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We prove that the Mott insulating state is characterized by a divergence of the electron self-energy at
well-defined values of momenta in the first Brillouin zone. When particle-hole symmetry is present, the
divergence obtains at the momenta of the Fermi surface for the corresponding noninteracting system. Such a
divergence gives rise to a surface of zeros �the Luttinger surface� of the single-particle Green function and
offers a single unifying principle of Mottness from which pseudogap phenomena, spectral weight transfer, and
broad spectral features emerge in doped Mott insulators. We also show that only when particle-hole symmetry
is present does the volume of the zero surface equal the particle density. We identify that the general break-
down of Luttinger’s theorem in a Mott insulator arises from the breakdown of a perturbative expansion for the
self-energy in the single-particle Green function around the noninteracting limit. A modified version of Lut-
tinger’s theorem is derived for special cases.
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I. INTRODUCTION

In the absence of disorder, electronic states in insulators
fail to carry current either because the band is full �a band
insulator� or a gap opens at the chemical potential. The latter
is indicative of either a structural transition in which a par-
tially filled band splits by doubling the unit cell or a Mott
state in which strong on-site correlations create a charge gap
in a half-filled band, as in transition metal oxides, the high-
temperature copper-oxide superconductors a case in point.
While the origin of the Mott gap is clear, the mechanism for
the bifurcation of the half-filled band into upper and lower
Hubbard bands remains controversial.1 We show here that
the Mott gap leads to a divergence of the self-energy in mo-
mentum space, which in the case of particle-hole symmetry
lies on the noninteracting Fermi surface. Such a divergence
prevents the renormalized energy band from crossing the
Fermi energy and hence is ultimately the mechanism by
which Mott insulators insulate. Further, this divergence leads
to a vanishing of the single-particle Green function thereby
defining a surface of zeros in the first Brillouin zone. We
demonstrate that the zeros account for numerous anomalous
properties of the normal state of the cuprate superconductors.
The zeros found here obtain fundamentally from strong cou-
pling Mott physics2 and should be distinguished from those
arising from weak-coupling symmetry-breaking instabilities3

of the Fermi surface.
That the Fermi surface of the noninteracting system is in

some way connected with strong-coupling Mott physics �that
is, Mottness� has not been anticipated. For Fermi liquids,
such a correspondence is natural. Fermi liquid theory4 rests
on the seemingly simple conjecture that the number of bare
electrons at a given chemical potential equals the number of
Fermi excitations �quasiparticles� in the interacting system
regardless of the strength of the interactions. Quasiparticle
excitations are identified by simple poles of the single-
particle, time-ordered Green function, G�p ,��. Hence, for a
Fermi liquid, the Landau conjecture, proven by Luttinger,5

implies the existence of a surface �the Fermi surface� in mo-
mentum space at which ReG�p ,�=�F� changes sign by pass-
ing through infinity. In systems lacking quasiparticles �no
poles�, such as insulators, the Landau correspondence be-
tween the particle density and quasiparticle excitations
breaks down. In fact, as uncloaked recently,3,6,7 Luttinger’s
theorem is not necessarily invalidated when quasiparticles
are absent. The suggestion6–8 is that the particle density

N

V
= 2�

G�p,0��0

d3p

�2��3 � nLutt �1�

is properly defined through an integral in momentum space
over a region where the single particle propagator is positive.
An explicit assumption in Eq. �1� is that the imaginary part
of the self-energy vanishes at the chemical potential.9 Sign
changes occur at poles or at zeros of the Green function.
Should Eq. �1� hold, then the volume enclosed by the sur-
faces of zeros and poles yields the particle density.

In this paper, we offer a criterion for the location of the
surface of zeros and show explicitly that the volume en-
closed by the zeros yields the electron density only when a
Mott insulator has particle-hole symmetry. Our proof of the
latter makes general the perturbative arguments made re-
cently for a Kondo insulator.10 In the absence of particle-hole
symmetry, there is an additional contribution to the electron
density in Eq. �1� which arises from the breakdown of per-
turbation theory. We show explicitly that the breakdown of
Luttinger’s theorem does not obtain from a T=0 regulariza-
tion of divergent integrals as has been claimed6,10 but rather
arises anytime the self-energy cannot be obtained perturba-
tively around the noninteracting limit. Our results are in
agreement with the mechanism proposed by Altshuler et al.11

in the context of the breakdown of Luttinger’s theorem in the
presence of a spin-density wave. Finally, we demonstrate that
models which project out the high-energy scale at half-filling
lose the surface of zeros. As a consequence, the quasiparticle
weight need not12 be the same in the Hubbard and projected
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schemes such as the t-J model. The evolution of the surface
of zeros in the pseudogap phase is also delineated.

