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Chiral magnetic ordering due to Dzyaloshinsky-Moriya interaction on two-dimensional lattices is studied
theoretically. Several competing Dzyaloshinsky-Moriya vectors are introduced on the basis of symmetry argu-
ments. The role of the exchange interaction, magnetic anisotropy, and dipolar coupling for the ordering in
chiral nanomagnets is investigated. It is demonstrated that the periodicity of the modulated structure, which is
determined by all interactions involved, is lattice dependent; the direction of spiral propagation and orientation
of magnetization is determined by the competition between different Dzyaloshinsky-Moriya vectors and an-
isotropy; the anisotropy can induce a domain formation or destroy the chiral ordering depending on its
orientation. We show that the Dzyaloshinsky-Moriya coupling is responsible for the chiral magnetic ordering

in Fe/W(110).
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I. INTRODUCTION

Many magnetic systems possess certain periodicity. The
periodicity has at least two length scales—that of an atomic
lattice, and that of a magnetic structure. Such structures,
which consist of a perfectly periodic crystal, and an addi-
tional periodic modulation of some order parameter, are de-
noted as modulated structures. In centrosymmetric, magneti-
cally ordered crystals the handedness of modulated structures
is energetically degenerate. However, if the inversion sym-
metry is broken for some reasons, this degeneracy may be
lifted because the electronic spin-orbit scattering induces chi-
ral asymmetry of exchange coupling.! In such noncen-
trosymmetric systems an additional order parameter—
chirality—might appear. The chiral ordering is very
interesting from the theoretical point of view as well as for
technical applications.

It has been shown recently that antisymmetric exchange
interactions first predicted by Dzyaloshinsky!? can be espe-
cially strong near magnetic surfaces and in nanostructures
due to reduced symmetry and large strains.>* The directions
of Dzyaloshinsky-Moriya (DM) vectors have been investi-
gated for several surfaces* and the existence of noncollinear
magnetic structures in thin films has been postulated. Exist-
ing studies of chiral magnetic ordering have been limited up
to now to one-dimensional chiral structures with a single DM
vector® or to frustrated bulk pyrochlores (Ref. 6 and the ref-
erences therein). The evolution of magnetic nanoordering in
mono and/or double layers as a function of length and orien-
tation of several DM vectors has not been investigated so far.

The description of magnetic ordering in two-dimensional
systems with several DM vectors is not trivial for several
reasons. First, for many lattice symmetries the orientation
and the strength of the DM interactions cannot be determined
using the theoretical concepts of Ref. 1-4, 7, and 8. Second,
different DM couplings may compete, and third, the influ-
ence of the magnetic anisotropy on the chiral ordering is not
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known. Magnetic order on the nanoscale, however, is very
important for the description of hysteretic and dynamic prop-
erties of nanoobjects.

Though magnetic structuring on the atomic scale is im-
portant for an understanding of the physical properties of
artificial nanostructures no general theoretical approach has
been proposed up to now. The aim of our investigation is to
achieve a spatially resolved description of the magnetization
patterning in two-dimensional lattices in the presence of
competing DM interactions and a magnetocrystalline aniso-

tropy.

II. METHODS

In order to explore the intriguing question as to what ex-
tent the competition between several Dzyaloshinsky-Moriya
vectors affects the magnetization patterning, we performed
Monte Carlo (MC) simulations for samples up to 200X 200
classical spins on two-dimensional lattices with open and
periodic boundary conditions. Square, rectangular, losenge,
and triangular symmetries have been chosen for the calcula-
tions as they correspond to different surfaces of sc, bce, and
fcc parent structures for which non-negligible DM interac-
tions have been predicted.’* Additionally we have performed
calculations for three-dimensional Fe/W(110) nanowires.
However, it has been assumed that the DM interactions have
a nonvanishing amplitude only at the surface layer of a nano-
wire.

The interaction Hamiltonian reads

H=JR)S S, §;+ 2D (S, % ) +K(i) >, (S; - i)
i

i<j i v

S.-S. (S:-R.)(S.:-R.
+d2< IR31_3( i l])( j z]))’ (1)

5
i<j \ Ry R;;

where S; is a three-dimensional unit spin vector at a site i;
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13,.j=13,.—13j the distance vector between the ith and the jth
site and the set {R;} defines a three-dimensional lattice L®.

