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Real-space multiscale methods provide efficient algorithms for large-scale electronic structure calculations.
In this paper, we present multigrid strategies for solving self-consistent problems in density functional theory.
The full approximation scheme �FAS� formulation of the multigrid method allows for transfer of the expensive
orthogonalization and Ritz projection operations to coarse levels. In addition, the effective potential may be
updated on coarse levels during multiscale processing of the eigenfunctions. We investigate modifications of a
previously proposed algorithm which are necessary to yield robust convergence rates. With these modifica-
tions, rapid convergence is observed without orthonormalization or Ritz projection for the full occupied
subspace on the fine level. Calculations comparing the various algorithms are performed on three many-
electron examples: benzene, benzenedithiol, and the amino acid glycine. The modified algorithm is also
illustrated on several larger test cases. Recently developed relativistic separable dual-space Gaussian pseudo-
potentials are utilized to remove the core electrons.
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I. INTRODUCTION

The solution of large-scale electronic structure problems
is a computationally demanding task. In recent years, a great
deal of effort has been devoted to the development of effi-
cient numerical methods for tackling these problems. The
intense interest is stimulated by challenging applications
arising in the realistic modeling of systems encountered in
physics, chemistry, biophysics, and the emerging nanoscale
sciences. The main existing approaches for large-scale ab
initio calculations can be loosely categorized as plane-wave
basis set,1 localized �Wannier� function2–5 or Gaussian basis
set,6 and real-space methods.7–14 One appeal of the Wannier-
function and/or real-space methods is the localized nature of
the representation. This property has led to the development
of methods whose complexity scales linearly with the num-
ber of electrons.4,5,15–17

In real-space calculations, the discretized partial differen-
tial equations are represented on grids using either
finite-element8,18–20 or finite-difference7,9,21 formulations.
The solutions can be obtained using iterative techniques due
to the highly banded nature of the Hamiltonian. On single
grids, however, stalling is a major problem for the iterative
methods. The stalling results from the long-wavelength
modes of the errors, which are not efficiently removed on the
fine scale.

Multigrid methods overcome the stalling problem by
decimating errors on multiple length scales. The short-
wavelength errors are smoothed on fine levels, while the
long-wavelength components are removed on coarse levels
during the multigrid cycles. In the past, a number of real-
space multigrid solvers have been developed to solve the
Kohn-Sham equations of density functional theory.3,21–26

Previously we implemented a nonlinear full approxima-
tion scheme 27–29 �FAS� multigrid method30 in solving the
self-consistent Kohn-Sham equations.23 Reference 23
showed that utilization of the FAS approach leads to an im-
provement in convergence efficiency compared with linear-

ized multigrid methods.22,25 In the original eigenvalue
method of Ref. 30, the expensive orthonormalization and
Ritz projection operations are performed on the fine level.

Costiner and Ta’asan31 advanced the FAS method by also
moving the fine-scale separation techniques �orthonormaliza-
tion and Ritz projection� to coarse levels. The FAS represen-
tation of the Ritz projection leads to a generalized eigenvalue
problem on the coarse levels. They also introduced a back-
rotation step designed to prevent rotations in degenerate sub-
spaces, sign changes, rescalings, and permutations of the
eigenvectors. The overall algorithm is termed generalized
Ritz and back rotation �GRBR�. The back-rotation step is
necessary since the fine-scale functions are corrected follow-
ing the GRBR process on the coarse grid, and therefore the
coarse-level eigenfunctions must correspond to their fine-
level counterparts.

In a second contribution,32 Costiner and Ta’asan adapted
their eigenvalue method to solve large-scale self-consistent
problems. They considered two approaches for handling the
self-consistency. First, the Poisson and eigenvalue problems
were solved in a sequential fashion: once the effective poten-
tial was obtained on the finest level via solution of the Pois-
son equation �given a fixed updated charge density�, the re-
stricted potential was used during the multigrid solution for
the eigenfunctions. Thus, the method cycles back and forth
between the Poisson and eigenvalue problems much as in a
traditional self-consistency code. Second, they updated the
potential on coarse levels simultaneously with updates of the
eigenfunctions. In this way, the eigenfunctions and potential
evolve toward the self-consistent solution together on the
coarse levels. An alternative method for updating the poten-
tial along with the eigenfunctions on coarse levels has ap-
peared recently.33

Here we present work aimed at applying the methods of
Refs. 31 and 32 to nonperiodic systems involving tens of
wave functions. Relativistic separable dual-space Gaussian
pseudopotentials34 are utilized to remove the core electrons,
leaving 15–21 eigenfunctions for our comparative test cases
�benzene�15�, glycine�15�, and benzenedithiol�21��. Further,
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we illustrate our modified algorithms on larger systems: the
glycine dimer�26�, glutamine�29�, phenylalanine�32�, ty-
rosine�35�, and the C20 molecules�40�.

The Gram-Schmidt orthonormalization and Ritz projec-
tion steps on the fine level scale as q2Ng

l , where q is the
number of eigenfunctions and Ng

l is the total number of grid
points. The finest level is labeled by l, while coarser levels
are labeled by k �the smallest value of k is for the coarsest
level�. This scaling assumes the eigenfunctions span the
whole physical domain. Moving these steps to coarser levels
via the GRBR algorithm reduces the cost by a factor of 8 for
each level. Even though the coarse-level generalized Ritz
process scales as q2Ng

k, Costiner and Ta’asan observed an
effective qNg

l algorithmic scaling, corresponding to the cost
of updating the eigenfunctions on the fine level.