II. ZEROS IN A MOTT INSULATOR

As our starting point, we consider the simplest model
which captures the physics of Mott insulators, the Hubbard
model,

H = − �
i,j,�

tijci�
† cj� + U�

i

ni↑ni↓ − ��
i�

ni�, �2�

in which electrons hopping on a lattice between neighboring
sites with amplitude tij = t�ij and chemical potential � pay an
energy cost U anytime they doubly occupy the same site.
The operator ci� �ci�

† � annihilates �creates� an electron on site
i with spin � and � sets the chemical potential. The quantity
of interest is the single-particle retarded Green function,
G�

ret�i , j , t , t��=−i	�t− t����ci��t� ,cj�
† �t���	, in particular, its

momentum and energy Fourier transform, G�
ret�k ,��

=FTG�
ret�i , j , t , t��, where �a ,b� indicates the anticommutator

of a and b and 	�x� the Heaviside step function which is
nonzero only if its argument is positive. The quantity that is
directly observable experimentally through ARPES is the
spectral function, A��k ,��=−Im G�

ret�k ,�� /�. Summed over
momentum, the spectral function defines the single-particle
density of states. The causal nature of the Green function
permits it to be constructed entirely from its imaginary part

G�
ret�k,
� = �

−�

�

d
�
A��k,���

� − �� + i�
�3�

through the standard Hilbert representation. For a Mott insu-
lator, a gap of order U occurs in the spectral function. We
will take the gap to have a width 2
 centered about 0. As we
consider the general case in which symmetry breaking plays
no role in the gap, simply strong electron correlations, our
conclusions regarding the zeros are applicable to the mecha-
nism proposed by Mott. Within the gap, A�k ,��=0. This is a
necessary condition for any gap. Consequently, in the pres-
ence of a gap, the real part of the Green function evaluated at
the Fermi energy reduces to

R��k,0� = − �
−�

−
−

d��
A��k,���

��
− �


+

�

d��
A��k,���

��
�4�

as pointed out by Dzyaloshinskii.6 At half-filling, Mott insu-
lators have one-half the spectral weight above the gap.
Hence, it is, possible, in principle, that the real part of the
Green function vanishes along some momentum surface.
However, no criterion has been given for the location of such
a surface. Indeed, the nature of the Mott transition has been
studied extensively in d=� using dynamical mean-field
theory �DMFT�.13 In DMFT �d=��, the self-energy diverges
at 
=0 for all momenta. Hence, in d=�, there is no Lut-
tinger surface. For finite dimensional systems, it is not
known what becomes of the unphysical momentum indepen-
dent 1 /
 divergence of the self-energy in d=�. The feature
that this work brings into focus is the divergence of the self-
energy along a continuously connected momentum surface in

the first Brillouin zone as the defining feature of a Mott in-
sulator in finite dimensions.

A. Particle-hole symmetry

We now prove that when particle-hole symmetry is
present, the spectral function is an even function of fre-
quency at the noninteracting Fermi surface. As a conse-
quence, Eq. �4� is identically zero along that momentum sur-
face. To proceed, we consider a general particle-hole
transformation,

ci� → eiQ·rici�
† , �5�

of the electron annihilation operator. That the Hamiltonian
remain invariant under this transformation places constraints
on both Q and the chemical potential. The Hubbard model
with nearest-neighbor hopping remains invariant under Eq.
�5� for Q= �� ,�� and �=U /2. The latter is the value of the
chemical potential at half-filling, the Mott state. Transform-
ing the operators in the Green function according to Eq. �5�
and keeping the chemical potential fixed at �=U /2 leads to
the identity

A��k,
� = A��− k − Q + 2n�,− 
� . �6�

Hence, the spectral function is an even function of frequency
for k=Q /2+n�. Consider one dimension and nearest-
neighbor hopping. In this case, the symmetry points are
±� /2, the Fermi points for the half-filled non-interacting
band. In two dimensions, this proof is sufficient to establish
the existence of only two points, not a surface of zeros. To
determine the surface, we take advantage of an added sym-
metry in higher dimensions. For example, in two dimensions,
we can interchange the canonical x and y axes leaving the
Hamiltonian unchanged only if the hopping is isotropic. This
invariance allows us to interchange kx and ky on the left-hand
side of Eq. �6� resulting in the conditions

ky = − kx − q + 2n� �7�

and by reflection symmetry

− ky = − kx − q + 2n� , �8�

where Q= �q ,q�. For nearest-neighbor hopping, the resultant
condition, kx±ky =−�+2n�, is the solution to cos kx
+cos ky =0, which defines the Fermi surface for the noninter-
acting system. If only next-nearest-neighbor hopping is
present, the value of the wave vector that leaves the kinetic
energy term unchanged after a particle-hole transformation is
Q= �� ,0� or �0,��. Coupled with Eq. �6� and reflection sym-
metry we also obtain the Fermi surface of the noninteracting
system. The interactions need not be the local on-site repul-
sion in the Hubbard model for the surface of zeros to persist.
Nearest-neighbor interactions of strength V depend only on
the particle density and hence are independent of Q under a
particle-hole transformation. Such interactions renormalize
the chemical potential from U /2 �on-site interactions� to
�U+2V� /2 at the particle-hole symmetric point.

