where Qz1 obtains a nonvanish expectation
value, then these two channels become conjugate. As a re-
sult, the spin wave gains a sharp resonance which should
appear in the neutron-scattering experiment. In contrast, in
the normal state, the coupling between this two modes is
negligible, and thus the resonance disappears. A similar
physics occurs in the SO�5� theory for the explanation of �
resonance in the underdoped high Tc cuprates.58

The effective coupling constant, which mixes the Sx+ iSy
and Qx−iy,1 operators is a bubble diagram, which can be cal-
culated as

�s
0�q� ,�� = − N�0�

�

n̄
. �7.14�

This bubble is dressed by the interaction in the Fl
a channel.

The resonant part of the spin correlation function �i.e., the
contribution of the collective mode pole� becomes

�s�q� ,�� = 
S+�q� ,��S−�− q� ,− ���

=
��s

0�q� ,���2

Lx+iy,1�q� ,��

=

N�0�
�2

n̄2

�q2

N�0�
−

2

�Fl
a�
�2

n̄2 − i�

. �7.15�

FIG. 7. The azimuthal angle � for the propagation wave vector
q� for the Goldstone modes in the 2D alpha phase. The spin-down
and -up Fermi surfaces can overlap each other by a shift at the wave

vector K� =2n̄ /vF.

FERMI LIQUID INSTABILITIES IN THE SPIN CHANNEL PHYSICAL REVIEW B 75, 115103 �2007�

115103-13



For fixed but small q� , the spectral function exhibits a
�-function peak at the dispersion of the collective mode,

Im �s�q� ,�� = ��vF
2q2n̄2�F1

a�2���2 − �q
2� , �7.16�

which will induce a spin resonance in all directions. It is
worth it to note that in the spin channel, the isotropy in this
dispersion relation at small q� persists even deeper in the
ordered phase.

B. 3D � phase for l=1

In the 3D � phase, we assume the Fermi-surface distor-
tion along the z axis and the order-parameter configuration as
n�a= n̄��,z�a,3. Similar to the 2D case, the spin-up and -down
Fermi surfaces are related by an overall shift at the wave

vector K� =2n̄ /vFẑ. The remaining symmetry is SOL�2�
� SOS�2�, which results in four Goldstone modes. They can
be classified as two density channel modes and two spin
channel modes. Without loss of generality, we choose the
propagation wave vector q� lying in the xz plane.

The density channel Goldstone modes describe the Fermi-
surface oscillations in the x and y directions, which are as-
sociated with the fields nz,1 and nz,2. By a Legendre transfor-
mation, they are conjugate to the bilinear operators Qz,1 and
Qz,2:

Qz1�r�� = ��
†�r���	z,���− i�x�����r�� ,

Qz2�r�� = ��
†�r���	z,���− i�y�����r�� . �7.17�

Following the same procedure of the calculation in two di-
mensions, we find that the fluctuation kernel of the Gold-
stone mode nz,1 is

Lz1 = �q2 − i
�

4
N�0�s cos2 
q + N�0�s2 cos 2
q. �7.18�

It is overdamped almost everywhere, except if q� lies in the
equator �
=� /2�, in which case it is underdamped and has a
quadratic dispersion. On the other hand, the fluctuation ker-
nel of the Goldstone mode of nz,2 reads

Lz,2 = �q2 − iN�0�s
�

4
, �7.19�

which has no dependence on the angle 
q. Hence, this mode
is overdamped on the entire Fermi surface.

The spin channel Goldstone modes of nx±iy,3 in the F1
a

channel behave similarly to that in the 2D case. We simply
present their fluctuation kernels at small wave vectors as

Lx±iy,3�q� ,�� = �q2 −
3N�0�
�F1

a�
s2, �7.20�

where s=� /vF�K�. The spin-wave excitation is also dressed
by the interaction in the F1

a channel in the � phase. By a
similar calculation to the 2D case, we have

�s�q� ,�� = 
S+�q� ,��S−�− q� ,− ��� =
��s

0�q� ,���2

Lx+iy,3�q� ,��
.

�7.21�

Thus, it also develops the same pole as in the spin channel
Goldstone modes.

VIII. GOLDSTONE MODES IN THE � PHASES

In this section, we calculate the Goldstone modes and
spin-wave spectra in the � phase at two and three dimensions
at the RPA level. We will show that for l=1, a Lifshitz-like
instability arises, leading to a spatially inhomogeneous
ground state. This is because of a dynamically generated
Dzyaloshinskii-Moriya interaction among the Goldstone
modes as a result of the spontaneously breaking of parity. A
GL analysis is presented to analyze this behavior.

A. 2D � phases

Without loss of generality, we consider the � phase in the
Fl

a channel. We first assume a uniform ground state with the

configuration of the d vector d� = �cos l
 , sin l
 ,0� as defined
in Eq. �4.6�. The corresponding order parameter, i.e., the
Higgs mode nHiggs, is conjugate to operator OHiggs as

OHiggs�r�� =
1
�2

�Qx,1�r�� + Qy,2�r��� . �8.1�

By performing a relative spin-orbit rotation around the z, x,
and y axes on the mean-field ansatz, we obtain the operators
for three branches of Goldstone modes as

Ox�r�� =
1
�2

�Qx,2�r�� − Qy,1�r��� ,

Ox�r�� = − Qz,2�r��, Oy�r�� = Qz,1�r�� . �8.2�

We define the propagation wave vector of Goldstone
modes q� and its azimuthal angle �, as depicted in Fig. 8. For
the general direction of q� , it is more convenient to set up a
frame with three axes x�, y�, and z, where x� �q� and y��q� .
We rotate Ox and Oy into

Ox� = cos l�Ox − sin l�Oy ,

Oy� = sin l�Ox + cos l�Oy . �8.3�

Oz, Ox�, and Oy� are the generators of a relative spin-orbit
rotation around the z, x�, and y� axes, respectively. Thus, in
the following, we call the Goldstone mode of Ox� the longi-
tudinal Goldstone mode, and those of Oz and Oy� are two
transverse Goldstone modes.