In our earlier paper,24 we applied the GRBR algorithm to
fixed-potential eigenvalue problems and self-consistent elec-
tronic structure problems. The fixed-potential and small test
self-consistent problems possessed clearly defined eigen-
value cluster structures; the eigenvalue clusters consist of
degenerate or near-degenerate subspaces of the full occupied
subspace. Later in this paper we use the term cluster to de-
note any ordered and partitioned collection of eigenvalues.
We showed that the GRBR method converged for the fixed-
potential and small self-consistent problems such as the CO
molecule and the Ne atom, all of which possess clearly de-
fined eigenvalue clusters. The convergence rates slowed,
however, after a few self-consistency iterations. The conver-
gence rates could be restored by performing Gram-Schmidt
orthonormalization occasionally on the fine level �once in
every three to five self-consistency cycles�. For larger sys-
tems such as benzenedithiol, which does not possess such
clearly defined eigenvalue clusters, the GRBR algorithm in
its original form stalled prior to full convergence. The
method does converge �slowly� with periodic fine-scale or-
thonormalization for the benzene molecule with its clear ei-
genvalue cluster structure �unpublished results�.

These results led us to conclude that, for large molecules
having tens of states and ambiguous eigenvalue cluster struc-
tures, the GRBR procedure alone cannot bring sufficient
separation of the wave functions on the fine level, and this
results in stalling. The reasons for this are likely due to the
relatively large number of wave functions, vague eigenvalue
near-degeneracies �clusters�, and the complexities of the po-
tentials relative to those considered in Refs. 31 and 32.

In this paper, we describe an attempt to remedy these
difficulties by performing Gram-Schmidt orthonormalization
and Ritz projection on predetermined overlapping eigenvalue
clusters on the fine level. These clusters need not necessarily
correspond to degenerate subspaces. The fine-scale cluster
Ritz process is performed along with GRBR on coarser
grids. Since the Gram-Schmidt orthonormalization and Ritz
projection are performed on eigenvalue-eigenfunction clus-
ters, it is computationally less expensive than the regular
Gram-Schmidt orthonormalization and Ritz projection per-
formed on the full occupied subspace on the finest level.
Further, we successfully test this method with the simulta-
neous multigrid technique, where the potential is updated on
coarse levels.

The calculations were all performed at the Kohn-Sham
local density approximation �LDA� level using a 12th-order

finite-difference representation of the Laplacian. The method
presented here differs from the alternative approach in Ref.
33 in several respects. First, with some modifications, we
provide a direct implementation and test of the methods pro-
posed in Refs. 31 and 32; in this approach, the FAS multigrid
cycles are employed to update the eigenfunctions on the fine
scale, not the charge density as in Ref. 33. In our method, the
charge density is updated once the eigenfunctions are cor-
rected. Second, we utilize a high-order finite-difference rep-
resentation to estimate more accurately the kinetic energy
operator, while in Ref. 33, a second-order form was em-
ployed. Finally, our work is aimed at reducing the q2Ng

l �or
Ne

3, where Ne is the number of electrons� scaling of the algo-
rithm. Wang et al. performed the orthonormalization and
Ritz projection operations for the full occupied subspace on
the fine scale, which maintains the Ne

3 scaling.
The structure of the paper is as follows. First, we describe

the fine-level Ritz projection multigrid method.30 Then the
GRBR algorithm and the fine-level Ritz projection on pre-
selected clusters are discussed. Next the simultaneous update
of the potential on coarse levels is described. This is fol-
lowed by discussions of the iterative relaxation scheme and
the application of the relativistic separable dual-space Gauss-
ian pseudopotentials. In the section concerning computa-
tional implementation, a detailed description of the technical
details of the numerical calculations is given. The compara-
tive convergence results for three molecular test cases are
then presented, followed by results of calculations on larger
chemical species. Finally, we discuss the algorithms and
computational results and present our conclusions.

II. MULTIGRID CYCLE WITH FINE-LEVEL RITZ
PROJECTION: FLR

Let us denote the fine-level eigenvalue problem with q
wave functions by

HlUl = Ul� . �1�

Here Hl is the fine-level Hamiltonian, which is a highly
banded Ng

l �Ng
l square matrix. The matrix Ul is an Ng

l �q
matrix, and its columns are the wave function values on the
grid. The matrix � is a q�q diagonal matrix with the eigen-
values along the diagonal. Since � is the same on all levels
at convergence, we do not attach a grid label to this matrix
�see below�. We denote the exact grid solution Ul and the
current approximation ul. We obtain an initial fine-scale ap-
proximation ul via a full multigrid cycle as discussed in Sec.
VII

Once an initial approximation is obtained on the finest
level l and a few relaxation steps are performed there, the
problem is passed to the next coarser level k. On the coarse
level, the eigenvalue problem takes the form

Hkuk = uk� + �k, �2�

where �k is the defect correction defined as

�k = Ik+1
k �k+1 + Hk�Ik+1

k uk+1� − Ik+1
k �Hk+1uk+1� . �3�

The operator Ik+1
k is the restriction operator, which involves a

local trapezoid-rule average of the function. The defect cor-
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rection is zero on the finest level. The first term on the right-
hand side �RHS� in Eq. �3� is a contribution from the previ-
ous level’s defect correction on grids at least two levels
removed from the finest scale. If the exact solution from the
fine grid is inserted into the coarse-grid eigenvalue equation,
it is easily seen that an identity is obtained, where the re-
stricted fine-grid eigenfunction solves the coarse-grid equa-
tion. This formulation thus satisfies the important condition
of zero correction at convergence.

We also note that the same FAS formulation is used to
solve the Poisson equation during the self-consistent solu-
tion. For the Poisson problem the Hamiltonian in Eq. �2� is
replaced by the Laplacian operator, and the first term on the
RHS of Eq. �2� is replaced by −4�� where � is the charge
density. The coarse-grid density is obtained by restricting the
fine-grid density.