However, an implicit assumption in our proof which al-
lows for the interchange of the momenta in Eq. �6� is that the
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hopping is isotropic. Nonetheless, the result we have ob-
tained is independent of the isotropy of the hopping. That is,
our proof applies equally when the band structure is of the
form t�k�= tx cos kx+ ty cos ky, with tx� ty. To prove this, we
consider the moments

Mn
��k� � � d


2�

nd
G�

ret�k,
� �9�

of the Green function. For simplicity, we have set �=1. Us-
ing the Heisenberg equations of motion, we reduce14 the mo-
ments in real space

Mn
��i, j� = 1

2 
��
H,
H ¯ 
H,ci�� ¯ �n times,cj�
† �	

+ ��ci�,
¯
cj�
† ,H� ¯ H�,H�n times�	� �10�

to a string of commutators of the electron creation or anni-
hilation operators with the Hubbard Hamiltonian. The right-
hand side of this expression is evaluated at equal times. To
evaluate the string of commutators, it suffices to focus on the
properties of Ki�

�n�= 
¯
ci� ,H� , ¯H�ntimes, where by con-
struction, Ki�

�0�=ci�. We write the Hubbard Hamiltonian as
H=Ht+HU where HU includes the interaction as well as the
chemical potential terms and Ht the hopping term. The form
of the first commutator,

Ki�
�1� = �

j

tijcj� + Uci�ni−� − �ci� �11�

suggests that we seek a solution of the form

Ki�
�n� = �

j

tij� j�
�n� + Qi�

�n�, �12�

where Qi�
�n�= 
¯
ci� ,HU� , ¯HU�ntimes involves a string con-

taining HU n times and in � j�, Ht appears at least once. Our
proof hinges on the form of Qi�

�n� which we write in general as
Qi�

�n�=�nci�ni−�+�nci�. The solution for the coefficients

�n+1 = �U − ���n + U�− ��n,

�n = �− ��n �13�

is determined from the recursion relationship Qi�
�n+1�

= 
Qi�
�n� ,HU�. In the moments, the quantity which appears is

��Qi�
�n�,cj�

† �	 = �ij
�n�ni−�	 + �n� � �ij�n. �14�

Consequently, the moments simplify to

Mn
��i, j� = �ij�n +

1

2�
l

til����l�
�n�,cj�

† �	 + H.c.� . �15�

The criterion for the zeros of the Green function now
reduces to a condition on the parity of the right-hand side of
Eq. �15�. Consider the case of half-filling, particle-hole sym-
metry and nearest-neighbor hopping. Under these conditions,
�ni�	=1/2 and by particle-hole symmetry, �=U /2. The ex-
pressions for �n and �n show that the resultant coefficients

�n = �U

2

n1 + �− 1�n

2
�16�

vanish for n odd. Consequently, G��k ,
� is an even function
if the second term in Eq. �15� vanishes. In Fourier space, the
second term is proportional to the noninteracting band struc-
ture t�k�. The momenta at which t�k�=0 define the Fermi
surface of the noninteracting system. Note, the condition
t�k�=0 which defines the surface of zeros is independent of
the anisotropy of the hopping. We conclude that when
particle-hole symmetry is present, G�p=pF ,0�=0 for a Mott
insulator, where pF is the Fermi surface for the noninteract-
ing system. In this case, the volume of the surface of zeros is
identically equal to the particle density. This constitutes one
of the few exact results for Mott insulators that is indepen-
dent of spatial dimension or at least as long as d��. As
mentioned previously, in d=�, there is no Luttinger surface
as � diverges as 1/
 for all momenta.13 Finally, the only
condition for the applicability of our proof is that the form of
the spectral function leads to the continuity of R��k ,
� at

=0. Hence, the minimal condition is that the spectral func-
tion is continuous at 
=0. Therefore, if there is a gapless
quasiparticle excitation, for example, A��k ,��=��
�, our
proof becomes invalid.

B. Away From particle-hole symmetry

What happens when particle-hole symmetry is broken? To
consider this regime, we write the electron density

n = − 2i�
k

lim
t→0+

� d


2�
G�k,i
�ei
t �17�

as an integral of the time-ordered Green function where the
factor of 2 counts up- and down-spin electrons. In proving
Luttinger’s theorem, one uses the identity

G�k,i
� =
�

�i

ln G−1�k,i
� + G�k,i
�

�

�i

��k,i
� .

�18�

Implicit in this expression is the Dyson equation,

G−1�k,i
� = G0
−1�k,i
� + ��k,i
� , �19�

where � is the self-energy and G0 the Green function for the
noninteracting problem. The density, n= I1− I2, is now a sum
of two terms

I1 � − 2i�
k
�

−�

� d


2�

�

�i

ln G−1�k,i
� , �20�

I2 � 2i�
k
�

−�

� d


2�
G�k,i
�

�

�i

��k,i
� . �21�

Luttinger5 proved that I2 vanished and hence the electron
density is given simply by Eq. �1�. In fact, Dzyaloshinskii6

has claimed that I2 vanishes for a Mott insulator. Central to
this proof is the existence of a perturbative expansion for the
self-energy around the atomic limit. Based on the self-
energy, the Luttinger-Ward �LW� functional,5
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��
G� = �
k
� d


2�
��k,i
��G�k,i
� , �22�

can be constructed which for a Fermi liquid has a perturba-
tive expansion in terms of skeleton diagrams. In general, the
LW functional is assumed to have a perturbative expansion.
As such any perturbative LW functional must be free of sin-
gularities and vanish as 
→�. We show here that for the
Mott problem, singularities arise and it is precisely from the
singularities that a breakdown of Luttinger’s theorem arises.

