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Transport properties through wide and short ballistic graphene junctions are studied in the presence of
arbitrary dopings and magnetic fields. No dependence on the magnetic field is observed at the Dirac point for
any current cumulant, just as in a classical diffusive system, both in normal-graphene-normal and normal-
graphene-superconductor junctions. This pseudodiffusive regime is, however, extremely fragile with respect to
doping at finite fields. We identify the crossovers to a field-suppressed and a normal ballistic transport regime
in the magnetic-field-doping parameter space, and provide a physical interpretation of the phase diagram.
Remarkably, pseudodiffusive transport is recovered away from the Dirac point in resonance with Landau levels
at high magnetic fields.
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Low-energy excitations in a monolayer of carbon atoms
arranged in a honeycomb lattice, known as a graphene sheet,
have the remarkable peculiarity of being governed by the
two dimensional massless Dirac equation, which is respon-
sible for a variety of exotic transport properties as compared
to ordinary metals. Particularly striking is that for clean, un-
doped graphene the density of states is zero, but not so the
conductivity, which remains of the order of the quantum unit
e2 /h.1,2 Another intriguing fact is that a wide and short strip
of undoped graphene exhibits “pseudodiffusive” transport
properties in the absence of electron-electron interactions
and impurity scattering.3 By ‘‘pseudodiffusive’’ it is meant
that transport properties are indistinguishable from those of a
classical diffusive system. These include the full transport
statistics �in particular, the Fano factor F=1/3 and the con-
ductance G�W /L,3 where W is the width and L is the length
of the graphene strip�, the critical current,4 and I-V
characteristics5 in Josephson structures, as well as the rela-
tion of the normal-metal–superconductor conductance to the
normal transmissions.6 The same behavior can be expected
in bilayer graphene.7 In fact, all of the above similarities can
be explained by noting that at the Dirac point �i.e., for un-
doped graphene� transport occurs entirely via evanescent
modes with a transmission that is equal to the diffusive trans-
port theory result �evaluated at kFl=1, l� mean free path24�
without quantum corrections,3,6,8

Tky
=

1

cosh2 kyL
. �1�

Here, ky is the transverse momentum of the channel. In dif-
fusive systems, the above relation holds independently of an
externally applied magnetic field in the limit of many chan-
nels �classical limit�, for which any quantum weak localiza-
tion correction is negligible.8

The question we raise here is as follows: Does the diffu-
sive behavior of ballistic graphene persist in the presence of
a magnetic field? We will show that for zero doping the
equivalence is preserved for any magnetic field. Remarkably

for a ballistic system, the applied magnetic field does not
affect the transport statistics �for any current cumulant� at the
Dirac point. For graphene with disorder, this has recently
also been demonstrated at the conductivity level.9–11 At suf-
ficiently strong magnetic fields, an exponentially small
chemical potential is enough to enter a field-suppressed
transport regime. However, at resonance with the Landau
levels �LLs� the pseudodiffusive behavior is recovered for all
current cumulants. For even higher dopings, one observes a
final crossover to the ballistic magnetotransport regime,
since clean graphene then resembles a ballistic normal metal.

The magnetic field introduces a fundamental quantum-
mechanical length scale known as the magnetic length lB

= �� / �eB� ��1/2. In the complete absence of scattering, localized
LLs are well formed and ballistic transport is suppressed.
The only contribution to transport in this regime comes from
resonant tunneling exactly at Landau energies. In usual met-
als, this happens when the cyclotron diameter 2rc=2lB

2kF is
smaller than the relevant scattering length �set by system
size, disorder, or temperature�. If 2rc is of the order of or
larger than the scattering length, then delocalized states con-
tribute to transport, leading to Shubnikov–de Haas oscilla-
tions and the quantum Hall effect. For wide and short ballis-
tic strips, the relevant scattering scale is the strip length L,
and scattering on lateral boundaries can be ignored. In
graphene, the lowest LL lies precisely at the Dirac point.
Besides, at this point kF=0 and thus rc=0 independent of the
magnetic field. Therefore, in contrast to the normal-metal
strip and to the high doping limit, at the Dirac point no
delocalized bulk transport should take place for any mag-
netic field and resonant tunneling should be field indepen-
dent.