J(ﬁ,,-) (negative for ferromagnetic systems) and d denote the
strength of the exchange and the dipolar interaction, respec-

tively. The vectorial DM interaction D depends on both the

distance vector R and the orientation 7 of the DM vector in
the three- dlmensmnal space 0. K(m) (negative for easy-
axis systems) is the uniaxial anisotropy per atom along a
direction m. The calculations have been performed for three-
dimensional lattices L3)—{(R,X,R,y,R,‘)} {(R;y,R; )} or on
their two-dimensional counterparts L C L. The plane of
L? structures is defined by L?={R}= {(R,x,Rly)} the or-
thogonal complement to the L'® plane being given by {Ri}
={R..}.

The simulations were performed with an algorithm espe-
cially designed for long-range systems: the local fields at
each site are computed at the beginning of the simulation and
are only updated when a spin-flip attempt is accepted.” To
check the convergence of the Monte Carlo (MC) procedure
for systems with DM interactions we have repeated the cal-
culations with local updates only and with combined local
and global updates, where all spins are mirrored at a plane
with a randomly chosen normal vector.® Good convergence
has been obtained in both cases. To prevent artificial effects
we did not use a cutoff for evaluation of the dipolar coupling.

In contrast to MC schemes for ferromagnetic systems,
where only restricted rotations of the magnetic moment are
often used,!? the rotational space was sampled continuously,
i.e., a moment can assume any new angle. This is especially
important in dipolar and chiral systems as these interactions
often favor large angles between neighboring spins. An ex-
tremely slow annealing procedure with up to 150 tempera-
ture steps has been applied. To avoid metastable states we
have performed two different simulations of the same system
simultaneously, starting at different seeds for the random
number generator to ensure that the samples take different
paths to the equilibrium. Only when both samples reached
the same stable energy level it has been taken for granted
that the system has reached equilibrium.

III. DZYALOSHINSKY-MORIYA VECTORS FOR
DIFFERENT LATTICE SYMMETRIES

According to Refs. 1-4, 7, and 8 the orientation and the
amplitude of D*_ are strongly dependent on the lattice sym-

metry. In nanomagnets and two-dimensional films antisym-
metric exchange coupling is expected to be much stronger
than in bulk systems.*> The reduced point group symmetry

at surfaces leads to a IEU- dependence of the DM interaction
or, in other words, different DM vectors can be found for
different crystallographic directions.

In Fig. 1 the orientations of the nonzero DM vectors*’ for
four lattice types are shown. According to Ref. 1-4, 7, and 8

nonvanishing D ~may exist only for atomic bonds which do

not have a center of inversion at their midpoint. Such atomic
bonds are schematically drawn in Fig. 1 as connections be-
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FIG. 1. Orientations 7 of nonzero DM vectors D; for (a) a
bee(001) (square lattice), (b) a sc(110) (rectangular lattlce) (c) a
bee(110) (losenge lattice), and (d) an fec(111) (triangular lattice)
surfaces. Panels (a) and (b): the 7 are from the Refs. 1-4, 7, and 8,
the moduli of the vectors can be different for different systems.
Panel (c) the 7 are lying in the lattice plane but the angle between
n andR cannot be determined (Ref@ 1-4, 7, and 8). Panel (d): the
7 are in a plane perpendicular to R, ;j» but their orientation cannot be
determined according to Refs. 1-4, 7, and 8.

tween lattice points. For example, for a bee(001) surface [see
Fig. 1(a)] nonzero DM interactions are possible only along
two perpendicular nearest neighboring bonds. These two DM
vectors, however, have different orientations: 7, L7, [see
Fig. 1(a)]. Hence, each nonzero DM vector has two charac-

teristics: the direction of the interaction, R, o and the orienta-
tion 7. The orientation of the unity vector 7 coincides with
that of the DM vector. However, we denote all nonvanishing

DM vectors by D;“

on two very imporéjant characteristics of the DM interaction.