To see how Luttinger’s theorem fails for a Mott insulator,
consider the exact temperature-dependent Green function,

G�k,i
� =
1

i
 + � + U/2 − �loc�i
�
=

i
 + �

�i
 − E1��i
 − E2�
,

�23�

in the atomic limit where

�loc�i
� =
U

2
+ �U

2

2 1

i
 + �
�24�

and E1,2=−�±U /2. As the Mott gap is well-formed in this
limit, any conclusion we reach regarding I2 will hold as long
as U� t. Can Eq. �24� be constructed from the noninteracting
limit? To all orders in perturbation theory at T=0, the self-
energy is given by

�pert = U . �25�

Such a self-energy cannot describe the two-peak structure of
the Mott insulating state. That is, starting from the noninter-
acting system, one cannot obtain the Mott gap perturbatively.
It is this breakdown of perturbation theory in generating the
Mott gap that is central to the ultimate breakdown of the
Luttinger sum rule on the volume of the surface of zeros.
Given that �pert��loc, the corresponding LW functional,
��G� cannot be obtained perturbatively. Consequently, we
must resort to a nonperturbative method to construct the LW
functional. To gain some insight into what the corresponding
LW functional looks like, we rewrite �loc in terms of the
exact G,

�
G� =
U

2
+

− 1 ± �1 + U2G2

2G
, �26�

by eliminating the 1/ �i
n+�� factor by using the Dyson
equation and solving the subsequent quadratic equation.
Here, the upper and lower signs should be used when �

+� � �U /2 and �
+� � �U /2, respectively. As �
G� satis-
fies the Dyson equation, it is exactly given by the functional
derivative of the exact LW functional with respect to G.
Hence, Eq. �26� implies that we know ��
G� /�G at the
saddle point of �. Constructing � in general, however, re-
quires complete knowledge of ��
G� /�G not simply at the
saddle point. How then do we construct �?

For the problem at hand, there are two requirements that
any approximate expression for �
G� must satisfy �1� it must
contain a singular part and �2� I2 computed from any ap-
proximate LW functional must agree with a direct calculation
based on the second of Eqs. �20�. The approximate LW func-

tional we derive here satisfies both of these requirements and
hence lends credence to the method. Faced with the similar
problem of obtaining �
G� knowing only its exact derivative
at one particular value of G for a spin-density wave problem,
Altshuler et al.11 simply integrated �
G� with respect to G to
obtain an approximate LW functional. They showed that this
procedure to be internally consistent for their problem as I2
evaluated with the approximate LW functional agreed with a
direct calculation of I2 from Eq. �20�. We adopt this approach
and check its internal consistency in a similar manner. The
integral of �
G�,

��i
� =
1

2�− ln G�i
� ± �1 + U2G2�i
�

±
1

2
ln��1 + U2G2�i
� − 1

�1 + U2G2�i
� + 1

�

= �reg�i
� + �sing�i
� , �27�

contains both a regular as well as a singular part,

�sing�i
� =
1

2
ln

G0�i
�
G�i
�

. �28�

Although the atomic limit differs from the spin-density wave
problem treated by Altshuler et al.,11 the approximate LW
functionals are identical. This state of affairs obtains because
of the similarity between the self-energies of the two prob-
lems. To evaluate I2, we note that only the singular part of
�
G� contributes. The result

I2 = − 2i� d


2�

��sing�i
�
�i


= 2���� − ��− E1� − ��− E2�

�29�

is in agreement with a direct calculation10 of I2 based on the
second equation in Eq. �20�. This agreement suggests that
our approximate expression for �
G� captures the essence of
the breakdown of Luttinger’s theorem. Note I2 term vanishes
only in the presence of particle-hole symmetry ��=0�. The
modified Luttinger theorem becomes

n = �
G�0,k��0

d2k

�2��2 + ���� . �30�

The modified Luttinger theorem is also valid even in the
presence of small hopping, that is, U� t, as can be seen by
considering

G�k,i
� =
1

i
 − t�k� + � + U/2 − �loc�i
�

=
i
 + �


i
 − E1�k��
i
 − E2�k��
�31�

for the Green function. Here t�k� is the Fourier transforma-
tion of the hopping element, tij. Substitution of G and � into
the second term of Eq. �31� leads to
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I2 = 2���� −� d2k

�2��2 ��
− E1�k�� + �
− E2�k��� . �32�

Once again, I2 vanishes in the presence of particle-hole sym-
metry and hence can be rewritten as Eq. �29�.