To confirm this hand-waving picture, we analyze theoreti-
cally magnetotransport effects through normal-graphene-
normal �N� and normal-graphene-superconductor �NS� wide
ballistic junctions at arbitrary dopings and magnetic fields.
From an experimental point of view, transport properties of
lightly doped graphene in contact with superconductors are
currently being investigated.12 Moreover, the properties of
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graphene in strong magnetic fields are also a subject of great
interest,13–15 in particular, in relation to weak
�anti�localization.16–20 Here, we consider a clean graphene
sheet of width W �assumed to be the largest length scale in
the system� in the y direction through which transport occurs
in the x direction. For x�−L /2, it is covered by a normal
contact, and for x�L /2, it is covered either by a supercon-
ducting contact or by a normal one. The central region is
lightly doped, leading to a finite Fermi energy � measured
relative to the Dirac point, which can be varied by an exter-
nal gate voltage. The contact regions are modeled as heavily
doped graphene, with Fermi energy �c conveniently fixed to
infinity with respect to both � and the superconducting gap
�. The boundary conditions in the y direction are irrelevant3

for large aspect ratios W /L�1. We choose periodic bound-
aries for simplicity. A constant external magnetic field B is
applied perpendicular to the graphene sheet. We assume the
electrodes to be magnetically shielded, e.g., by covering
them with materials with high magnetic permeability. In
the Landau gauge, we can write the vector potential as

A� = �0,Bx ,0� for �x��L /2, and constant in the contact re-
gions. This gauge is convenient since the motions in the
x and y directions are uncoupled and ky remains a good
quantum number. We neglect Zeeman splitting, so that the
electron spin only enters as a degeneracy factor of 2 in the
following calculation. Finally, we note that edge currents
generally give a negligible contribution to transport in the
W�L limit.

We will compute the N and the NS �Andreev� inverse
longitudinal resistivities, 	xx

−1=G�L /W�, expressed in terms of
the conductances3,6

GN =
4e2

h
�
ky

Tky
, GNS =

8e2

h
�
ky

Tky

2

�2 − Tky
�2 , �2�

and the shot noise using corresponding expressions in terms
of the transmission for normal conducting contacts Tky

.21

Note that the above expressions for the NS case are valid
only if Tky

is left-right symmetric, which is not in general
true in the presence of a magnetic field. In our particular
setup, it does indeed turn out to be symmetric. The transmis-
sion through the central region is obtained by imposing cur-
rent conservation at the interfaces, which translates into con-
tinuity of the wave function. In the chosen gauge, the
scattering problem is effectively one dimensional, the trans-
verse mode profile eikyy being the same in all regions, so we
will only discuss the x dependence of the wave functions
from now on.

The contact region eigenstates at energy 
=�vF
�kx

2+ky
2

−�c+� with respect to the central strip Dirac point are given
by

�kxkys
N �x� = �szk

−s

1
�eikxx. �3�

The spinor lives in the space of the two triangular sublattices
that conform the graphene hexagonal lattice, s= ±1 is the
“valley” quantum number �for the degenerate K and

K� points�, and zk�exp	i arg�kx+ iky�
, which tends to
zk�sgn�kx� when �c→�.

The spinor �
kys
G �x�= 	

kys

A �x� ,

kys
B �x�
T for the central

region is determined by the one-dimensional Dirac equation

� 0 − iâ

iâ+ 0
��

kys

A �x�



kys
B �x� � = ��n
�

kys

A �x�



kys
B �x� � , �4�

with â��x̃+�x̃� /�2, â+��x̃−�x̃� /�2, x̃�x / lB+kylB, �
=sgn 
, and n
= �lB�
� /�vF�2 /2. Canonical relations
	â , â+
=1 are satisfied. The above equation corresponds to
the K valley �s=1�, while the s=−1 equation is obtained by
swapping â and â+. Since the central region is bounded, no
integrability condition must be met and the eigenspectrum of
Eq. �4� is continuous. The usual LL solutions, which corre-
spond to integer n
, are thus complemented by a larger fam-
ily of divergent wave functions, typically localized around
the interfaces x= ±L /2, with arbitrary n
�0.22 At the
Dirac point �n
=0�, the components of the spinor are un-
coupled, and the two eigenstates for s=1 are �0ky1

G,1 �x�
= 	0,exp�−x̃2 /2�
T and �0ky1

G,2 �x�= 	exp�+x̃2 /2� ,0
T. The
s=−1 solution has interchanged spinor components. At finite
energy �n
�0�, the solutions to Eq. �4� become

�
ky1
G,1�2��x� = ��hn
−1

e�o� �x̃�

ihn


o�e��x̃� �, �
ky−1
G,1�2��x� = ��hn


o�e��x̃�

ihn
−1
e�o� �x̃� � .