While the orientations 7 can be established for the
bee(001) and the sc(110) surface from the theoretical con-
cepts in Ref. 1-4, 7, and 8, for the fcc(111) and the bee(110)
surfaces these orientations are not known. The length of dif-
ferent DM vectors can vary widely for different systems with
similar lattice geometry. Therefore, a general description of
the magnetic ordering in two-dimensional systems as a func-
tion of the modulus and the orientation of the DM vectors is
necessary. In the following we explore the magnetic configu-

in order to provide explicit information

rational space as a function of the ratio |D |/J for different
surfaces of cubic structures.

IV. RESULTS
A. One nonzero Dzyaloshinsky-Moriya vector

Generally both the DM and the exchange interaction can
act between nearest neighbors as well as between more dis-
tant sites. For the sake of sunphcny we first discuss a simple

situation when only one D - vector exists and only a nearest

neighbor ferromagnetic exchange interaction J is present.
The dipolar interaction and the anisotropy are not considered
in this first set of calculations.

104431-2



CHIRAL MAGNETIC ORDERING IN TWO-DIMENSIONAL...

FIG. 2. (Color online) Perspective view of stable Monte Carlo
magnetization configurations for a bee(110) surface at the tempera-

~[110] _ ~[001]
ture kT=0.05J: (a) |D[110]| 0.37; (b) |D[110]| 0.3J. The three-

dimensional magnetic moments are represented as cones. Shades of
grey (colors) denote the vertical component of the magnetization.
Perpendicular to the plane, the L® component of magnetization S,
rotates from +1 (grey/red) to —1 (dark grey/blue) through S,=0
(light grey/green).

The results of our simulations for a losenge lattice corre-
sponding to bee(110) surface and a triangular lattice corre-
sponding to fcc(111), hep(0001), sc(111) or bee(111) struc-
tures are illustrated in Figs. 2 and 3, respectively. In Fig. 2
the DM interaction acts along one of the high symmetry
crystallographic directions in the film plane; i.e., R;;ll [110]in
Fig. 2. This leads to the fact that the magnetization modu-
lates along [110] axis while in each atomic row running in

[001] L[110] all magnetic moments have identical orienta-
tion (see Fig. 2). We call the direction for which the modu-
lation of magnetization occurs the direction of propagation
of the spiral state. This direction provides no information
about the chirality of the spiral or the spatial orientation of
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FIG. 3. Top view of a portion of the stable Monte Carlo mag-

[110]|—O4] at

kT/J=0.05. 7 is perpendicular to the film plane. The magnetic pat-
tern is completely planar.

netization configuration on a triangular lattice for |D
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FIG. 4.

structure as a function of |D |/ J for different lattices and directions

(Color online) Periodicity of a modulated magnetic

of propagation.

magnetic moments. These two important features are_ deter-
mined by the orientation 7 of a nonzero DM vector D . In

Flg 2(a) R~ is chosen such that R ;In while in Fig. 2(b)

R Ln In other words, in the first case the propagation di-
rectlon coincides with the orientation of the DM vector
whereas in the latter case the two directions are perpendicu-

lar. As a result one finds a Bloch-type rotation for R;;lln (the
rotation occurs in the plane which is perpendicular to the
propagation direction), whereas Néel like (the rotation oc-
curs in the plane which is parallel to the propagation direc-

tion) for R L 7. As can be expected from the Hamiltonian in
Eq. (1) in both cases the rotation plane is perpendicular to
the orientation 7z of the DM vector. The chirality is clockwise
with respect to 7 for a positive DM term and anticlockwise
for a negative one.

An interesting effect has been found for a DM vector
parallel to the z axis [001] direction for an fcc(111) symme-
try. According to Refs. 4 and 7 such a situation is possible in

lattices with a hexagonal symmetry. In Fig. 3 the results of
[0071]

[110]
=0.05J are shown. As in the previous cases the modulation

our calculations for |D |=0.4J at low temperature kT

propagates in the direction [110] with somewhat larger peri-
odicity. Unlike the previous systems, however, the DM vec-
tor is perpendicular to the L® plane. Therefore, the rotation
is confined to the film plane and a planar, Néel-, wave-like
magnetization pattern is formed (see Fig. 3).