On the coarse level, iterative relaxation is performed sub-
ject to constraints designed to maintain eigenfunction ortho-
normality on the finest grid.30 We also explored use of Kac-
zmarz relaxation on the coarse levels as in Ref. 31; no clear
advantage was observed, however. A correction is then made
back on the next higher level k+1 �k+1= l for the finest
level�:

uk+1 = uk+1 + Ik
k+1�uk − Ik+1

k uk+1� , �4�

where Ik
k+1 is the interpolation operator. Linear interpolation

was used throughout our work. The sum of the orders of the
transfer operations �restriction and interpolation� should
equal the order of the differential equation �here second or-
der�, not necessarily the order of the Laplacian
representation.27,28

Once back on the finest grid, the eigenvalues can be up-
dated using the Rayleigh quotient:

� = �ul�Hl�ul�/�ul�ul� . �5�

Following relaxation steps on the fine level, Gram-Schmidt
orthonormalization and Ritz projection are performed to im-
prove the occupied subspace. The complete process of mov-
ing to a sequence of coarser levels followed by correction
and relaxation steps on succeedingly finer levels �until the
finest level is reached� is termed a V cycle. The Ritz projec-
tion step is discussed in the next section �see Eqs. �8� and
�11� for the fine-scale version�. The above discussion can be
extended to any number of levels. For the Poisson problem,
the multigrid cycle is continued all the way to the coarsest
level, which has only a single interior point. For the eigen-
value problem, the coarsest level must possess enough struc-
ture to �at least approximately� sample the oscillations in the
eigenfunctions. For the eigenvalue problem, we utilized three
grids levels �173, 333, and 653� in all of the calculations
reported here.

III. GENERALIZED RITZ PROJECTION AND
BACKROTATION: GRBR

The fine-scale eigenvalue problem can be rewritten using
the relation

Hlvl = vl� , �6�

where

vl = ulEl. �7�

Thus

HlulEl = ulEl� . �8�

Here vl and ul are Ng
l �q matrices and El is a q�q matrix to

be found. When Eq. �8� is transferred to a coarse level using
an FAS transfer, it takes the form

HkukEk = ukEk� + �kEk, �9�

where �k is the defect correction vector. Multiplying Eq. �9�
on the left by �uk�T, the generalized eigenvalue problem re-
sults:

�uk�T�Hkuk − �k�Ek = ��uk�Tuk�Ek� . �10�

This equation can be solved using standard linear algebra
packages. The solution gives Ek and a new set of eigenvalues
��i	. New wave functions and defect corrections �k are ob-
tained as linear combinations of the previous values:

vk = uk,new = uk,oldEk, �11�

�k,new = �k,oldEk. �12�

On the fine grid where the defect correction �l is zero, the
generalized Ritz projection reduces to the standard Ritz pro-
jection. Notice that the eigenvalues are the same on all levels
at convergence by construction.

In the generalized Ritz projection method, rotations of
solutions in subspaces of close eigenvalues, rescaling, sign
changes, and permutations of the solutions may occur. There-
fore the back-rotation algorithm was introduced by Costiner
and Ta’asan31 to deal with these problems. The back-rotation
algorithm proceeds as follows. Once Ek and � are found by
solving Eq. �10�, the eigenvalues in � are sorted and the
columns of the Ek matrix are permuted accordingly. The
clusters of degenerate and nondegenerate clusters of � are
identified. For each diagonal block of Ek �nondegenerate
clusters� the dominant elements of the block are brought to
the diagonal by permuting the columns of Ek and the diago-
nal of �. Define Fk as a block-diagonal matrix having only
the diagonal blocks of Ek. Each nondegenerate diagonal
block of Fk is replaced with the identity matrix. Set Ek

=Ek�Fk�−1 and change the signs of the columns of Ek such
that the diagonal elements are all positive. The columns of Ek

are normalized and the wave functions and the defect correc-
tions are updated as per Eqs. �11� and �12�. Extensive details
of the back-rotation steps are given in Ref. 31.

GRBR performed on a coarse level is intended to bring
separation of eigenstates on the fine level. However, this
worked with limited success in our previous large-molecule
test case �benzenedithiol�.24

IV. FINE-SCALE RITZ PROJECTION PERFORMED ON
CLUSTERS ALONG WITH COARSE-SCALE

GRBR: CR-GRBR

As discussed above, the original GRBR algorithm stalled
for large systems with ambiguous eigenvalue cluster struc-
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tures. We found that incorporation of the following algorithm
in addition to GRBR is a first step toward alleviating those
difficulties. The general idea is to perform fine-scale Ritz
projection on previously selected eigenvalue clusters in ad-
dition to the GRBR processing on coarse levels. Cluster
structures are chosen at the beginning of the multigrid V
cycles on the fine level, as described below.

Consider a system with q wave functions. The eigenval-
ues along with the wave functions are sorted in increasing
order as �0 , . . . ,�q−1, and we preselect m clusters of eigen-
values along with the wave functions. We denote the ith
cluster of the eigenvalues by �ai ,bi� where ai and bi are the
first and last elements of the cluster, and i goes from 1 to m.
Fine-level orthonormalization and Ritz projection are per-
formed sequentially on the first cluster �a1 ,b1�, followed by
the rest of the clusters �ai−s ,bi� �i=2, . . . ,m�, where s is the
number of overlap elements. The first cluster �a1 ,b1� has no
overlap. The inclusion of the overlap elements �s� during the
fine-level separation was found to be crucial. The number of
required overlap elements depends on the system. For the
test molecules benzene, glycine, and benzenedithiol, it was
sufficient to choose s=1. For larger systems such as the C20
molecule, however, a larger number of overlap elements �s
=3� was necessary. The coarse-level �middle level in all our
calculations� GRBR process is performed using the clusters
with the same overlap as on the fine scale. This addition to
the algorithm of Costiner and Ta’asan31,32 resulted in separa-
tion of the wave functions on the fine level sufficient to
achieve full convergence for the cases where GRBR alone
stalled. The preselected clusters are treated as degenerate
clusters in the BR process.