The form of the singular part of the Luttinger-Ward func-
tional compels a simpler formulation of the electron density.
Since the regular part of I2 vanishes, we can use Eqs. �20�
and �28� to recast the electron density as a sum of two con-
tributions,

n = i�
k
�

−�

� d


2�

�

�i

ln G�k,i
�G0�k,i
�

� �
G�k,
=0��0

d2k

�2��2 + �
Gt=0,U=0�k,
=0��0

d2k

�2��2 , �33�

each of the Luttinger form. Although both of the terms in this
expression 
as well as in Eq. �30�� contain discontinuities,
the discontinuities cancel in the sum leading to the density
being a continuous function of the chemical potential. Equa-
tion �33� is valid in the atomic limit as well as in the small
hopping regime and represents the general form of Lutting-
er’s theorem for a Mott insulator. Note in the weak hopping
limit, only the first term differs from that in the atomic limit.
In interpreting Eq. �33�, it is important to remember that the
second term is not equivalent to I2. Part of I2 cancels one of
the Green functions in the first term. The term which is left
over accounts for the fact that the chemical potential can be
placed arbitrarily within the gap as emphasized previously.10

This ambiguity, of course, is absent for a soft gap as in the
case of the pseudogap in the doped case. In this case, how-
ever, the exact self-energy is not known and no recasting of
the Luttinger theorem as the general statement in Eq. �33� is
possible. What the current analysis shows is that the singular
part of the LW functional, which is absent for a Fermi liquid,
leads to the breakdown of the Luttinger sum rule on the
surface of zeros in the absence of particle-hole symmetry.

The current analysis can be extended to finite tempera-
ture. At finite T, I2,

I2�T � 0� = f�− � +
�U2 + �2�k�

2

 + f�− � −

�U2 + �2�k�
2



− 2f��� , �34�

can be evaluated using Matsubara frequencies and the singu-
larity which originally existed on the real frequency axis can
be removed. Equation �34� goes over smoothly to the zero-
temperature I2�T=0� evaluated by real frequency integration.
Therefore, the nonvanishing of I2�T=0� is independent of the
regularization of the singular part of the LW functional and is
a generic feature of a Mott insulator. This result is significant
because Dzyaloshinskii6 proposed that the nonvanishing of I2
stemmed from the method Altshuler et al.11 used to regular-
ize the singular integrals. Namely that the breakdown of Lut-
tinger’s theorem for a spin-density wave arises from a T=0
regularization of divergent integrals that can only be reached
if there is a T=0 phase transition. The current work estab-
lishes that there is no such phase transition and the T=0

result is connected adiabatically to the finite-T result. Conse-
quently, the breakdown of Luttinger’s theorem lies else-
where. In both the Mott insulator and spin-density wave
problems, no perturbative expansion exists for the self-
energy around the noninteracting limit. In such cases, there
will always be a singular part of the LW functional and I2
will be finite. Altshuler et al.11 made a connection between
such a break down and the chiral anomaly in particle phys-
ics. While at the atomic limit, this association might be ap-
propriate, it is unclear whether this analogy holds for the
general case. To reiterate, for a Mott system lacking particle-
hole symmetry but possessing a divergent self-energy, the
singular part of G�
� will always integrate to a nonzero
value.

C. Consequences

Several claims follow necessarily from these results.
�C1� There are no nontrivial zeros of the single-particle

Green function in the single-impurity Anderson model. Be-
cause the gap is replaced by the Kondo resonance, no zeros
of the Green function obtain for the single-impurity problem.

�C2� At the surface of zeros, the self-energy at zero fre-
quency diverges. Write the single-particle time-ordered
Green function as G��k ,
�=1/ 

−��k�−Re ���k ,
�
− i Im ���k ,
��, where � is the self-energy. For a particle-
hole symmetric band structure, the single-particle Green
function vanishes linearly at the Luttinger surface, kL,
G��k ,
=0�=const�k−kL�. This implies that

Im ��k,0� � ��k − kL� . �35�

Note, however, that Im G�k ,
�=0 for all energies within the
gap. By inverting the Green function, it follows that

Re ���k,
� � �k − kL�−1, �36�

proving �C2�. To reiterate, in d=� �Ref. 13� no Luttinger
surface exists as the self-energy diverges for all momenta at

=0. While such a divergence is appropriate for d=�, it is
clearly unphysical for a finite-dimensional system. The di-
vergence in Eq. �36� prevents the renormalized energy band
E�k�=��k�+Re ���k ,
� from crossing the Fermi energy. The
result is an insulating state. Indeed, in numerical studies15 on
the Hubbard model at half-filling with nearest-neighbor hop-
ping, ���� ,0 ,
=0� has been observed to diverge as our
theorem indicates it must. However, Jarrell and co-workers15

attributed antiferromagnetism as the cause of the divergence.
Our theorem indicates that the zeros are independent of the
ground state �be it ordered or not as in the case of a spin
liquid� as long as the Mott gap is present. The zeros are a
direct consequence of Mottness itself. That Mottness and ze-
ros are one and the same indicates that the divergence of the
self-energy provides a general mechanism for insulating
states in the absence of broken symmetry. That is, in a finite-
dimensional lattice, the divergence of the self-energy at a
continuously connected momentum surface is the general
mechanism by which the Mott insulating state obtains.

