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We study localization-delocalization transition in quantum Hall systems with a random field of nuclear spins
acting on two-dimensional �2D� electron spins via hyperfine contact �Fermi� interaction. We use the Chalker-
Coddington network model, which corresponds to the projection onto the lowest Landau level. The inhomo-
geneous nuclear polarization acts on the electrons as an additional confining potential and, therefore, introduces
additional parameter p �the probability to find a polarized nucleus in the vicinity of a saddle point of random
potential� responsible for the change from quantum to classical behavior. In this manner we obtain two critical
exponents corresponding to quantum and classical percolations. We also study how the 2D extended state
develops into the one-dimensional critical state.
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Celebrated quantum Hall effect �QHE� is realized in a
two-dimensional �2D� electron gas subjected to a strong per-
pendicular magnetic field and a random potential.1,2 The
uniqueness of this phenomenon is in the high precision of the
plateaux in the Hall component and in the very rich physics
in the interplateau transitions.3 Here we will study the influ-
ence of the nuclear-spin fields4 on the critical exponents in
QHE.

The rich physics of the random potential in quantum Hall
systems could be roughly divided into spin-independent and
spin-dependent �spintronics� electron-scattering processes.
Magnetic impurities perturb the QHE transport very strongly
and will not be considered here. Recently, sharply growing
attention was attracted to the physics of the hyperfine inter-
actions in the QHE. It was suggested theoretically4 and ob-
served experimentally5,6 that the underlying nuclear-spin
structure can provide the microscopic information on the 2D
electron wave functions and provide strong influence on the
precision and other parameters of a QHE system.

The interaction between electron and nuclear spins in het-
erojunctions under QHE conditions is due, usually, to the
hyperfine Fermi contact interaction.4,7 This interaction is rep-
resented by the Hamiltonian:

Ĥint = − �n�I�i · H� e, �1�

where �n is the nuclear gyromagnetic ratio, I�i is the nuclear

spin, and H� e is the magnetic field on the nuclear site, pro-
duced by electron orbital and spin magnetic moments:

H� e = − g��
e

8�

3
ŝe��r�e − R� i� . �2�

Here r�e is the electron radius vector, ŝe is the electron-spin
operator, �=e� /m0c is the Bohr magneton, g is the elec-

tronic g-factor, and R� i is the nucleus radiusvector.
It follows from Eqs. �1� and �2� that once the nuclear

spins are polarized, i.e., if ��iI�i��0, the charge-carrier spins
feel the effective, time-dependent hyperfine field Bhf

=Bhf
o exp�−t /T1� �T1 is a nucleus relxation time�, which lifts

the spin degeneracy even in the absence of external magnetic
field. In GaAs/AlGaAs, one may achieve the spin splitting
due to hyperfine field of the order of the Fermi energy.5,6 The
inhomogeneous nuclear polarization acts on the electrons as
additional �to the scalar potential of the impurities� confining
potential Vhf =−�BBhf.

8

The nuclear-spin polarization, once created, remains finite
for macroscopically long times. Intensive experimental
studies5,6 of this phenomenon in QHE systems have provided
a more detailed knowledge on the hyperfine interaction be-
tween the nuclear and electron spins in heterojunctions and
quantum wells. It was observed that the nuclear-spin relax-
ation time is rather long �up to 103 s� and the hyperfine field
acting on the charge-carrier spins is extremely high, up to
104 G.5 The nuclear relaxation time depends strongly on the
vicinity to the impurity and its sign.3 The presence of the
impurity �long-range potential� provides the necessary en-
ergy conservation in the spin-exciton creation process lead-
ing to the nuclear-spin relaxation. We can, therefore, expect
the following scenario: nuclear spins being polarized by
some external field will then relax differently depending on
whether they are close to maxima or minima of the scalar
potential created by impurities. Therefore, they should
strongly affect tunneling of electrons through saddle-point
potential.