This fine-level separation technique is relatively inexpen-
sive compared to performing orthonormalization and Ritz
projection on the full occupied subspace. If m clusters each
consisting of p wave functions are chosen, the cost of or-
thonormalization and Ritz projection on clusters scales as
m�p+s�2Ng

l . The Ritz projection method scales as q2Ng
l ,

where q=mp. Thus the ratio of the scalings of the CR-GRBR
to the FLR algorithms is

R =
1

m

 p + s

p
�2

. �13�

Therefore, there is nearly an m-fold decrease in computa-
tional time on the fine grid for large systems. If smaller clus-
ter sizes p are chosen, m will be larger and the savings of
computational time will be higher. In our experience, how-
ever, it is found that, if the clusters are too small, the algo-
rithm tends to stall. The size of the clusters can be gradually
increased until a suitable size �typically p=10� is found. Us-
ing this approach, we observed convergence rates compa-
rable to the full fine-level Ritz projection in our comparative
test studies �benzene, glycine, and benzenedithiol�. We fur-
ther illustrate the new method by applying it to larger sys-
tems �glycine dimer, glutamine, tyrosine, phenylalanine, and
the C20 molecule�.

V. SIMULTANEOUS MULTIGRID METHOD:
S-FLR AND S-CR-GRBR

Due to the nonlinear FAS formulation of the self-
consistent problem, it is also possible to update the coarse-

grid effective potential simultaneously with the
eigenfunctions.32,33 This contrasts with the sequential algo-
rithm in which the fixed coarse-grid potential is restricted
from the fine level and kept fixed during the multigrid cycle
for the eigenfunctions.

The simultaneous update of the potential on the coarse
grids requires some care. The density must be updated on the
coarse grids, from which the coarse-level effective potential
is obtained. A key advantage of the FAS approach is that the
coarse-level density and potential terms can be constructed
with defect correction terms such that, at convergence, the
coarse-level values are precisely those restricted from the
fine grid. The fine-grid eigenfunctions are normalized so as
to preserve charge conservation throughout the various grids
at convergence. This yields the optimal representation of the
coarse-grid potential. In order to effect these points, new
defect corrections are required for the charge density and the
exchange-correlation potential.

We define �̄k�uk� for coarse level k as

�̄k�uk� = 2�
i=1

q

�ui
k�2. �14�

It is important to note that �̄k�uk� is not a true charge density
on coarse levels since, even at convergence, the restricted
eigenfunctions are neither normalized nor orthogonal on
coarse grids. Once the wave functions are updated on level k,
the quantity �̄k is generated using Eq. �14�. We then construct
the coarse-level density via

�k = �̄k�uk� + Ik+1
k �k+1 − �̄k�Ik+1

k uk+1� . �15�

It is clear that, at convergence, the first and third terms can-
cel and we are left with the charge density restricted from the
finer level. Therefore, charge conservation is maintained on
all levels since the restriction operation preserves the total
charge. The last two terms can be defined as a defect correc-
tion for �k. A different method of updating the charge density
on coarse levels can be found in Ref. 33. Once �k is updated,
the Coulomb potential can be found by solving the coarse-
grid Poisson problem using again the FAS technique.9 Using
this FAS approach with the above-defined charge density, the
coarse-level Coulomb potential is precisely the restricted
fine-level potential at convergence.

On the coarse level k the exchange-correlation potential
vxc

k is updated as soon as �k is obtained. We define a form for
the coarse grid vxc

k which also yields the restricted fine level
vxc

l at convergence:

vxc
k = vxc

k ��k� + Ik+1
k vxc

k+1 − vxc
k �Ik+1

k �k+1� . �16�

The last two terms of Eq. �16� can be considered a defect
correction for vxc

k . For vxc we have used either the Vosko-
Wilk-Nussair �VWN� form35 or the formula given in Ref. 36.
The pseudopotentials �discussed below� do not depend on
the valence charge density, so they do not require modifica-
tion on coarse levels.

VI. RELAXATION WITH SHIFT PARAMETER

Consider a fine-level eigenvalue equation for a single
state �where � and ul are the current approximations�:
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Hlul = �ul,

Hl = Ll + Dl + Ul. �17�

Here the Hamiltonian matrix Hl is written using the lower-
triangular part Ll, the diagonal part Dl, and the upper-
triangular part Ul.

On any level k, Gauss-Seidel relaxation for the eigenvalue
problem �with a shift parameter �k� can then be written as30

uk,n+1 = uk,n + �Dk − �kI�−1��k − �Dkuk,n + Lkuk,n+1 + Ukuk,n

− �Iuk,n�� , �18�

where

�k = 	k + � + vCoul
k �r� + vxc

k �r� . �19�

Here 	k is a parameter �units of energy�, � is the eigenvalue,
and vCoul

k �r� includes the Coulomb potential from the nuclei
and the electrons �no nonlocal parts of the pseudopotential�.
We found that addition of the eigenvalue and the potential
led to smoother convergence. In the iteration equation uk,n+1

is the updated k-level vector and uk,n is the old vector.
We also extended the iterative scheme to successive over-

relaxation �SOR� with a shift parameter and found improved
convergence rates in our case studies

uk,n+1 = uk,n + �Dk − �kI�−1��k − �Dkuk,n + Lkuk,n+1 + Ukuk,n

− �Iuk,n��
k, �20�

where 
k is the �unitless� overrelaxation parameter and 
k

=1 yields the usual Gauss-Seidel relaxation �Eq. �18��. On
the finest level, k= l and �l=0.

Choosing the appropriate parameters 
 and 	 for the re-
laxation scheme is important; otherwise, consistent conver-
gence may not be obtained. We determined optimal conver-
gence parameters for the relaxation by numerical
experimentation during the test calculations. Values used for

 and 	 are given for the test cases below.