The system with d� = �cos l� , sin l� ,0� has the following
reflection symmetry even in the presence of the q�;


k → 2� − 
k, 	z → − 	z,

	x → 	x cos 2l� + 	y sin 2l� ,
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	y → 	x sin 2l� − 	y cos 2l� . �8.4�

Oz and Oy� are even under this transformation, while Ox� is
odd. Thus, Ox� decouples from Oy� and Oz, while hybridiza-
tion occurs between Oz and Oy�. For a small wave vector,
vFq

n̄ �1, and low frequency, �

n̄ �1, we can ignore the mixing
between the Goldstone modes and other gapped modes. For
l�2, the eigenvalues of the fluctuation kernel for the Gold-
stone modes are

Lzz�q,�� � Lx�x��q,�� � Ly�y��q,�� � �q2 −
�2

4ñ2

N�0�
�Fl

a�
,

�8.5�

where we have neglected the anisotropy among the three
dispersion relations. A finite hybridization between Oz and
Oy� appears at the order of O�ql�,

Lzy��q,�� � iql, �8.6�

which is negligible at small q at l�2. Thus, the spectrum of
the Goldstone modes is linear for l�2. For l=2, the hybrid-
ization is quadratic in q� ,

Lzy��q,�� = − i
N�0�

32�2kF
2 q2�1 + 4b� � �q2, �8.7�

and thus must be taken into account. The resulting eigen-
modes in the transverse channel are Oz± iOy�. However, the
linear dispersion relation remains at l=2.

Similar to ferromagnets, there are two Fermi surfaces
with unequal volume in the � phases. The interband transi-
tion has a gap of 2n̄ and a particle-hole continuum of width
2vFq, as depicted in Fig. 9. The Goldstone modes correspond
to the interband transition with a velocity vgs

�2n̄���Fl
a�0�� /N�0�, and no Landau-damping effects exist at

small q. Naturally, after Goldstone modes enter the particle-
hole continuum, at the wave vector q��2n̄ / �vgs+vF�, the
mode is no longer long lived and becomes Landau damped.

The linear dispersion relation of the Goldstone modes
holds for all the values at l�2. This feature is also due to the
symmetry properties of the n�a under TR and parity transfor-
mation. The reasoning here is the same as that for the �
phase in Sec. VII A.

We next calculate the spin-wave spectra in the � phase at
l�2. We have the following commutation relations:

�S+ei�q,e−i�q�Ox − iOy�/�2� = iOHiggs + Oz,

�Sx,Oz� = iOHiggs. �8.8�

The effective coupling between Sz and Oz can be calculated
as

�Sz
0 �q� ,�� =

− i
�2

�

n̄

N�0�
�Fl

a�
+ O�q2� . �8.9�

Thus, the spin-spin correlation function, dressed by the Fl
a

channel interactions, near the resonance of the dispersing
transverse collective mode has the form,

�s�q� ,�� = 
Sz�q� ,��Sz�− q� ,− ��� =
��s

0�2

Lzz�q� ,��

=
2N�0�
�Fl

a�
�2

�2 − 4n̄2 �Fl
a�

N�0�
�q2

. �8.10�

The spectral function at the resonance reads

Im �s�q� ,�� = 8n̄2�q2���2 − �q
2� . �8.11�

Similarly, the effective coupling between S+ei�q and
e−i�q�Ox− iOy� /�2 gives the same result,

�sx±iy

0 = �sz
0 . �8.12�

The transverse spin-spin correlation function is


S+�q� ,��S−�− q� ,− ��� =
��sx±iy

0 �2

Lx+iy,x−iy
, �8.13�

which is also dressed by the interactions.

B. Lifshitz-like instability in the 2D p-wave channel

For l=1, with the assumption of the uniform ground state,
the dispersion for the longitudinal mode Oz remains linear as

�L
2 = 4n̄2�F1

a�
�

N�0�
q2. �8.14�

However, the situation for the transverse modes is dramati-
cally different. The mixing between Oz and Oy� scales lin-
early with q:

FIG. 8. �Color online� The three Goldstone modes of Oz, Ox�,
Oy� of the 2D � phase can be viewed as a relative spin-orbit rota-
tion for this phase with angular momentum l=1 and winding num-
ber w=1. Here, � is the azimuthal angle of the propagation direc-
tion q� .
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Lzy��q� ,�� = − Ly�z�q� ,�� �
i

4�2
�b +

3

2
�N�0�x

q

kF
.

�8.15�

We diagonalize the matrix and then obtain the eigenmodes as
Oz± iOy� with the following dispersion relation:

�T,±
2 = 4n̄2�F1

a�0��� �q2

N�0�
± cx

q

kF
� , �8.16�

as depicted in Fig. 10 where c is a constant at the order of 1.
Clearly, �T,−

2 �0 for small �q� �. This means that the uni-
form ground state cannot be stable in the F1

a channel due to a
Lifshitz-like instability.59,60 This instability can be under-
stood in terms of the nontrivial effects of the gradient term
with coefficient �2 in the GL free energy in Eq. �3.5�. This
term is cubic in the order parameter n�,b and linear in spatial
derivatives. This term leads to an inhomogeneous ground
state in the � phase, in which parity is spontaneously broken.
A similar phenomenon occurs in the bent-core liquid-crystal
system, where a spontaneously chiral inhomogeneous nem-
atic state arises in a nonchiral system. A similar term involv-
ing a linear derivative and the cubic order of order parameter
is constructed in Ref. 61 to account for this transition. These
inhomogeneous ground states also occur in chiral liquid
crystal6 and helimagnets43 such as MnSi, in which parity is
explicitly broken. In contrast, such a term is prohibited in the
ferromagnetic transition44,45 and the nematic-isotropic phase
transition4 in the density channel Pomeranchuk instabilities.
We will see that the GL analysis below based on the sym-
metry argument agrees with the RPA calculations in Eq.
�8.6�.