�C3� Zeros represent a breakdown of weak-coupling per-
turbation theory. This follows directly from �C2�. A diver-
gence of the self-energy is the general signature of the break-
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down of perturbation theory. Zeros offer a concrete way of
realizing this breakdown. In d=1, this breakdown occurs for
all U�0. In d=2 in the particle-hole symmetric case, the
critical value of U is not known, though all numerics16,17

indicates that the only special point is U=0.
�C4� The surface of zeros of the single-particle Green

function is absent from projected models at half-filling. Since
it is common in the study of doped Mott insulators to use
projected models, it is instructive to evaluate whether such
truncations admit a surface of zeros. Projecting out double
occupancy, as in the t-J model, erases the spectral weight
above the chemical potential at half-filling. Consequently,
the real part of the Green function reduces to the first integral
in Eq. �4�, which is always nonzero. �C4� is thus proven.
Transforming the operators in the t-J model to respect the no
double occupancy condition is of no help as the problem
stems from the loss of spectral weight above the gap once
projection occurs. As the surface of zeros occurs at zero en-
ergy and is located in momentum space, it should certainly
be present in a low-energy theory of the Hubbard model.
However, it is clear from Eq. �4� that zeros of the Green
function stem from a sum rule12 connecting low and high
energies. Hence, it is a priori expected that the zero surface
would be sensitive to the retention of the spectral weight at
high energies.

The absence of zeros in the t-J model at half-filling is in
actuality related to the problem of the robustness of zeros
and the location of the chemical potential at half-filling in a
Mott insulator. At T=0, the chemical potential is a free pa-
rameter that can be located anywhere in the Mott gap. Con-
sider, the extreme case of placing the chemical potential atop
the lower Hubbard band and sending U to infinity. In this
case, the integrand in the second term in Eq. �4� has an
infinite energy denominator and hence the second term van-
ishes. Consequently, there are no zeros in this case. The ac-
tual realization of this is the t-J model at “half-filling.”18

Hence, there are certain locations for the chemical potential
for which the zero line vanishes. This does not diminish the
significance of the zero line as the defining feature of a Mott
insulator, however. That the chemical potential is arbitrary at
T=0 indicates that the T=0 value of the chemical potential is
not a defining feature of a Mott insulator. What is the defin-
ing feature of a Mott insulator is that at half-filling, half the
spectral weight lies above the gap. Such a schism in the
spectral weight guarantees that the real part of the Green
function must change sign along some momentum surface
for some energy or range of energies within the gap as em-
phasized by Dzyaloshinski.6 Our claim that the surface of
zeros defines the Mott insulator is simply that dynamical
generation of a gap, which at half-filling results in one-half
the spectral weight lying above and below the gap, leads to a
sign change of Re G for some �not necessarily all� energies
within the gap. In this vein, the t-J model is not a realistic
model of the Mott state because a zero line is strictly absent.

�C5� Even at infinitesimal doping, the t-J and Hubbard
models probably do not yield equivalent values for the qua-
siparticle weight. Because the chemical potential sits atop the
lower Hubbard band in the t-J model at “half-filling”,18 per-
haps the proper way to compare with the Hubbard model is
in the limit of infinitesimal doping 
see Figs. 3�a� and 3�c��.

Numerical and analytical studies on the one-hole system19–21

find a quasiparticle in the t-J model with weight J / t at
�� /2 ,� /2� whereas in the Hubbard model,22 the quasiparti-
cle weight vanishes as Z�L−	, 	�0, L the system size.
Variational calculations23 also yield a finite value of Z in the
extrapolated limit of n=1−. While none of this constitutes a
proof, it is highly suggestive that the value of Z is tied to the
presence of the upper Hubbard band as has been emphasized
previously.12,24 In the one-hole system, sufficient spectral
weight must lie above the chemical potential for Eq. �4� to
vanish. There is no guarantee that this state of affairs obtains
for the t-J model since no spectral weight was above the gap
at the outset. No such problem arises for the Hubbard model.