When nonlocal pseudopotentials are present, the Hamil-
tonian includes an additional term, which is the nonlocal
pseudopotential operator. Relativistic separable dual-space
Gaussian pseudopotentials34 are used in this work. The total
pseudopotential, neglecting spin-orbit effects,34 is given by

v�r,r�� = vloc�r���r − r�� + �
l

vnl
l �r,r�� . �21�

Denoting the last term of Eq. �21� by vnl�r ,r��, the action of
the nonlocal pseudopotential operator �Vnl� on a wave func-
tion u�r� is expressed as

Vnl�u�r�	 =
 vnl�r,r��u�r��dr�. �22�

The separable nature of the pseudopotenial is utilized to ob-
tain an efficient real-space integration �see below�.37 The de-
cay properties of the projectors allow restriction of the do-
main to a small region around each nucleus �specified
below�. Spin-orbit effects were neglected for the calculations
presented here. On coarse levels, the pseudopotential is ap-
plied in the same form as on the fine level over the same

physical domain �but sampling fewer grid points�. We found
that adding �vnl�r ,r��dr� to the diagonal term Dk in the de-
nominator of Eqs. �18� and �20� brought improved conver-
gence rates; this is an approximate way to include the effect
of the nonlocal pseudopotential in the relaxation scheme.
The quantity �vnl�r ,r��dr� can be evaluated and stored at the
beginning of the program since it does not involve the wave
functions.

VII. COMPUTATIONAL IMPLEMENTATION

In this section, details of the computational implementa-
tion for self-consistent Kohn-Sham eigenvalue problems are
presented. All the calculations are performed on a three-
dimensional real-space grid using the finite-difference
method with 12th-order accuracy for the Laplacian. The FAS
approach allows for different �typically lower� approxima-
tion orders on coarse levels; in the calculations presented
here, we maintained the same Laplacian order on all levels
for computational simplicity. We have tested lower-order
representations on coarse levels and observe similar conver-
gence rates to those presented here. The trapezoid rule is
used for integration formulas. Three grid levels are utilized,
comprising 173, 333, and 653 grid points. Interpolation and
restriction operations are performed using linear interpola-
tion and full weighted averaging, respectively. Atomic units
are used throughout. The calculation parameters, sequence of
operations, numbers of iteration, etc., were optimized during
extensive numerical experimentation in the course of algo-
rithm development.

A. FLR

Here, we describe the implementation for the case where
the Ritz projection is performed on the full occupied fine-
level subspace �FLR�. Initially on the coarse grid �A in Fig.
1�, random numbers are assigned to all wave function values
on the grid, except the boundary points; for these finite sys-
tems, the boundary points are set to zero and fixed through-
out the calculations. Next, the wave functions are orthonor-
malized and the effective potential is found. This is followed
by the evaluation of Vnl�u�r�	 �Eq. �22��. All these operations
prepare the Hamiltonian matrix, and in the next step, the Ritz
projection uses this matrix. The operation Vnl�u�r�	 is evalu-
ated once again, and the eigenvalues are updated using the
Rayleigh quotient. The wave functions are relaxed once us-
ing the Gauss-Seidel method and normalized. The last four
operations are repeated twice, and all the operations are re-
peated 50 times. At this point, the residuals of the eigenvalue
equations are around 10−5, and further iterations have almost
no effect in reducing the residuals.

Next, the wave functions are interpolated to the next
higher level �B in Fig. 1� and the same operations which are
performed at A are repeated at B. An additional evaluation of
Vnl�u�r�	 is done since this is needed in the evaluation of the
defect correction for the next coarser level �C in Fig. 1�. The
wave functions are restricted to the coarse level, and the
defect correction is found. On the coarse grid C, the evalua-
tion of Vnl�u�r�	, relaxation, and imposition of constraints are
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repeated 5 times. The solution is then updated by an FAS
correction step at D in Fig. 1. The same operations which are
performed at B are repeated at D. This completes the two-
level multigrid V cycle. The two-level V cycle is repeated
roughly 15 times, and the solution is then interpolated to the
finest level �E in Fig. 1�.

The interpolated wave functions provide a good initial
approximation on the fine level �E�, which is the main ad-
vantage of using the full multigrid �FMG� scheme. On the
fine level �E�, orthonormalization of wave functions, update
of the effective potential, the evaluation of Vnl�u�r�	, and
Ritz projection are performed once. This is followed by the
evaluation of Vnl�u�r�	, updating the eigenvalues using the
Rayleigh quotient, relaxation �SOR� and normalization
twice, evaluation of Vnl�u�r�	, and relaxation and normaliza-
tion twice again. An additional application of Vnl�u�r�	 is
performed since this is required for calculating the defect
correction on the middle level �F in Fig. 1�.

Next, the solution is restricted to the middle level �F�,
where the defect correction is first computed from the fine-
scale wave functions. The evaluation of Vnl�u�r�	, relaxation,
and imposition of constraints30 are repeated 7 times at F, and
another evaluation of Vnl�u�r�	 is performed since this is re-
quired for the defect correction on the next coarser level.
Then the solution is restricted to the coarsest level �G in Fig.
1�, and the defect correction is found. The operations which
are performed at C are performed 20 times at G. The current
approximation on the next finer level �H in Fig. 1� is then
updated by an FAS correction step. The same operations
which are done at F are performed at H, and the finest-level
�I in Fig. 1� wave functions are updated with an FAS correc-
tion step. The same operations which are performed at E are
performed at I. This completes the three-level V cycle. The
three-level V cycle can be repeated until a desired conver-
gence is reached. On the fine level �653�, the Gram-Schmidt
orthonormalization and the Ritz projection are performed
only twice �once at each end of the V cycle�, and the wave
functions are relaxed altogether 8 times.

The convergence rate can be improved by performing
more relaxation steps on the fine grid, although the optimum
number of relaxation steps depends to some extent on the
system. For our comparative test cases, we found eight re-
laxations per V cycle, four at each end of the V cycle, to be
optimal. However, for larger sytems such as the C20 mol-
ecule, four relaxations were performed on the fine grid, two
at each end of the V cycle; further increase in the number of
relaxation steps did not improve the convergence rate for that
case. The Poisson problem is solved once at each end of the
V cycle.