In order to obtain the values of �1,2, we linearize the gra-
dient terms in Eq. �3.5� in the ground state with d-vector

configuration of d� = �cos 
 , sin 
 ,0�, i.e.,

n�1 = �n̄2 − �n1
2êx + �n�1,

n�2 = �n̄2 − �n2
2êy + �n�2, �8.17�

where �n�1� êx, �n�2� êy, and n�1�n�2 are kept. The contribu-
tion from the Goldstone modes can be organized into

Fgrad�O� � = �1���iOx�2 + ��iOy�2 + ��iOz�2� +
�2n̄
�2

�Ox�yOz

− Oy�xOz� + �2n̄2��xOx + �yOy� . �8.18�

With the assumption of the uniform ground state, the first �2
term behaves like a Dzyaloshinskii-Moriya term, and gives a
linear dependence in the dispersion relation as appears in Eq.
�8.16�. By matching the coefficients, we arrive at the result,

�1 = �, �2 =
�2cN�0�

vFkF
2 . �8.19�

The second coefficient �2 in the GL expansion of Eq.
�8.18� is a total derivative of the longitudinal Goldstone
modes. It does not contribute to the equation of motion for
the Goldstone modes around the saddle point of the uniform
mean-field ansatz. However, Eq. �3.5� actually allows a

twisted ground state in the longitudinal channel, as depicted
in Fig. 11�a�. Without loss of generality, we assume a pitch
vector along the x axis, q� � x̂, and perform a longitudinal twist
of the Goldstone configuration of n�1,2 as

n�1 = n̄�1,0,0�, n�2 = n̄�0,cos qx,− sin qx� . �8.20�

This configuration means that we fix n�1 and rotate n�2 around
the x axis. If the system has a small external spin-orbit cou-
pling, it pins the order-parameter configuration. We introduce
an effective spin-orbit field hso to describe this effect:

V�hso� = − hso�nx,1 + ny,2� . �8.21�

Then, the GL free energy becomes

F�n� = �1n̄2q2 − �2n̄3q − hson̄ cos qx . �8.22�

If hso is less than a critical value hso,L defined as

hso,L =
�2

2n̄3

4�1
, �8.23�

then the Lifshitz instability occurs with the pitch of qc
=�2n̄ / �2�1�. If hso�hso,L, the instability due to the longitu-
dinal Goldstone mode is suppressed.

Now let us look at the instability caused by the transverse
Goldstone modes, as depicted in Fig. 11�b�. The transverse
mode Oz+ iOy describes the precession of the triad of n̂1, n̂2,
n̂3= n̂1� n̂2 as

n�1 = n̄�cos � êx + sin � cos qx êy − sin � sin qx êz� ,

n�2 = n̄�− sin � cos qx êx + �cos2 �

2
− sin2 �

2
cos 2qx�êy

− sin2 �

2
sin 2qx êz� , �8.24�

where � describes the precession amplitude, n�1 precesses
around the x axis, and n�2 traces a “figure of eight” orbit on
the surface of the unit sphere. To linear order of �, the free-
energy cost is

FIG. 9. The linear dispersion relation of Goldstone modes of the
2D � phases �l�2� at small momentum q� . For q�q�, the Gold-
stone modes enter the particle-hole continuum, and are damped.
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V�n� =
3

2
�1q2�n̄��2 +

n̄

2
q�2�n̄��2 +

hso

n̄

3

4
�n̄��2. �8.25�

Hence, when hso is larger than a critical value hso,T
=�2

2n̄3 /18�1�hso,L, the instability due to the transverse
Goldstone modes is suppressed.

Because hso,L�hso,T, the longitudinal Goldstone channel
instability is stronger than that in the transverse channel.
Thus, in the absence of the external field, the ground state
exhibits the longitudinal twist of Eq. �8.20�. However, this
spiral order cannot give static Bragg peaks in neutron-
scattering experiments as occurs in the case of a helimagnet,
although it can couple to the spin-spin correlations through a
dynamic effect. However, the spatial inhomogeneity compli-
cates the calculation. This remains an interesting problem,
which we will not pursue further in this work.

If hso�hso,L, then both instabilities are suppressed, and
thus, in this regime, the ground state is uniform. In this case,
the Goldstone spectrum has an overall shift based on Eq.
�8.18� as

�l�
2 = �l

2 + 2�f1
a�n̄hso, �t�

2 = �t
2 + 2�f1

a�n̄hso, �8.26�

as depicted in Fig. 10. Then, the spectra for the two trans-
verse Goldstone modes exhibit a rotonlike structure with a
gap of


 = �2n̄�f1
a��hso − hso,T� , �8.27�

at qc�=�2n̄ / �4�2�1�.

C. Goldstone modes in the 3D � phase

For the 3D � phase, we only consider the case of l=1

with the ground-state configuration of the d vector as d��k�� �k�.
The Goldstone modes behave similarly to the 2D case. The
Legendre conjugation operators of the order parameter n�,b

can be decomposed into the operators OJ,Jz
�J=0,1 ,2 ;Jz

=−J , . . .J� as eigenoperators of the total angular momentum

J� =L� +S� in the � phase. The Higgs mode carries J=0 defined
as

OHiggs�r�� =
1
�3

��an�a�r�� . �8.28�

Due to the broken relative spin-orbit symmetry, the relative
spin-orbit rotations generate the three Goldstone modes Ox,
Oy, and Oz,

Ôi�r�� =
1
�2

�i�an�,a�r�� , �8.29�

which carry total angular momentum J=1. We choose the
propagation wave vector q� along the z axis. Due to presence
of q� , only Jz is conserved. The relation between Ox, Oy, and
Oz and those in the helical basis O1,±1 and O10 is

O1,±1 =
1
�2

�Ox ± iOy�, O1,0 = Oz. �8.30�

In the low frequency and small wave vector regime as
� ,vFq� n̄�vFkF, we can neglect the mixing between Gold-
stone modes and other massive modes. Similar to the case in
two dimensions, we calculate the fluctuation kernels of the
Goldstone modes as

L10,10�q,�� = �q2 −
�2

4n̄2�f1
a�

, �8.31�

L1±1,1±1�q,�� = �q2 ±
N�0�
18

q

kF
x −

�2

4n̄2�f1
a�

. �8.32�

For simplicity, we have neglected the anisotropy in the q2

term in Eq. �8.32�. Their spectra read

� jz
2 = 4n̄2�F1

a�� �q2

N�0�
+ jz

�q�x
18kF

� �jz = 0, ± 1� . �8.33�

Because of the broken parity, the channel of jz=−1 is un-
stable, which leads to the Lifshiz-like instability as discussed
in the 2D � phase.

Again this Lifshitz instability is due to the nontrivial �2
term in the GL free energy of Eq. �3.12�. To determine the
coefficients of the gradient terms, we linearize the �2 term
around the saddle point, and define the deviation from the
uniform mean-field ansatz as

FIG. 10. �Color online� The dispersion relation of Goldstone
modes for the � phase with l=1. The longitudinal modes Oy� have
linear dispersion relation, while the two transverse modes Oz±iy� are
unstable toward the Lifshitz-like instability at small momentum q� .