�C6� If a Mott gap opens, zeros of the single-particle
Green function still persist when the particle-hole symmetry
is broken weakly. As remarked earlier, all that is necessary to
establish is that for some energies within the gap, the real
part of the Green function changes sign. At present, our
proof applies to any kind of band structure that is generated
from hopping processes which remain unchanged after the
application of Eq. �5�. In general, the two kinds of hopping
processes transform as ���−kx ,�−ky�=−��kx ,ky� and t���
−kx ,�−ky�= t��kx ,ky�. The latter describes next-nearest-
neighbor hopping and as is present in the cuprates. If only
such hopping is present, the surface of zeros is no longer the
diagonal �� ,0� to �0,�� 
or the point � /2 in one dimension
�1D��, but rather the “cross” �0,� /2� to �� ,� /2� and
�� /2 ,0� to �� /2 ,�� �or, in 1D, the points −� /4 and 3� /4�.
When both types of hopping are present, no symmetry argu-
ments can be made. Our proof in this case will rely on a key
assumption: the Green function is a continuous function of
the hopping parameters t and t�. Hence, strictly speaking our
proof applies only when t�� t. When only t is present,
R��k ,0� has one sign �plus� near k= �0,0� �or, in 1D, k=0�,
and the opposite �minus� near k= �� ,�� �k=� in 1D� and
will vanish on the zero line. Alternatively, if we have t� hop-
ping, R��k ,0� will have a certain sign near k= �0,0� and k
= �� ,��, and the opposite sign near k= �0,�� and k= �� ,0�
and will vanish on the “cross.” From continuity, for t�� t,
R��k ; t , t�� will have the same sign structure as R��k ; t , t�
=0�. That is, it will change sign when going from �0,0� to
�� ,�� regardless of the path taken. Therefore, the line of
zeros exists for small enough t�, the relevant limit for the
cuprates. In the opposite limit, t�� t, a similar argument
holds. Whether a proof exists for the case of a strong viola-
tion of particle-hole symmetry is not known.

III. UTILITY OF ZEROS: PSEUDOGAP PHASE OF DOPED
MOTT INSULATORS

Ultimately, the utility of the surface of zeros will be de-
termined by its experimental relevance. As we have seen
above, the volume of the surface of zeros can only be calcu-
lated explicitly in the case of particle-hole symmetry. At fi-
nite doping where this symmetry is explicitly broken, the
existence �though not the volume� of the zero surface can
nonetheless be established. Two independent arguments are
relevant here. The first is based on the distribution of spectral
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weight in the spectral function and the other on the fact that
Fermi arcs, as seen experimentally25,26 in the doped cuprates,
necessitate the existence of a surface of zeros. The general
arguments made here for the interdependence of zeros and
Fermi arcs augment the numerical evidence found by
Stanescu and Kotliar4 for the same effect.

To illustrate that the spectral weight distribution in a
lightly doped Mott insulator supports a zero surface, we con-
sider the spectral function shown in Fig. 1. The computa-
tional scheme used to produce this spectral function has been
detailed elsewhere17 and is in agreement with results from
state-of-the-art15 calculations on the two-dimensional �2D�
Hubbard model. Two features are relevant. First, it possesses
a depressed density of states at the chemical potential for a
wide range of momenta. This leads to a density of states
which vanishes algebraically at the chemical potential, as is
seen experimentally.27 Such a dynamically generated
pseudogap which occurs without any symmetry breaking has
been confirmed by all recent numerical computations on the
doped Hubbard model.2,15,28–30 Hence, that Im G�0,p�=0
along some contour in momentum space for a doped Mott
insulator is not in dispute neither theoretically nor experi-
mentally. What about Re G�0,p�? As is clear from Eq. �4�,
Re G�0,p�=0 if along some contour in momentum space,
the spectral weight changes from being predominantly below
the chemical potential to lying above. At half-filling, the zero
surface obtains entirely because most of the spectral weight
at �� ,�� lies above the chemical potential, whereas at �0, 0�,
it lies below. As is evident, this trend still persists for x�1 as
Fig. 1 attests. Hence, R��k ,0� still has the same sign struc-
ture as in the undoped case. Consequently, a zero surface
must exist.

Ultimately, satisfying the zero condition, Eq. �4�, requires
spectral weight to lie immediately above the chemical poten-
tial. Spectral weight transfer31 across the Mott gap is the
mediator. The weight of the peak above the chemical poten-
tial scales as 2x+ f�x , t /U� �Ref. 31� �strictly 2x in the t-J
model� while the weight below the chemical potential is de-
termined by the filling, 1−x. Whether or not the redistributed
spectral weight is symmetric or not around the chemical po-
tential will determine how severely the Lutinger volume is
violated. There are only two options as depicted in Fig. 2.

Weak violation of Luttinger volume. In order to satisfy
Luttinger theorem, the surface of zeros must be close to the
�0,��− �� ,0� line �assuming that t� is small�. Consider a
point on the zero line in the vicinity of �0,��. As is evident
from Fig. 1 the spectral weight immediately above � 
in the
vicinity of the �� ,0�− �0,�� line� is small compared with the
spectral weight below � and, in order for Re G to vanish, the
chemical potential must be positioned asymmetrically inside
the pseudogap 
see panel �A� of Fig. 2�.

Strong violation of Luttinger volume. The other possibility
is that the Luttinger theorem is strongly violated and the
surface of zeros is somewhere in the vicinity of �� ,��. In
that region, the spectral weight of the lower Hubbard band is
greatly reduced as shown in Fig. 1. Consequently, most of
the spectral weight lies in the upper Hubbard band and a
more symmetrical distribution around the chemical potential
is possible 
see panel �B� in Fig. 2�.