B. CR-GRBR

Here we describe the modified algorithm in which fine-
level Ritz projection is performed only on preselected over-
lapping eigenvalue clusters. The CR-GRBR process is per-
formed on the three-level V cycle �E-F-G-H-I in Fig. 1�. The
standard Ritz projection method as described above is used
prior to this point. Therefore, only the three-level V cycle is
described.

Upon entering the three-level V cycle �E in Fig. 1�, the
wave functions are normalized and the effective potential is
updated. Next, Ritz projection is performed on clusters once
upon entering E to stabilize the wave functions initially. In
the process of performing Ritz projection on clusters,
Vnl�u�r�	 is always evaluated right after the orthonormaliza-
tion within a cluster so that an updated function is used in the
Ritz projection process.

The Ritz projection on clusters is followed by the evalu-
ation of Vnl�u�r�	, relaxation, and normalization; these three
steps are performed twice. Next, during the first three V
cycles, we perform Ritz projection on clusters 3 times con-
secutively; for the subsequent V cycles, it is performed only
once. The additional Ritz projections on clusters help to sta-
bilize the wave finctions in their initial stages. This was es-
pecially necessary for larger systems such as the C20 mol-
ecule. These steps are followed by the evaluation of
Vnl�u�r�	, relaxation, and normalization twice and an addi-
tional evaluation of Vnl�u�r�	, which is required for the de-
fect correction on the next coarser level.

Then the solution is restricted to the middle level �F in
Fig. 1�, and the defect correction is evaluated. This is fol-
lowed by the evaluation of Vnl�u�r�	, relaxation, evaluation
of Vnl�u�r�	, and GRBR. These operations are repeated 7
times. An additional evaluation of Vnl�u�r�	 is made since it
is required for the defect correction on the next coarser level.

The solution is restricted to the coarsest grid �G in Fig. 1�,
and the defect correction is found. Application of Vnl�u�r�	,
relaxation, and constraint imposition are performed 20 times
at G. The next finer level �H in Fig. 1� solution is updated
with an FAS correction step. The same operations which are
performed at F are repeated at H, followed by updates of the
fine-level �I in Fig. 1� functions in an FAS correction step.
The operations which are performed at E are repeated at I.
This completes the three-level V cycle. It can be repeated
until a desired convergence is reached.

For the comparitive test cases considered here �benzene,
glycine, and benzenedithiol�, the following clusters are used
for the CR-GRBR method. For benzene two clusters of �0, 7�
and �7, 14� are chosen, and for glycine two clusters of �0, 6�
and �6, 14� are used. Benzenedithiol has 21 wave functions,
and two clusters of �0, 9� and �9, 20� are chosen; an overlap
s of one element was sufficient in all three cases. The values
of the parameters 	 and 
, which are used for the relaxation
schemes, are as follows. On the coarse level �at point A in
Fig. 1�, values of 	 and 
 are −30 and 1, respectively; for
the two-level V cycle �B ,C ,D in Fig. 1�, on both the coarse
and middle levels, 	=−20 and 
=1; for the three-level V
cycle �E-F-G-H-I in Fig. 1�, on the coarse and middle levels,
	=−20 and 
=1, while on the finest level 	=0 and 


FIG. 1. Three-level full multigrid process �FMG�. The bottom of
the figure is the coarsest level.
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=1.75. Slight adjustments of the 
 values on the finest level
around the 1.75 value can improve the convergence for some
cases. For the simultaneous algorithm, the finest-level 

value was taken as 1.5. These values were obtained through
numerical optimization.

The cluster sizes are not limited to two as in these
modest-sized test cases. Up to four clusters were used with
an overlap of s=3 elements for the larger glycine dimer,
glutamine, phenylalanine, tyrosine, and C20 illustrative cases,
which are used to further display this new method. We found
it necessary to include more than one overlap element for the
larger systems. Also, for these larger systems we employed
SOR relaxation on coarse levels in addition to the fine level,
which brought improved convergence rates. As an example,
for the C20 test case, the SOR 
 values were taken as 1.8,
1.5, and 1.88 for the coarse, middle, and fine levels, respec-
tively, while the 	 values were −15, −20, and 0 for the three
levels.

C. S-FLR and S-CR-GRBR

The simultaneous technique is similar to the method de-
scribed above, except the charge density and effective poten-
tial are updated on the coarse grids during the FAS process-
ing. The appropriate defect corrections for the charge density
and the exchange-correlation potential described above must
be included during these updates. Those defect corrections
ensure that the charge density and the exchange correlation
potential are simply the values obtained by restricting the
fine-scale quantities at convergence. Updating the potential
along with the eigenfunctions on coarse levels is intended to
bring improved convergence rates. However, in our calcula-
tions we did not find any major improvements in the conver-
gence rates compared to the sequential methods. Slightly dif-
ferent values for 	 and 
 are used in the relaxation as
discussed above.

D. Poisson problem, exchange correlation potential, and
density mixing

In all calculations except the simultaneous update meth-
ods �S-FLR and S-CR-GRBR�, the Poisson equation is
solved using an FAS multigrid solver given the total charge
density on the fine grid. We solve the Poisson equation for
the whole system �electrons plus nuclei�,

�2� = − 4�� , �23�

and then the nuclear contribution is replaced by the smooth
local component of the pseudopotential.

The boundary values for the Poisson problem are obtained
using a multipole expansion up to the quadrupole term. On
coarse levels, restricted values of the Coulomb potential are
used except in the simultaneous techniques, where the poten-
tial is repeatedly updated during the coupled FAS iterations.
Since the nuclear charge distribution for a large molecule
cannot in general be placed on grid points, the charges are
distributed to the neighboring grid points. The charge assign-
ment to the nearest eight grid points is performed by splitting
the charge according to the volume fraction within the cube.

Figure 2 displays how the partitioning is enacted in two di-
mensions, and this partitioning is easily generalized to three
dimensions.