FIG. 11. Longitudinal and transverse twists for the Lifshitz-like
instability in the � phase with l=1. �a� The longitudinal twist with
n̂2 precessing around the ê1 axis, as described in Eq. �8.20�. �b� The
transverse twist with the triad formed by n̂1, n̂2, and n̂3= n̂1� n̂2

precessing around the êx axis, as described in Eq. �8.24�.
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n�1 = �n̄2 − �n1
2êx + �n�1, n�2 = �n̄2 − �n2

2êy + �n�2,

n�3 = �n̄2 − �n3
2êz + �n�3, �8.34�

where �n�1� êx, �n�2� êy, and �n�3� êz. The contribution from
the Goldstone modes becomes

Fgrad�O� = �1����iOx�2 + ��iOy�2 + ��iOz�2� −
�2�

2
n̄�ijkOi� jOk

+ �2��2n̄2�iOi. �8.35�

Similar to the 2D case, the values of �1� and �2� can be deter-
mined by matching the coefficients of the dispersion relation
in Eq. �2.5� as

�1� � �, �2� =
N�0�

18vFkF
2 , �8.36�

where the difference among the three Franck constants is
neglected.

Following the same procedure in the 2D case in Sec.
VIII B, we study the instabilities of the longitudinal and
transverse twists in the 3D � phase with an external spin-
orbit field to pin the order parameter,

Vso = − hso
3D�nx,1 + ny,2 + nz,3� . �8.37�

After a straightforward calculation, we find that longitudinal
twist occurs at the pitch wave vector qL,3D= n̄�2 / �2�1� with a
critical value of hso

3D field to suppress the twist at hso,L
3D

=�2
2n̄3 / �4�1�, and those of the transverse twist are qT,3D

=qL,3D /2 and hso,T
3D =hso,L /2. Thus, the conclusion that the

instability of the longitudinal twist is stronger than that of the
transverse twist is the same as in the 2D case. Again, if
hso

3D�hso,L
3D , then the ground state is uniform, and the spec-

trum of the two transverse Goldstone modes exhibits a ro-
tonlike structure with a gap


 = �2n̄�f1
a��hso − hso,T� , �8.38�

located at qT,3D.

IX. MAGNETIC-FIELD EFFECTS
AT ZERO TEMPERATURE

In this section, we discuss the magnetic-field effect to the
order-parameter configurations in the � and � phases. Due to

the symmetry constraint, the B� field does not couple to the
order parameter n�a linearly, and the leading-order coupling
begins at the quadratic level as


F�B� ,n�b� = �u + w�g2B2 tr�nTn� − wg2B�B�n�bn�b

= ug2B2�
b

nb
2 + wg2�

b

�B� � n�b�2, �9.1�

with g the gyromagnetic ratio. The coefficients u and w can
be determined from the microscopic calculation by using the
mean-field approach as

u = 4v1 − 2v2, w = 4v2 �at two dimensions� ,

u = 6v1 − 3v2, w = 5v2 �at three dimensions� ,

�9.2�

with v1,2 defined in Eq. �4.12� in two dimensions and Eq.
�4.19� in three dimensions, respectively. v1 is usually larger
than v2; thus, u is typically positive. This means that the

external B� field suppresses the magnitude of order param-
eters as

n̄�B� = n̄�B = 0��1 −
B2

Bc
2 �9.3�

in both � and � phases, where the critical value of Bc is
defined as

�BBc

vFkF
=

��r�
u

vFkF
=

n̄�0�
kFvF

� 1. �9.4�

This effect has been studied in Ref. 32.
In the � phase, w is positive. Thus, the spin components

of the order parameter of this phase, n�b, prefer to be parallel

or antiparallel to the magnetic field B� . Consequently, the
Fermi surface with its spins polarized parallel to the mag-
netic field becomes larger in size than the Fermi surface for
the spins pointing in the opposite direction. In the case of the
nematic-spin-nematic phase, the � phase with angular mo-
mentum l=2, the main effect of the magnetic field is to break
the symmetry by � /2 rotations, i.e., a spatial rotation fol-
lowed by a spin reversal, while retaining the symmetry under
rotations by � �Fig. 12�. Thus, the magnetic field induces a
nonzero component of the charge nematic order parameter,
the nematic in the spin-singlet channel. �Analogs of this ef-
fect hold in all angular momentum channels.� On the other
hand, for a translation and rotationally invariant system, the
Fermi-surface distortion, i.e., orientation of the order param-

eter in real space, cannot be locked to the direction of the B�

field. As a result, the Goldstone manifold becomes �SOS�2�
� SOL�2�� /SOS�2�=SOL�2�.

The B field in the � phase also constrains the direction of

the vectors n�b. Since w is negative in the � phase, B� prefers
to be perpendicular to n�b vectors. Thus, in the 2D system, n�1,

n�2, and B� form a triad, which can be either left handed or
right handed, as depicted in Fig. 13. The spin configuration
on Fermi surfaces changes from a large circle into two

smaller circles with a net spin polarization along the B� field.
The triad still has the degrees of freedom to rotate around the

axis of B� ; thus the Goldstone manifold at two dimensions is
reduced from SOL+S�3� to SOL+S�2��Z2. The B field effect
in 3D systems is more subtle. At small values of B, n�1, n�2,

and n�3 can no longer form a triad with B� . Instead, n�1, n�2, and
n�3 form a distorted triad with the direction of the distortion

lying in the diagonal direction and parallel to B� , as depicted
in Fig. 14�a�. As B grows larger, the three vectors n�1, n�2, and

n�3 are pushed toward the plane perpendicular to B� . For B
larger than a value B�, defined as
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B� = Bc� v2

v2 + 4�w�v1/u
, �9.5�

n�1, n�2, and n�3 become coplanar, and with a relative angle of
2� /3, i.e., an equilateral triangle, as depicted in Fig. 14�b�. If
B is further increased, n�1, n�2, and n�3 keep these directions but
their magnitudes continuously shrink to zero at B=Bc.

We next discuss the effect of magnetic field B on the
Lifshitz-like instability in the 2D � phase at l=1. We assume

that B� is parallel to the z direction. As shown in Sec. VIII B,
the instability of the longitudinal twist described in Eq.
�8.20� is stronger than that of the transverse twist. Thus, we
will focus here on the case of the longitudinal twist. In this
case, the order parameter n�2 precesses around the ê1 axis.