Qualitatively the picture is similar for other propagation
directions and other lattices. To make this analysis quantita-
tive we define the periodicity of the modulated structure as
the number of next nearest distances, na,,, after which iden-
tical patterning is achieved. The periodicity P of a magneti-
zation configuration does not depend on the orientation of
the DM vector. However, it depends on the lattice symmetry.
The periodicity for different lattices are displayed in Fig. 4.
P is determined by the competition between the exchange
and the DM interaction energy. Hence, P increases with a

decreasing ratio |D

I
veals a power law P o (|D | 17)~PPY) for all types of studied

I
lattices. In the reglon 03< |D
close to 0.8. For |D

. and, hence, B—0.
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he7)

For [D
i . . . .
accuracy of our calculations in this region is low because of

the large periodicity and imperfection of spirals. We believe
that the data show a crossover from =1 for weak DM in-

teraction to B=0 at high |D+n*

to be close to unity, although the

For the identical ratios D |/J the periodicity of lattices

with smaller coordination numbers q is smaller. For example,
for D/J=0.2 P increases from 30a,, for a bcc(001) (square
lattice) to almost 60a,, for a fcc(111) surface (a triangular
lattice). This happens because the total exchange energy per
spin E.,,=¢J, which competes with the DM energy in es-
tablishing the periodicity of a spiral, is larger for lattices with
higher coordination numbers. Hence, in closer packed sys-
tems the exchange coupling is more efficient in competition
with the chiral DM interaction.

If the spiral is directed along one of the next nearest
neighboring directions P decreases further because of ineffi-
ciency of the direct exchange. An example provides a
losenge lattice, which corresponds to the (110) surface of a

bce parent lattice. For the spiral propagating in [110] direc-
tion (D 1) we find P~20a,, (see Fig. 4). Thus, for identical
|D |/ ratio the periodicity of the DM spirals propagating
along high symmetry directions of a lattice is somewhat
larger than those along other directions because of the com-

petition between the DM and the strong exchange interac-
tion.

B. Influence of magnetic anisotropy

Ultrathin magnetic structures very often possess an out-
of-plane [like 1-5 ML Co on Au(111), double Fe layer on
W(110) or Fe/Au(001)] or an in-plane [like Fe monolayer on
W(110) or Co/Cu(001)] crystalline anisotropy.!' An out-of-
plane anisotropy competes with the shape anisotropy arising
from the magnetic dipole-dipole interaction. Depending on
the orientation an in-plane uniaxial crystalline anisotropy can
compete with or stabilize the DM coupling and the dipolar
energy. To get a general insight into the influence of the
anisotropy on the magnetic structuring in the presence of
DM coupling we investigated the magnetic chiral ordering
for different ratios K(m)/J and d/J. In Refs. 4 and 12 the
DM vector has been estimated to be of the order of

Rjj
even larger. Therefore |DE)(1)?]]| /J=0.2 has been used in the

calculations. The uniaxial anisotropy has been varied in the
interval 0<K(m)/J<0.2 as for magnetic nanostructures
huge anisotropy values have been reported.!*!* The dipole-
dipole coupling has been varied between d=0 and d=0.01J
which is reasonable for monolayers of 3d metals on metallic
substrates. '

Figure 5 shows the square of the vertical component of
magnetization, S, as a function of the anisotropy energy per

atom. Interestingly enough the curves (S?): F(K([110])) and
(82)=f(K([001])) are strongly different. For K([001]), which

is oriented perpendicularly to the DM vector D%(l)(l)?]], (Sf) is

PHYSICAL REVIEW B 75, 104431 (2007)
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FIG. 5. Plot of (Sf_) versus the anisotropy energy per atom or
dipolar constant in units of the exchange constant, where S, is the
component of magnetization perpendicular to the film plane. The
magnetic configurations have been obtained for a free-standing
monolayer with a bee(110) stacking; i.e., a losenge lattice, with the
DM interaction acting along the [001] direction [73 in Fig. 1(c)].
The results for K([110]) and K([001]) are presented; |D%(l)(l)?]]|/l
=0.2; kT/J=0.01.

nonzero until K([001])/J=~ |D%(1)(1)(1)]]|/J:0.2. For K([110]);
i.e., for m being parallel to the DM vector, <S§)=O already

for K([110])/J~0.05. The reason for such a behavior can be
understood from the magnetic structuring corresponding to
each type of anisotropy.