The exchange-correlation potential is computed using the
formula given in Refs. 34 and 36. The VWN formula35 for
the exchange-correlation potential can also be used if de-
sired, and it has been implemented in our algorithm. On
coarse levels, the restricted exchange-correlation potential
from the fine level is employed, except in the simultaneous
technique, where it is repeatedly updated. Concerning mix-
ing of old and new charge densities during self-consistency
iterations, we found no mixing was required in the FLR al-
gorithm for any of the test cases. In the CR-GRBR method
and S-CR-GRBR algorithms, however, a mixing parameter
of 0.5 was utilized �on the fine level at the end of the V
cycle� to stabilize the self-consistent process.

E. Nonlocal pseudopotential

The application of the nonlocal component of the pseudo-
potential, Eq. �22�, is performed only over a small cube
around each nucleus. This is possible because the radial pro-
jectors tend to zero outside the covalent radius of an atom.
The domain sizes used in our calculations are: 11 grid points
�per side� on the fine grid, 9 grid points on the mid level, and
5 grid points for the coarse level. Equation �22� is imple-
mented on all grid levels without any modification.

VIII. RESULTS

The benzene, glycine, and benzenedithiol molecules are
used in our comparitive numerical studies. Utilizing pseudo-
potentials to remove the core electrons, benzene and glycine
each have 15 wave functions and benzenedithiol has 21 wave
functions. These molecules are chosen due to their different
structures and resulting degeneracies. The benzene molecule
has clear symmetry and thus degeneracies in the eigenvalues,
while glycine possesses no clear symmetry and exhibits al-
most no eigenvalue degeneracy. Benzenedithiol is intermedi-
ate between these two extremes and has a larger number of
wavefunctions.

The convergence rates for each of the algorithms are ana-
lyzed by plotting log10�E−Econ� versus the number of V
cycles �self-consistent iterations�. E is the total energy for
each iteration given by the formula in Ref. 38 �Eq. 7.2.10�,
and Econ is the fully converged numerical result. The total

FIG. 2. Illustration of how the charge Q is distributed to neigh-
boring grid points in two dimensions. B, C, D, and E are the parti-
tioning areas, and A is the total area of the square. The same pro-
cedure can be performed with volumes in three dimensions.
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energy E is evaluated and stored at the end of each three-
level V cycle.

The FLR, CR-GRBR, and S-FLR methods exhibit similar
convergence rates for all test cases as shown in Figs. 3–5. In
all cases except the S-FLR result for glycine, log10�E−Econ�
drops to −6 in about ten V cycles. The S-CR-GRBR method
displays the slowest convergence rate in all three cases. A
key result in this study is the excellent convergence rates
shown by the CR-GRBR algorithm.

We also present results for the CR-GRBR convergence
rates obtained for the larger illustrative cases glutamine �29
orbitals, 3 clusters�, glycine dimer �26 orbitals, 3 clusters�,
tyrosine �35 orbitals, 4 clusters�, phenylalanine �32 orbitals,
4 clusters�, and the C20 molecule �40 orbitals, 4 clusters� in
Fig. 6. Three overlap elements �s=3� were used for these
cases. The larger required overlap is likely due to the smaller
eigenvalue separation in the denser spectrum.

The convergence rates for the larger systems are robust
but somewhat slower than for the smaller test cases. This
behavior can be linked to three factors. First, it has been
shown that ill-conditioning due to a wide separation in en-
ergy scales between the lowest and highest eigenvalues can
lead to slowing of the convergence rates.39 At first glance,
the multigrid method should address this issue directly. For
simple cases such as Poisson problems, this is certainly the
case. The eigenvalue problems addressed here possess addi-
tional difficulties, however: the coarsest grid employed in the
solver must be fine enough to maintain some resolution of
the oscillations in the eigenfunctions. Therefore, to some ex-
tent there is incomplete decimation of the longer-wavelength
features of the error. For eigenfunctions that possess both
rapid oscillations and longer-wavelength features, this can be
expected to lead to partial slowing down. It is worth explor-
ing to what extent alternative methods for handling the ill-
conditioning might help in this regard.

Second, Kerker preconditioning has been found to remove
long-wavelength changes in the charge density upon

mixing.19 We have not addressed kinetic-energy ill-
conditioning or charge preconditioning in this work. Third,
the C20 physical system contains electrons which are more
delocalized, so charge sloshing can be expected to be a prob-
lem. To some extent, the FAS multigrid process addresses
these issues; limited charge mixing was utilized in our work,
which illustrates the potential of the coarse-grid processing
itself to stabilize the charge density. Future incorporation of
these improvements can be expected to accelerate the con-
vergence rates for larger systems. The CR-GRBR method
presented here performs well in comparison with other
multigrid22,25 and plane-wave40 codes, the advantage being

FIG. 3. Convergence rates for benzene. The log10 of the differ-
ence between the current total energy E �a.u.� and the fully con-
verged value Econ is plotted against the number of V cycles �self-
consistent iterations�. The plots are for the FLR, CR-GRBR, S-FLR,
and S-CR-GRBR methods. The fine grid spacing is h=0.3 a.u.

FIG. 4. Convergence rates for glycine. The log10 of the differ-
ence between the current total energy E �a.u.� and the fully con-
verged value Econ is plotted against the number of V cycles �self-
consistent iterations�. The plots are for the FLR, CR-GRBR, S-FLR,
and S-CR-GRBR methods. The fine grid spacing is h=0.3 a.u.

FIG. 5. Convergence rates for benzenedithiol. The log10 of the
difference between the current total energy E �a.u.� and the fully
converged value Econ is plotted against the number of V cycles
�self-consistent iterations�. The plots are for the FLR, CR-GRBR,
S-FLR, and S-CR-GRBR methods. The fine grid spacing is h
=0.3 a.u.
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the reduced fine-level cost of maintaining eigenfunction or-
thogonality in the algorithm.