Thus, B� , n�1, and n�2 cannot form a fixed triad uniformly in
space. The free energy of Eq. �3.5� now becomes

V�n� = �1n̄2q2 − �2n̄3q − wB2n̄2�1 + cos2 qx� . �9.6�

Hence, for B larger than a critical value of Bcl,

Bl =
Bc

�1 + 8v1�w��1/�u�2
2�

, �9.7�

the Lifshitz instability of the � phase to a phase with a lon-
gitudinal twist is suppressed. The effects of an external B
field in the 3D � phase are more complicated and will not be
discussed here.

Finally, we note that the order parameter n�a can couple
to the magnetic field B linearly when other external fields are
also present. For l=1, a possible additional term in the free
energy is of the form,


F�B, j� = �3B�ja�r��n�,a, �9.8�

where ja is the ath component of the electric current. To the
leading order, the mean-field value of the coupling constant
�3 is

�3 = −
�2e�B

2m*vF

N�0�
vFkF

, �9.9�

where m* is the effective mass and e is the charge of elec-
trons. For l=2, a similar term can be constructed as


F�B,u� = �4B�ua�r��n�,a, �9.10�

where ua is the strain field. Due to these terms, in the �
phase, the electric current and lattice strain can be used to
lock the direction of the order parameter in real space in the
presence of an external magnetic field at l=1 and l=2, re-
spectively. In the � phase, this term will distort the round
Fermi surfaces into two orthogonal ellipses but with different
volumes.

X. SPIN CURRENT INDUCED BY A CHARGE CURRENT
IN THE d-WAVE CHANNEL

In the d-wave �l=2� case, the order parameters have the
structure of the spin-quadruple moments. From the symme-
try analysis, a spin current Js

�,a may be induced by a charge
current Jc

a flowing through the system, where � is the spin

index and a ,b are the spatial indices. For simplicity, we only
study the 2D � and � phases. In the standard quadruple
notation, the order parameters n�,1 and n�,2 can be repre-
sented as n�,1=n�,xx−n�,yy and n�,2=2n�,xy =2n�,yx. Then,
we write the formula as

Js
�,a = gn̄�,abJc

b, �10.1�

where the matrix n̄�,ab is related to the order parameter n̄�,a

as

n̄�,ab = 2�n̄�,xx n̄�,xy

n̄�,yx n̄�,yy � = �n̄�,1 n̄�,2

n̄�,2 − n̄�,1 � . �10.2�

By the standard the linear-response theory, the coefficient g
can be calculated as

g =
�3 − 2a��
ekFvF�F2

a�
. �10.3�

In the � phase, it is convenient to choose the direction of
the axes of the reference frame x and y along the major and
minor axes of the distorted Fermi surfaces, and assume spin
quantization along the z axis, so that n̄�,ab= n̄êz diag�1,−1
.
A charge current Jc

a running along the major and minor axes
induces a spin current Js

�,a flowing in the same �or opposite�
direction. But for the general direction of Jc

a, the induced spin
current Js

�,a flows with an angle with Jc
a. We denote the azi-

muthal angle between the charge current Jc
a and the x axis as

�. Then, the angle between Jc
a and Jc

�,a reads 2� or �−2�
depending on the sign of g. The nature of the induced spin
current here is different from that of the spin Hall effect in
semiconductors with SO coupling. In that case, the spin Hall
current always flows perpendicular to the electric field, and
the spin Hall conductance is invariant under time-reversal
transformation. Here, because of the anisotropy of the Fermi
surfaces, the spin current is perpendicular to the charge cur-
rent, only if the charge current flows along the diagonal di-
rection ��= ±� /4 , ±3� /4�. On the other hand, the d-wave
phases break time-reversal symmetry; thus, the induced spin
current is not dissipationless.

In the � phase, without loss of generality, we can take the
order-parameter configuration as in Fig. 3�a�, i.e.,

FIG. 12. The � phases in a B� field �l=1,2�. The larger Fermi

surface has spin parallel to the B� field. The Fermi-surface distortion

is not pinned by the B� field.
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n�,ab = n̄�êx êy

êy − e�x
� , �10.4�

where êx,y denote the spin direction. We assume that the
charge current Jc

a flows along the x direction. Then, two spin
currents polarizing along orthogonal directions are induced
with the same magnitude. The spin current flowing along the
x direction polarizes along êx, while that flowing along the y
direction polarizes along êy. If we measure the spin current
along the spatial direction with the azimuthal angle � with
respect to the x axis, the induced spin current along this
direction polarizes along the direction of cos �êx+sin �êy.
Because in the � phase, there is an induced SO coupling,
spin and orbital angular momenta will not be preserved sepa-
rately. As a result, it is impossible in the � phase to describe
a spin current by two separated indices �a spatial index and a
spin one�. The spatial degrees of freedom and the spin ones
must be mixed together.

Finally, in a real material, there would always be some SO
coupling. With even an infinitesimal SO coupling, a charge
current flowing inside the system can remove the degeneracy
of the ground states in the ordered phase. In other words, in
the presence of explicit SO interactions, a charge current can
pin down the direction of the order parameter. Therefore, the

relative angle between the order parameter and the charge
current is not arbitrary. As a result, to be able to adjust the
angle between the charge current and the order parameter as
we mentioned above, some other mechanism is necessary to
pin down the order parameter such that the order parameter
will not rotate when we rotate the direction of the charge
current. For example, an in-plane magnetic field or a lattice
potential as background can do the job.

XI. POSSIBLE EXPERIMENTAL EVIDENCE
FOR THESE PHASES

At the present time, we are not aware of any conclusive
experimental evidence for a spin-triplet channel Pomeran-
chuk instability. However, the � and � phases presented here
are just a natural generalization of ferromagnetism to higher
partial-wave channels. Taking into account the existence of
the p-wave Cooper pairing phase in the 3He systems1 and the
strong evidence for its existence in the ruthenate compound
Sr2RuO4,62 we believe that there is a strong possibility of
finding these phases in the near future. Basically, the driving
force behind the Pomeranchuk instabilities in the spin-triplet
channels is still the exchange interaction among electrons,
which shares the same origin as in ferromagnetism. Although
the weak coupling analysis we have used here may not apply
to the materials of interest, as many of them are strongly
correlated systems, many of the symmetry issues will be the
same as the ones we have discussed here, with the exception
of the role of lattice effects, which we have not addressed in
detail and which may play a significant role, i.e., by gapping
out many of the Goldstone modes associated with the con-
tinuous rotational symmetry of the models that we have dis-
cussed. Nevertheless the GL free energies will have much of
the same form even if the actual coefficients may be differ-
ent, since we typically need a strong enough exchange inter-
action in a non-s-wave channel. In the following, we will
summarize a number of known experimental systems �and
numerical�, which suggest possible directions to search for
the � and � phases.