To decide between options �A� and �B� in Fig. 2 we ap-
peal to experiments. Two observations support option �A�.
First, the pseudogap is in fact asymmetrical.27 Second, con-
sider the recent photoemission experiments26 in which the
temperature dependence of the Fermi arcs has been mea-
sured. Experimentally, lightly doped cuprates possess Fermi
arcs25 along the zone diagonal in the vicinity of �� /2 ,� /2�.
Whether the Fermi arcs represent a finite T precursor of a
Fermi surface and hence quasiparticles as claimed by some3

FIG. 1. Spectral function for a doped Mott insulator at a filling
of n=0.95 at T=0.07t for a path in momentum space from �0, 0� to
�� ,0� to �� ,�� and then back to �0, 0�. Equation �4� must undergo
a sign change by passing through zero because at �0, 0� most of the
spectral weight lies below the chemical potential, whereas at �� ,��,
it lies above. The temperature dependence of the density of states at
the Fermi level is shown in the inset. That the spectral features are
broad near the chemical potential is a direct consequence of the
divergence of the self-energy at 
=0 at the Luttinger surface. The
spectral function was computed using the two-site self-consistent
method of Stanescu and Phillips. �Ref. 17�

FIG. 2. �Color online� Schematic depiction of two possibilities
for the distribution of spectral weight in the single-particle density
of states, n�
�, in a lightly doped Mott insulator. In both cases, the
peak above the chemical potential represents the low-energy spec-
tral weight. The weight of this peak increases as least as fast as 2x,
where x is the number of holes. �A� The Luttinger surface lies along
the zone diagonal and the transferred spectral weight must be asym-
metrically located relative to the chemical potential to lead to a
vanishing of Re G. �B� The spectral weight redistribution is sym-
metrical and the Luttinger surface lies away from the zone diagonal,
for example, close to �� ,��.
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can be settled by temperature-dependent ARPES experi-
ments in the pseudogap regime. Kanigel26 et al. performed
such temperature-dependent ARPES measurements on
Bi2Sr2CaCu2O8+� �Bi2212� and concluded that the Fermi arc
length shrinks to zero as T /T*, where T* is the temperature at
which the pseudogap feature appears. Hence, the only rem-
nant of the arc at T=0, is a quasiparticle in the vicinity of
�� /2 ,� /2�. Consequently, Kanigel et al.26 argue for a nodal
metal. That a nodal metal or a quasiparticle band existing
over a finite connected region in momentum space not ex-
tending to the zone boundary �as would be the case in a T
=0 Fermi arc� cannot be understood without the existence of
a surface of zeros can be seen as follows. Assume a quasi-
particle exists at �� /2 ,� /2�. Then Re G�0, p� must change
sign for all momenta less than or greater than �� /2 ,� /2� as
depicted in Fig. 3�c�. Consider traversing a path through
�� /2 ,� /2� and then returning along a path that does not
cross this point. To end up with the correct sign for Re G, the
return path must intersect a line across which ReG�0,p�
changes sign. Since there are no infinities, except at
�� /2 ,� /2�, the only option is for a zero line to exist. The
zero line must emanate from the �� /2 ,� /2� point and touch
the edges of the Brillouin zone close to �� ,0� and �0,��. A

zero surface terminating close to �� ,�� is not an option as
this would permit the existence of paths that traverse the
zone diagonal without changing the sign of Re G�0,p�. This
would suggest that the zero surface in the doped cuprates
preserves the Lutinger volume and option �A� in Fig. 2 is
more consistent with experiment. As a consequence, Fermi
arcs are direct evidence that zeros of the single particle
Green function must be present in the doped cuprates. In a
recent paper, Stanescu and Kotliar2 have argued based on
numerics for such an interdependence.

IV. CONCLUDING REMARKS

As we have seen the experimental utility of zeros of the
single-particle Green function is in their relevance to
ARPES. One of the hallmarks of the normal state of the
cuprates is an absence25 of electronlike quasiparticles. Qua-
siparticles require a vanishing of the renormalized band,
E�k�=��k�+Re ��k ,
=0�; but because Re � diverges along
the surface of zeros, no quasiparticles form and broad spec-
tral features are inevitable as seen in ARPES in the
cuprates.25 The clearest experimental signature that the sur-
face of zeros exists is the recent temperature-dependent
ARPES experiments that indicate that the Fermi arcs shrink
to a point as T→0. Since the surface clearly exists for the
cuprates, the only outstanding question is how does the sur-
face of zeros evolve as a function of doping. Various options
are shown in Fig. 3. An abrupt transition from a surface of
zeros to a Fermi surface would describe a transition from an
insulator to a metal. Such a transition would require a phase
transition at xc, the doping level at which the pseudogap
terminates. Alternatively, quasiparticles and zeros could co-
exist. While we have advocated the former scenario based on
a calculation of the conductivity which reveals that the
pseudogap is an insulating gap,32 a result consistent with
experiment33,34 ultimately, both scenarios are possible, in
principle.35,36 The former corresponds to an insulator �or
nodal metal� whereas the latter describes a metal. The recent
angle-resolved photoemission experiments26 seem to indicate
that the only coexistence of quasiparticles and zeros occurs
at a single point indicating that a Fermi surface is possible
only for some doping level exceeding xc as depicted in the
upper panels in Fig. 3.
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