In the CR-GRBR method, a measure of the overall con-
vergence is the degree of orthogonality of the wave func-
tions. The orthogonality of the wave functions between dif-
ferent clusters improves with increasing numbers of V
cycles. Initially the degree of orthogonality starts around
10−2 �for �ui

l �uj
l��, and it improves to 10−14 at full conver-

gence. Finally, as an example of the physical output of the
calculations, we present a density plot of the wave function
magnitude for one of the states of the benzene molecule �Fig.
7�.

To give an indication of the computational requirements
for the results presented here, the calculations were per-
formed on a 3.0 GHz CPU with 2 GB of physical memory.
For the C20 case �the largest considered here�, 20 three-level
multigrid V-cycle iterations were performed with the CR-
GRBR method. The fine grid consisted of 653 points. That
calculation required roughly 1.5 h of CPU time.

IX. DISCUSSION AND CONCLUSIONS

We have successfully tested four nonlinear FAS multigrid
techniques for solving the self-consistent Kohn-Sham equa-
tions of density functional theory. The four methods are the
usual fine-level Ritz projection �FLR�, Ritz projection per-
formed on clusters in conjunction with GRBR �CR-GRBR�,
the simultaneous technique with fine-level Ritz projection
�S-FLR�, and the simultaneous technique with Ritz projec-
tion performed on clusters with GRBR on coarse levels �S-
CR-GRBR�.

Earlier we showed that the coarse-level GRBR method
converged for small molecules and atoms with a small num-

ber of wave functions;24 the convergence rate, however, was
slower than the usual fine-level Ritz projection. Convergence
rates could be restored by performing occasional orthonor-
malization on the fine grid for these small molecules. For
large molecules such as benzenedithiol, however, the GRBR
method stalled, and the GRBR method with occasional fine-
level orthonormalization either stalled �benzenedithiol� or
converged with a much slower convergence rate �benzene�.
The cause of the stalling is likely the relatively large number
of wave functions these molecules posses and the ambiguous
eigenvalue cluster structures presented. In cases with am-
biguous eigenvalue cluster structure, it is difficult to auto-
matically determine the relevant clusters for processing in
the GRBR method. Also, the strongly varying effective po-
tentials in the Kohn-Sham problem present a greater chal-
lenge than the relatively smooth model potentials examined
by Costiner and Ta’asan.31,32

We have shown in this paper that typical multigrid con-
vergence rates can be restored by including fine-scale Ritz
projection on eigenvalue clusters in the CR-GRBR algo-
rithm. In this method, cluster structures are chosen initially,
and then the size of the cluster structures can be increased
until a suitable set of clusters is reached �typically clusters of
roughly ten eigenvalues�. The Ritz projection is performed
on those overlapping clusters on the fine grid in addition to
GRBR on a coarse level �the middle level in our cases�. This
procedure removes the stalling observed in the original form
of the GRBR algorithm, and good convergence rates are then
observed. The nominal scaling of this algorithm for modest-
sized systems is qNg

l �or Ne
2, where Ne is the number of

electrons�, as opposed to q2Ng
l when the full fine-scale Ritz

procedure is implemented.
The orthonormalization and the Ritz projection performed

on m overlapping clusters having p wave functions in each

FIG. 6. Convergence rates for glycine dimer �Gly�, glutamine
�Glu�, tyrosine �Tyr�, phenylalanine �Phe�, and the C20 molecule
�C20�. The CR-GRBR method is used. The log10 of the difference
between the current total energy E �a.u.� and the fully converged
value Econ is plotted against the number of V cycles �self-consistent
iterations�. The fine grid spacing for the first three molecules is h
=0.32 a.u., and for the last two molecules h=0.35 a.u. is used.

FIG. 7. This figure displays the wave function magnitude across
the x-y plane for the seventh-highest occupied state of benzene. The
intensity is proportional to the wave function magnitude. The ben-
zene molecule lies on the x-y plane at the center of the domain. The
axis labels are grid indices, and the grid spacing is 0.3 a.u.
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cluster scale as m�p+s�2Ng
l , where s is the number of overlap

elements and s is a small number. Therefore, nearly an
m-fold savings in computational time can be obtained rela-
tive to the regular Ritz projection method. In addition to the
main test cases examined here, we have successfully applied
the CR-GRBR method to larger systems such as the glycine
dimer, glutamine, tyrosine, phenylalanine, and the C20 mol-
ecule. While the scaling for the modest-sized systems exam-
ined here is quadratic, it remains to be seen how the method
performs for very large systems in which the eigenvalue
spectrum becomes more dense.

The CR-GRBR algorithm is a clustering algorithm in en-
ergy space. It is clear from our convergence results that a
proper separation of the eigenvalues can be enforced by the
fine-scale clustering process; the algorithm can achieve full
convergence to machine precision in the residuals. The
energy-clustering method can be viewed as a kind of pertur-
bation theory, where communication between the exactly di-
agonalized cases within each cluster is communicated
through the overlap elements. In addition, widely separated
eigenvalue-eigenfunction pairs tend to be inherently orthogo-
nal due to their differing length scales of oscillation.

The CR-GRBR method can be contrasted with real-space
localization techniques,3,17,19 which have been utilized to

achieve near-linear scaling DFT algorithms. Those methods
generally rely on a band gap, leading to relatively rapid de-
cay of the density matrix in real space. The localization then
yields a density matrix and Hamiltonian �in the basis of oc-
cupied states�, which are banded matrices in real space. The
localization, however, may come at a price �which decreases
with increasing localization radius�;4 the total energy conver-
gence may stall at an energy scale dictated by lost informa-
tion from the density matrix or orbital truncation. The
energy-clustering CR-GRBR algorithm can be viewed as an
alternative algorithm, which has the drawback of steeper
scaling, but the advantage of full numerical convergence
given a chosen real-space approximation to the Kohn-Sham
equations.
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