�a� 3He. The spin-exchange interaction in the Fermi liq-
uid state of 3He is very strong, as exhibited in the low-
frequency paramagnon modes.1 In this system, the spin fluc-
tuations are known to mediate the p-wave Cooper pairing.
The Landau parameter F1

a in 3He was determined to be nega-
tive from various experiments,63–66 including the normal-
state spin diffusion constant, spin-wave spectrum, and the
temperature dependence of the specific heat. It varies from
around −0.5 to −1.2 with increasing pressures to the melting
point. Although F1

a is not negatively large enough to pass the
critical point, we expect that reasonably strong fluctuation
effects exist.

�b� URu2Si2. The heavy fermion compound URu2Si2 un-
dergoes a phase transition at 17 K. The tiny antiferromag-
netic moment developed in the low-temperature phase can-
not explain the large entropy loss. About 40% density of
state density is lost at low temperatures. Currently, the low-
temperature phase is believed to be characterized by an un-
known “hidden” order parameter.67 An important experimen-

FIG. 13. �Color online� The spin configuration on the Fermi

surfaces in the � phase �Fl
a channel�. With the B� field, the large

circle splits into two small circles perpendicular to the B� field with
the development of a finite magnetization. The large �small� Fermi

surface polarizes parallel �antiparallel� to the B� field.

FIG. 14. �Color online� The order parameters in the 3D � phase
at l=1. �a� Configuration for B��B as defined in Eq. �9.5�. �b�
Configuration for Bc�B�B�.
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tal result of nuclear magnetic resonance68 �NMR� shows the
broadening of the line shape below Tc. This implies the ap-
pearance of a random magnetic field in the hidden ordered
phase. Recently, Varma and Varma and Zhu proposed the
p-wave � phase as the hidden ordered phase.31,32 They fitted
the specific-heat jump reasonably well, and more importantly
the jump of the nonlinear spin susceptibility �3 at the transi-
tion. The origin of the random field in the NMR experiment
is explained by the spin moment induced by disorder in the
p-wave � phase. However, the � phase still has Fermi sur-
faces; thus, it is difficult to explain the large loss of density
of states. Further, the � phase is time reversal even; thus, its
coupling to spin moment must involve the B field. In the
NMR experiment, an external B field is indeed added. It
would be interesting to check whether the line-shape broad-
ening is correlated with the magnitude of B.

�c� Sr3Ru2O7. The bilayer ruthenate compound Sr3Ru2O7
develops a metamagnetic transition in an applied magnetic
field B perpendicular to the c axis. In very pure samples, for
B from 7.8 to 8.1 T, the resistivity measurements show a
strong enhancement below 1.1 K.14 Transport measurements
in tilted magnetic fields, with a finite component of the B
field in the ab plane, show evidence for a strong in-plane
temperature-dependent anisotropy of the resistivity tensor,
which is suppressed at larger in-plane fields.14,15 This effect
is interpreted as a nematic transition for the Fermi surface of
the majority spin component.14 This result suggests a state,
which is a superposition of both a charge nematic and a
nematic-spin-nematic state. On the square lattice, the dx2−y2

distortion pattern is more favorable than that of dxy. Thus, the
transition should be Ising-like. In the presence of SO cou-
pling, while preserving both parity and TR symmetries, the
magnetic field can couple to the dx2−y2 channel order param-
eter through terms in the free energy of the form,

�Bx
2 − By

2�Bznz,1, �11.1�

which is cubic in B, and

B� · n�ana �11.2�

�where na is the charge nematic order parameter�, which is
linear in B. Thus, an in-plane B field can lock the orientation
of the nematic-spin-nematic order parameter. This effect is
more pronounce if the system is in a charge nematic phase.

�d� 2DEG in large magnetic fields. Currently, the stron-
gest experimental evidence for a charge nematic �fully polar-
ized� state is in the case of a 2DEG in a large perpendicular
magnetic field.11–13 In the second and higher Landau levels, a
huge and strongly temperature-dependent resistance aniso-
tropy is seen in ultrahigh mobility samples, for filling factors
near the middle of the partially filled Landau level. In this
regime, the I-V curves are clearly linear at low bias. No
evidence is seen of a threshold voltage or of broadband
noise, both of which should be present if the 2DEG would be
in a stripe state, which is favored by Hartree-Fock calcula-
tions. Both effects are seen in nearby reentrant integer Hall
states. Thus, the simplest interpretation of the experiments is
that the ground state is a polarized charge nematic.9,10 There
is still a poorly understood alternation effect: the strength of

the anisotropic resistance appears to alternate between the
fully polarized state and the state with partial polarization.
Although this effect could be explained in terms of micro-
scopic calculations of the order parameter, it is still possible
that the latter may suggest some form of partially polarized
nematic-spin-nematic order. There are no reliable calcula-
tions of Landau parameters in these compressible phases.

�e� The 2DEG at zero magnetic field. The 2DEG at low
densities is a strongly coupled system and much work has
been done on this system in the context of its apparent metal-
insulator transition. What interests us is the possibility that
this system may have phases of the type discussed here. �The
possibility of nonuniform “microemulsion” phases in the
2DEG was proposed recently by Jamei et al.69� A numerical
evaluation to the Landau parameter F1

a in two dimensions,
performed by Kwon et al.,70 by using variational quantum
Monte Carlo, found that F1

a is negative and decreasing from
−0.19 at rs=1 to −0.27 at rs=5. On the other hand, Raikh
and co-workers71,72 investigated the many-body renormaliza-
tion effect to the Rashba SO coupling due to the exchange
interaction in the F1

a channel. They found the renormalized
SO coupling is amplified significantly at large rs by using a
local-field approximation. More numerical work to check
whether Pomeranchuk instabilities can occur in this system
would be desirable.

�f� Ultracold atomic gases with a p-wave Feshbach reso-
nance. Another type of strongly interacting system includes
cold atoms with Feshbach resonances. Recently, an interspe-
cies p-wave Feshbach resonance has been experimentally
studied by using the two component 6Li atoms.73 In the re-
gime of positive scattering length, close to the resonance, the
Landau parameter of F1

a should be negative and large in mag-
nitude. Thus, this system would appear to be a good candi-
date to observe these phases. However, since the p-wave
Feshbach resonance is subject to a large loss rate of particles,
it is not clear whether it would be possible to use this ap-
proach to observe a stable system with a Pomeranchuk insta-
bility near the resonance.