They have been expressed in terms of the even and odd �in x̃�
solutions hn

e,o�x̃� of the Klein-Gordon equation a+ahn
e�o��x̃�

=nhn
e�o��x̃� 	the square of Eq. �4�
, normalized so that

â+hn
e�o�=�n+1hn+1

o�e�, âhn
e�o�=�nhn−1

o�e�. As a function of the con-

fluent hypergeometric function 1F1�a ,b ,z�=1+ a
b

z
1! +

a�a+1�

b�b+1�
z2

2!

+¯ and Sn=sgn�sin	��n+1/2� /2

, these are

hn
e�x̃� =��n − 1�!!

��n!!
Sn+1e−x̃2/2

1F1�−
n

2
,
1

2
, x̃2� ,

hn
o�x̃� =� 2n!!

���n − 1�!!
Snx̃e−x̃2/2

1F1�−
n − 1

2
,
3

2
, x̃2� .

Imposing continuity for each �ky ,

 at the interfaces re-
sults in the following s-independent transmission probability:

Tky,
 = �tky,
�2 = � 2gn


N

gn


R − ign


I �2

, �5�

where

gn
R = hn

e+hn−1
e− + hn−1

e+ hn
e− − hn

o+hn−1
o− − hn−1

o+ hn
o−,

gn
I = hn

o+hn
e− − hn

e+hn
o− + hn−1

e+ hn−1
o− − hn−1

o+ hn−1
e− ,

gn
N = hn−1

e+ hn
e+ − hn−1

o+ hn
o+ =

S2n+1/2

��n

are expressed in terms of the wave functions at the bound-
aries hn

e�o�±=hn
e�o��± L/2

lB
+kylB�. This gives the general trans-
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missions Tky
for arbitrary doping and magnetic field. It re-

produces previously known results at B=0 and nonzero
doping4 as well as Eq. �1� for �=0.

In Fig. 1�a�, we plot 	xx
−1 as a function of the Fermi energy

for increasing values of the ratio L / lB��B. We recover the
results obtained without magnetic field, namely, that �N and
�NS 	where �=	xx

−1�B=0�
 tend to the known quantum-
limited minimal conductivity value 4e2 /�h at zero doping,
whereas for ���L /�vF�1 the slope of the asymptotes tends
to 0.38� and 0.25� for the NS and N junctions,
respectively.6 Remarkably, as we increase B, all the 	xx

−1

curves remain unchanged at the Dirac point �=0. The Dirac-
point Fano factor in Fig. 1�b� is also unaffected by magnetic
fields and takes the classical diffusive value �1/3 for the N
and 2/3 for the NS junction�. This happens for any current
cumulant, since at �=0 the transmission given in Eq. �5�
reduces to Eq. �1� independent of B.

However, for ��0 the resistivities and the Fano factors
do depend on the magnetic field. In particular, for 2rc�L
�and above a certain critical value of L / lB� transport can take
place only at resonance with the LLs ��L /�vF=�2nL / lB�,
while for other dopings 	xx

−1 is suppressed as e−�L / lB�2/2 for the
N junction and as e−�L / lB�2

for the NS one. The width of the
resonances at the LL energies vanishes for 2rc�L, as we
consider no disorder.15 Remarkably, 	xx

−1 at these resonances
for large fields coincides with the one at the Dirac point
4e2 /�h, a theoretical value that is usually associated strictly
with zero doping and that is interestingly at odds with some
experimental findings.1 In fact, it can be analytically

demonstrated that not only the conductance but the whole
pseudodiffusive transport statistics is recovered at the reso-
nances for high magnetic fields. Under this perspective, the
field-independent resistivity at �=0 can be understood as
due to resonant transport through the zeroth LL that remains
pinned at the Dirac point. The field-suppressed regime is
apparent for small but finite doping in Fig. 1�a�, where 	xx

−1

strongly decreases with increasing value of L / lB. Corre-
spondingly, the bulk Fano factor reaches the tunneling limit
value �1 for the N and 2 for the NS junction� as transport gets
suppressed 	see Fig. 1�b�
, in which limit the noise of the
edge currents not considered here could be visible. Increas-
ing the Fermi energy further, one enters the regime 2rc�L,
where 	xx

−1 is composed of two parts. The first part is linear in
�L /�vF, in agreement with the scaling with L behavior of a
ballistic conductor subject to a magnetic field �L-independent
conductance�. In particular, for sufficiently high dopings, all
curves in Fig. 1�a� become parallel and tend to the same
�average� slope as the zero-field conductivity. The second
contribution to 	xx

−1 is an oscillating part, which for 2rc�L
can no longer be explained by the resonance with LLs, since
in that regime the effect of the boundaries is dominating the
level structure in the central region. In fact, for 2rc�L the
oscillations become equally spaced and are explained rather
by a Fabry-Pérot-type effect, connected to resonant tunneling
through the structure.