When random potential varies smoothly �its correlation
length is much larger than the magnetic length as, e.g., in
GaAs heterostructures�, a semiclasscial description becomes
relevant: electrons move along the lines of constant potential.
When two equipotential lines come close to each other �near
a saddle point�, tunneling is feasible. In this Breif Report, we
investigate how this picture will be affected by strong
nuclear polarization. We find that scaling of the localization
length is modified �Eq. �8��, which is the main result of this
work.

In the Chalker-Coddington �CC� network model,9 elec-
trons move along unidirectional links forming closed loops
in analogy to semiclassical motion on contours of constant
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potential. Scattering between links is allowed at nodes in
order to map tunneling through saddle-point potentials.
Propagation along links yields a random phase �; thus, links
are presented by diagonal matrices with elements in the form
exp�i��. Transfer matrix for one node relates a pair of in-
coming and outgoing amplitudes on the left to a correspond-
ing pair on the right; it has the form

T = �	1 + exp�− �	� exp�− �	/2�

exp�− �	/2� 	1 + exp�− �	�

 . �3�

In order for a system to be invariant, on average, under 90°
rotation the transmission and reflection at the next neighbor
node are interchanged, i.e., the transfer matrix has the same
form as in Eq. �3� with a parameter 	�=−	.9 In order to
obtain this relation, one simply interchanges Z3 and Z4 �see
Fig. 1� and brings a transfer matrix to the form of Eq. �3�. We
therefore describe scattering at the nodes indicated in Fig. 1
by circles with transfer matrix T�	� and at the nodes indi-
cated by boxes with T�−	�.

The node parameter 	 is the relative distance between the
electron energy and the barrier height. It is related to the
physical quantities describing the system

	 � �E − �n +
1

2

E2 − V0
/E1, �4�

where E1 measures the ratio between saddle-point param-
eters and magnetic field, E2 is the distance between Landau
levels at strong magnetic fields, and V0 is a reference point of
a scalar potential �see Ref. 10 for details�. It is easy to see
that the most “quantum” case �equal probabilities to scatter
to the left and to the right� is at 	=0; in fact, numerical
calculations9 show that there is an extended state at that en-
ergy. Numerical simulations on the network model are per-
formed in the following way: one studies a system with fixed
width M and periodic boundary conditions in the transverse
direction. Multiplying transfer matrices for N slices and then
diagonalizing the resulting total transfer matrix, it is possible
to extract the smallest Lyapunov exponent 
 �the eigenvalues
of the transfer matrix are exp�
N��. The localization length
�M is proportional to 1/
. Repeating calculations for differ-

ent system widths and different energies, it is possible to
show that the localization length �M satisfies a scaling rela-
tion

�M

M
= f� M

��	�
� . �5�

In the QHE, the thermodynamic localization length ��	�
��	�−� and �=2.5±0.5. This is the main result,9 and it is in
good agreement with experimental data for spin-split re-
solved levels,11 numerical simulations using other models,12

and semiclassical argument13,14 that predicts �=7/3.
It is possible to model classical percolation using CC

model as well. It was shown15 that when the relative height
of the barriers fluctuate in the infinite range, the percolation
becomes classical �no tunneling is allowed� and classical per-
colation exponent �cl=4/3 is retrieved. On the other hand,
when the fluctuations are finite, their width acts as irrelevant
parameter16–18 and does not affect �.

In the present work, we modify CC model in the follow-
ing way. We expect that the presence of a polarized nucleus
near a saddle point of the scalar potential will modify a tun-
neling parameter 	 in Eq. �3� by changing V0 to V0±Vhf.
Moreover, we also expect that due to different relaxation
rates �in the vicinity of impurities of different signs�, the
following scenario can be realized: nuclei situated near dif-
ferent types of saddle point �nodes of the model� will be
polarized in opposite directions, breaking, therefore, the isot-
ropy of the system. We model this situation by introducing a
parameter 0
 p�1 describing the probability that there is a
polarized nucleus near a particular saddle point. Due to the
effect of high hyperfine fields described above, as a rough
approximation, we can expect that the barrier becomes “in-
finite,” i.e., the transfer matrix at the node is now a unit
matrix. On the model language, it means that the quasiparti-
cle stays on the same horizontal link �see Fig. 1� and the
isotropy of the model is therefore broken. Obviously, when
p=1, a 2D system is broken into M one-dimensional chains,
and, due to the fact that there is no backscattering, all states
are extended independent of energy 	 and system width M.
We, therefore, expect the smallest Lyapunov exponent 
=0,
in contradistinction to the “ordinary” 2D extended state,
where 
 is finite, and infinite thermodynamic localization
length is recovered only after finite-size scaling. In this
sense, p=1 case is close to a one-dimensional �1D� metal
found for a dirty superconductor with broken time-reversal
and spin-rotational symmetries.19