�g� How to detect these phases. We also propose several
experimental methods to detect the � and � phases �see also
the discussion in Ref. 35�. For the case of the spatially an-
isotropic � phases, evidence for strongly temperature depen-
dent anisotropy in the transport-properties �as well as the
tunability of this effect by either external in-plane magnetic
fields and/or uniaxial stress� as seen in Sr3Ru2O7 and in the
2DEG can provide direct evidence for the spatial nematic
nature of these phases. Spatially nematic phases exhibit an-
isotropic transport properties even in a single-domain
sample.4 Their spin structure is more difficult to determine.
Because no magnetic moments appear in both phases, elastic
neutron scattering does not exhibit the regular Bragg peaks.
Since the Goldstone modes are combined spin and orbital
excitations, they cannot be directly measured through neu-
tron scattering. Nevertheless, in the ordered phase, as we
have discussed, spin-spin correlation function couples to the
Goldstone modes and develops a characteristic resonance
structure, which should be accessible to inelastic neutron
scattering. An experimental detection of this resonance and
its appearance or disappearance in the ordered or disordered
phases can justify the existence of these phases. On the other
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hand, Fermi-surface configurations and single-particle spec-
tra in the � and � phases are different from the normal-state
Fermi liquids. If the angle-resolved photon emission spec-
troscopy experiment can be performed, it can readily tell
these phases. In the � phase, the order parameter is similar to
the Rashba SO coupling, and the method to detect the
Rashba coupling can be applied here. For example, from the
beat pattern of the Shubnikov–de Haas oscillations of the
 �B�, we can determine the spin splitting of two helicity
bands. The asymmetry of the confining potential certainly
will also contribute some part to the final spin-orbit coupling.
However, when the dynamically generated part dominates, it
will not be sensitive to the asymmetry of the confining
potential.

XII. CONCLUSIONS

In summary, we have studied the Pomeranchuk instability
involving spin in the high orbital partial-wave channels. GL
free energies are constructed to understand the ordered phase
patterns after the instabilities take place. The ordered phases
can be classified into � and � phases as an analogy to the
superfluid 3He A and B phases. Both phases are character-
ized by a certain type of effective SO coupling, giving rise to
a mechanism that generates SO couplings in a nonrelativistic
systems. In the � phase, the Fermi surfaces exhibit an aniso-
tropic distortion, while those in the � phase still keep the
circular or spherical shapes undistorted. We further analyze
the collective modes in the ordered phases at the RPA level.
Similar to the Pomeranchuk instability in the spin-singlet
density channel, the density channel Goldstone modes in the
� phase also show anisotropic overdamping, except along
some specific symmetry-determined directions. The spin
channel Goldstone modes are found to exhibit nearly isotro-
pic linear dispersion relations at small propagating wave vec-
tors. The Goldstone modes in the � phase are relative spin-
orbit rotation modes with linear dispersion relation at l�2.
The spin-wave modes in both ordered � and � phases couple
to the Goldstone modes, which thus develop characteristic
resonance peaks, which can be observed in inelastic neutron-
scattering experiments. The p-wave channel is special in that
the � phase can develop a spontaneous chiral Lifshitz insta-
bility in the originally nonchiral systems. The GL analysis
was performed to obtain the twist pattern in the ground state.
We also review the current experiment status for searching
these instabilities in various systems, including 3He, the
heavy fermion compound URu2Si2, the bilayer ruthenate
Sr3Ru2O7, 2D electron gases, and p-wave Feshbach reso-
nances with cold fermionic atoms. The Sr3Ru2O7 seems to be
the most promising system to exhibit such an instability in
the 2D d-wave channel. However, investigation on the SO
coupling effect is needed to understand the suppression of
the resistivity anomaly due to the in-plane field.

There are still many important properties of the spin-
triplet Pomeranchuk instabilities yet to be explored. In this
paper, we did not discuss the behavior of the fermionic de-
grees of freedom, which are expected to be strongly anoma-
lous. Generally speaking, the overdamped density channel

Goldstone modes in the � phase strongly couple to the fer-
mions, which is expected to lead to a non-Fermi-liquid be-
havior as in the case of the density channel Pomeranchuk
instabilities.4,17 However, the Goldstone modes in the �
phase are not damped as l�2; thus, similar to the case of
itinerant ferromagnets, the � phase remains a Fermi liquid.
The p-wave channel is particularly interesting. We have
shown in Eq. �2.12� that p-wave paramagnon fluctuations
couple to fermions as a SU�2� gauge field. The linear deriva-
tive terms in the GL free energy also become relevant in the
finite temperature non-Gaussian regime. The Hertz-Mills-
type critical theory for the Fl

a contains other features not
present in the ferromagnetic ones. We defer to a future pub-
lication to address the above interesting questions.
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APPENDIX A: LANDAU INTERACTION PARAMETERS

Landau-Fermi liquid theory is characterized by the inter-
action functions, which describe the forward scattering pro-
cess between quasiparticles as

f��,���p� ,p��� = fs�p� ,p��� + fa�p� ,p���	� �� · 	� ��, �A1�

where p� and p�� lie close to the Fermi surface. The expres-
sions of fs and fa can be obtained through a general micro-
scopic two-body SU�2� invariant interaction,

V�r�1,r�2� = Vc�r�1 − r�2� + Vs�r�1 − r�2�S�1 · S�2, �A2�

where the Vc and Vs are the spin-independent and -dependent
parts, respectively. At the Hartree-Fock level, fs,a�p , p�� are

fs�p� ,p��� = Vc�0� −
1

2
Vc�p� − p��� −

3

8
Vs�p� − p��� ,

fa�p� ,p��� = −
1

2
Vc�p� − p��� +

1

4
Vs�0� +

1

8
Vs�p� − p��� .

�A3�

fs,a�p� , p��� can be further decomposed into different orbital
angular momentum channels as
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f l
s,a

=�	−1

1

d cos 
 fs,a�p̂ · p̂��Pl�p̂ · p̂�� in three dimensions,

	 �d�/2��fs,a�p̂ · p̂��cos l� in two dimensions, �
�A4�

where Pl is the lth-order Legendre polynomial. For each
channel of Fl

s,a, LP instability3 occurs at

Fl
s,a = N�0�f l

s,a� �− �2l + 1� in three dimensions,

�− �2 − �l,0� in two dimensions,
�
�A5�

where N�0� is the density of states at the Fermi energy.