In the inset of Fig. 1�a�, the ratio GNS
bulk /GN

bulk is plotted as
a function of � for the same values of L / lB as in the main
panel. At the Dirac point, the ratio goes to 1. At ��0, the
suppressed magnetotransport manifests itself as a decaying
GNS

bulk /GN
bulk�e−�L / lB�2/2, until doping reaches the ballistic

threshold and the ratio starts growing again, finally reaching
its asymptotic value 0.38/0.25=1.52. As explained in Ref. 6,
this value is expected in normal ballistic systems with Fermi
wavelength mismatch. Note again here that, for sufficiently
suppressed Gbulk, the edge contribution23 neglected here will
dominate transport.

All the previous behaviors can be condensed in a quanti-
tative way in the phase diagram shown in Fig. 2. It contains
three regions corresponding to the three different transport

FIG. 1. �Color online� �a� Inverse longitudinal resistivity in units
of 4e2 /�h and �b� bulk Fano factor for the N �left� and NS �right�
junctions as a function of the �absolute value of the� Fermi energy
�in units of �vF /L�. Different curves correspond to different values
of L / lB �where lB��� /eB�, which ranges from zero for red curve
to 4 for the dark blue one in steps of 1. The same for the ratio
GNS

bulk/GN
bulk in the inset.

FIG. 2. �Color online� Phase diagram representing the cross-
overs from localized, pseudodiffusive, and ballistic transport
regimes in the field-doping parameter plane. The solid �dashed�
lines represent the boundaries for a N �NS� junction. LLs are
labeled by n.
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regimes, namely, pseudodiffusive �red�, field suppressed
�blue�, and ballistic �green�, in the L / lB and �L /�vF=kFL
parameter space. The corresponding crossover lines between
regions are solid �dashed� for the N �NS� junction �note that
the background colors correspond to the boundaries of the N
case�. The boundaries for the pseudodiffusive region have
been calculated assuming a maximum deviation of ±10%
with respect to the Dirac-point conductivity 4e2 /�h. At low
fields, the width of the pseudodiffusive window that brackets
the Dirac point is roughly field independent, whereas for
L / lB�1.8 for N �1.35 for NS� the window closes down as
exp	−�L / lB�2 /4
. Physically, this means that at these higher
fields the quasidiffusive transport regime is extremely fragile
with respect to doping, and an exponentially fast crossover to
the field-suppressed �localized� regime takes place. The
boundaries of the latter �blue region� were set by a crossover
criterion 	xx

−1�0.1�4e2 /�h�. Its spiked shape is due to the
peaked contributions to the field-suppressed 	xx

−1 discussed in
the analysis of Fig. 1, which are produced by resonant tun-
neling through LLs. When the magnetic field is increased,
the positions of these peaks shift to higher dopings, converg-
ing on radial lines with slope 1/�2n, while their width de-
creases exponentially. Above a certain value of L / lB, the
pseudodiffusive regime is recovered and the resonances are
thus colored in red. The third region �green� is characterized
by 	xx

−1�L at fixed field and doping �which would correspond
to radial lines in the phase diagram�, and is therefore a bal-
listic transport regime. As expected from the arguments in
the Introduction, the boundary of the field-suppressed region
closely follows the ballistic threshold 2rc=L. Finally, inter-
mediate regions �white� are characterized by strongly oscil-
lating conductivities.

In conclusion, by computing the general transmission
probabilities through short and wide graphene junctions, we
have found that the transport properties at the Dirac point
exactly match those of a classical diffusive system even in
the presence of a magnetic field, which actually does not
affect transport at all at zero doping. This behavior, which is
associated with the existence of a zeroth LL pinned at the
Dirac point, is, however, found to be exponentially fragile
with respect to doping for high fields. By analyzing inverse
longitudinal resistivity and higher current cumulants, we
have identified and interpreted the three distinct regimes that
appear at finite magnetic fields and dopings, corresponding
to pseudo-diffusive, field-suppressed, and ballistic transport,
and computed the phase diagram for the N and NS junctions
in the relevant field-doping parameter space. Transport reso-
nances at the LL energies are found in the field-suppressed
regime, with 	xx

−1 and all higher bulk current cumulants satu-
rating to the pseudodiffusive Dirac-point values at high
fields. The width of these resonances decreases exponentially
with magnetic field, although broadening due to disorder in
real samples is expected, thus facilitating experimental ob-
servation. The reappearance of pseudodiffusive transport at
finite doping could shed light on the 1/� discrepancy be-
tween experiments and theoretical results for the conductiv-
ity at the Dirac point.
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