Before we present numerical results, let us discuss the
possible form for the scaling of the renormalized localization
length. Now, when we have “wiped out,” on average, a frac-
tion p of the nodes, a quasiparticle should travel a larger
distance �times 1/ �1− p�� in order to experience the same
number of scattering events. Therefore, naively, one would
expect that the effective system width is now M�1− p�−1 and
the scaling is

�M

M
= �1 − p�−1f� M

��	�
� . �6�

FIG. 1. Network model with missing nodes.
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On the other hand, we should take into account that the
“missing” node actually does not allow the quasiparticle to
propagate in the transverse direction �we have chosen the
system in such a way that, if there is no scattering, the qua-
siparticle stays on the same horizontal link�. Usually for CC
model and its generalizations, the typical value of the renor-
malized localization length for the extended state is of the
order of 1, meaning that in the extended state the quasipar-
ticle is able to traverse the system of width M. Therefore, in
the present situation, we could expect even larger value of �M
in the extended state, i.e., �1− p�−� dependence with ��1.

In order to find both critical exponents, we start by study-
ing a p dependence for 	=0, corresponding to the develop-
ment of a 2D extended state into a 1D extended state. The
results for system widths M =16,32,64 are presented in Fig.
2, allowing the following fit:

�M

M
= �1 − p�−1.3f�0� , �7�

where f�0� is the value of the renormalized localization
length in the extended state 	=0 for the standard CC model
�p=0�. This value for the critical exponent is suspiciously
close to the classical percolation exponent �cl=4/3. We also
show visibly worse fit of the data with the “naive” critical
exponent �=1.

We next use the value � found in Fig. 2 and study numeri-
cally renormalized localization length for various 	�0 and
p�1. All our data collapse on one curve with abscissa in the
form M /��	�, where thermodynamic localization length

diverges as ��	−�q with quantum percolation exponent
�q�2.5. The results of the scaling are presented in Fig. 3.

We argue that one can understand the appearance of the
classical percolation exponent in Eq. �7� by considering a
quasiparticle on the standard CC model deeply into the lo-
calized regime. In this case, localization length �M is M in-
dependent, meaning that a quasiparticle does not “feel” the
boundaries of the system, and its thermodynamic localization
length �=�M. Therefore, a quasiparticle travels on the perim-
eter of the classical cluster of the typical size �. Then by
increasing the fraction p of the missing nodes, we increase
the size of the classical cluster, actually making it infinite as
p approaches 1. Therefore, �1− p� acts as energy in the clas-
sical percolation problem, explaining the value 1.3�4/3.

Finally, all the numerical data we have obtained support
the following scaling relation:

�M

M
= �1 − p�−�clf�M	�q� , �8�

We stress that this result produces both quantum and classi-
cal percolation exponents from the same data. To summarize,
we have studied the influence of nuclear spins on the
localization-delocalization transition in quantum Hall sys-
tems. We have found that the fraction p of polarized nuclei
acts as a relevant parameter, leading to a different scaling
relation for the localization length �Eq. �8��.
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FIG. 2. Renormalized localizaton length at critical energy 	=0
as function of the fraction of missing nodes p for different system
widths. The solid line is the best fit 1.24�1− p�−1.3. The dashed line
is the fit with “naive” exponent �=1.

FIG. 3. Data collapse for all energies 	, system widths M, and
all fractions p�1 of missing nodes.
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