APPENDIX B: GOLDSTONE MODES OF THE SPIN
OSCILLATION IN THE � PHASE

In this section, we calculate the spin channel Goldstone
modes in the 2D � phases at small wave vector, vFq / n̄�1,
and low frequency, � / n̄�1. The expression for the disper-
sion of Lx±iy,1�q� ,�� is

Lx+iy,1�q� ,�� = �q2 +
1

�f1
a�

+ 2	 d2k

�2��2 cos2 l
k

�

nf��l�k� −
q�

2
�� − nf��↓�k� +

q�

2
��

� + i� + �↓�k� −
q�

2
� − �↑�k� +

q�

2
� ,

�B1�

where �↑,↓�k�=��k�−�� n̄ cos l
k. Following the procedure

in Ref. 4, we separate Eq. �B1� into a static part, Lx+iy,1�q� ,��,
and a dynamic part, Mx+iy,1�q� ,��, as

Lx+iy,1�q� ,�� = Lx+iy,1�q� ,0� + Mx+iy,1�q� ,�� . �B2�

At q� =0, �=0, from the self-consistent equation �Eq. �4.3��,
the integral cancels the constant term 1

�f1
a� as required by the

Goldstone theorem. The detailed form of the static part at
small but nonzero q� is difficult to evaluate due to anisotropic
Fermi surfaces. Because of the breaking of parity in the �
phase, it seems that the leading-order contribution should be
linear to q. However, from the Ginzburg-Landau analysis in
Sec. VII A, the linear derivative term in Eq. �3.5� does not
contribute to the coupling among Goldstone modes, i.e., the
uniform ground state is stable, in contrast to the case in the �
phase. As a result, the dependence on q� should start from the
quadratic order, bringing a correction to the coefficient �.
For simplicity, we neglect this correction for it does not
cause a qualitatively different result. Thus, we arrive at

Lx+iy,1�q� ,� = 0� = �q2. �B3�

The dynamic part, Mx+iy,1�q� ,��, can be expressed as

Mx+iy,1 = − 2	 d2k

�2��2

� cos2 l
k

� + i� + �↓�k� −
q�

2
� − �↑�k� +

q�

2
�

�

nf��↓�k� −
q�

2
�� − nf��↑�k� +

q�

2
��

�↓�k� −
q�

2
� − �↑�k� +

q�

2
� . �B4�

To evaluate this integral, we make several simplifications:
the nonlinear part in ��k�� is neglected and the linear order in
q� is kept in the denominator. We arrive at

	 d
k

2�

cos2 l
k

� + i� + 2n̄ cos l
k − qvF cos�
k − ��
− �

2n̄ cos l
k − qvF cos�
k − ��
	 kdk

2�
�nf��↓�k� −

q�

2
�� − nf��↑�k� +

q�

2
���

=	 d
k

2�

− � cos2 l
k

� + i� + 2n̄ cos l
k − qvF cos�
k − ��
k2

2 − k1
2

2��2n̄ cos l
k − qvF cos�
k − ���
, �B5�

where k1 and k2 satisfy nf��↑�k�1+q� /2��=0 and nf��↓�k�2

−q� /2��=0, respectively, and � is the azimuthal angle of q� . k1

and k2 can be approximated by

k1,2 = kF�1 −
x2

4
� ± � n̄ cos l
k

vF
−

q

2
cos�
k − ��� + O�q2� .

�B6�

We now transfer the integral over 
k to an integral over
z=exp�i
k� and define the density of the states at chemical
potential in the ordered state as

N��0� =
kF�1 − x2/4�

vF�
. �B7�

The integral above now reads as
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N��0�
2�i

� dz

z
� zl + z−l

2
�2 �

� + i� + 2n̄
zl + z−l

2
−

qvF

2
�ze−i� + z−1ei�� + O�q2�

�
N��0��

4 �
�z��1

Res� �zl + z−l�2

z�2� + 2i� + 2n̄�zl + z−l� − qvF�ze−i� + z−1ei���� . �B8�

This integral can be calculated by evaluating the residues at
poles inside the unit circle. There is one pole at 0, one pole at
!, and 2l poles, from the solutions of the equation:

2� + 2i� + 2n̄�zl + z−l� − qvF�ze−i� + z−1ei�� = 0. �B9�

The pole at z=! is not inside the unit circle and does not
contribute to the integral.

The pole at z=0 has different behaviors for different val-

ues of l. The residue is − 2�
�2n̄−ei�qvF�2 for l=1, −

�4n̄�−e2i�q2vF
2�

8n̄3 for

l=2, and − �

2n̄2 for all l�2. To the leading order, all the resi-

dues become − �

2n̄2 at l�1. Next, we discuss the poles at the
solutions of Eq. �B9�. For l�1, not all of these poles are
located inside the unit circle. However, we will not bother to
tell which poles are inside the unit circle because we can
show that these poles at most only give negligible higher-
order terms. In the limit of small q and �, Eq. �B9� can be
solved perturbatively as a power series of q and � as zm
=exp�i�2m−1�� /2l�+O�q�+O���, where m=1,2 , . . . ,2l. To
the leading order, this type of poles are all simple poles, and
the residue of 1 / �2�+2i�+2n̄�zl+z−l�−qvF�ze−i�+z−1ei���
is at the order of O� 1

2n̄
�. Therefore, the contribution from the

pole zm is

N��0��
4

Res�1

z

�zl + z−l�2

2� + 2i� + 2n̄�zl + z−l� − qvF�ze−i� + z−1ei���z=zm

�
N��0��

2

�2� + 2i� − qvF�zme−i� + zm
−1ei���2

zm�2n̄�2

1

4ln̄zm
l−1

�O���� + q�2

n̄3 � , �B10�

which is negligible to orders of O��2 / n̄2� and O�q2 / n̄2�.
In short, for l�1, only the pole at z=0 contributes to the

integral. The result of the fluctuation kernel is

Lx+iy,1�q� ,�� = �q2 −
N��0�

4n̄2 �2. �B11�

From the self-consistent equation, we find that N��0�
=2/ �f l

a�. Therefore, the spin channel Goldstone mode reads

Lx+iy,1�q� ,�� = �q2 −
�2

2n̄2�f l
a�0��

= �q2 −
N�0�
2�Fl

a�
�2

n̄2 ,

�B12�

at l�1.
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