If K(m) is perpendicular to D~ the DM term requires a

nonzero projection of magnetlzatlon on the K(m) axis be-
cause the magnetization rotates in the plane perpendicular to

&+ - This is the case of K([001]) [see Fig. 6(a)]. When
ij o
K(m)ID?

i N . .
magnetization on the direction of anisotropy. This is the case

the DM term requires a zero projection of the

of K([110]). A gain in energy due to a magnetocrystalhne
anisotropy is associated in the first case [K(m)J_D ] by

increasing the width of regions with large pl‘O]CCthIlS of
magnetization on the K(m) axis. As follows from Fig. 6(a)
this disturbs the balance between different orientations lying
in the plane of rotation and leads to domain formation. The
periodicity of the pattern and the magnetization profile
change drastically but the domain structure is very stable.
For K([001])/J=0.03 we find (S3,)=~0.680+0.003; (S?)
~(.317+0.0028 and (Sff0>z0.003i3.5 X 107*. Hence, de-
spite the imbalance between different orientations the mag-
netization remains in the (100) or (xz) plane, which in turn is
perpendicular to the DM vector. The very small amount of a
[110] component of magnetization is due to thermal fluctua-
tions (kT/J=0.01).

In the case of K(m)||D~ the domain formation does not

result in any gain of the amsotropy energy. Therefore the
periodicity of the pattern remains the same while the system

tries to increase the y([110]) component of the magnetiza-
tion [see Fig. 6(b)]. For K([110])/J=0.03 we find (SZ),)
~0.47+0.02; (Sf)~0.4310.023 and <Sff0>z0.1¢0.015.
This large y component [see Fig. 6(b)] cannot be explained
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FIG. 6. (Color online) Top view of portions of stable MC con-
figurations and magnetization profiles on a free standing bec(110)
monolayer for (a) K([001]) and (b) K([110]). The amplitude of the

anisotropy is identical in both cases K(m)=0.03J; D%(l)(l)?]] kT/J
=0.01. The color scheme denotes the vertical component S, of the

magnetization.

by thermal fluctuations anymore. However, the increase in
the magnetization component parallel to the DM vector is
incompatible w1th the DM term. Therefore already very low

values of K(m) IID destroy the chiral ordering. The same is

true for the dipole- cflpole coupling (see Fig. 5). It is known'®

that the dipolar interaction induces a lattice dependent aniso-
tropy; i.e., the magnetic moments try to form chains along
principal crystallographic directions of a lattice. When these
directions do not coincide with the plane defined by the DM
coupling, as in the described case, the dipolar interaction of

magnitude d/.J=0.05D";

\ij
favor of a vortex formation.

C. Several nonvanishing Dzyaloshinsky-Moriya vectors

In the following we investigate the magnetic ordering in
the most common situation when at least two DM vectors are
present. As has been shown above each of the DM vectors

induces a spiral rotation of perlodlclty P (|D |/ J)™# in the

plane perpendicular to the D . Different Vectors D ; ~com-

pete for the direction of propagatlon as well as for the orien-
tation of magnetic moments. First, we explore magnetic or-
dering as a function of the relative length of two DM vectors
for the example of a square lattice. Then, we compare ferro-
magnetic modulated structures in lattices of different geom-
etry.

Usually, in systems consisting of one sort of atoms the
DM vectors make a left- or a right-hand vortex around the
site i (see Fig. 2 of Ref. 4). In alloys or nano-objects the
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FIG. 7. (Color online) Top view of portions of stable MC con-
figurations for a simple cubic lattice corresponding to a free stand-
ing bcc(OOl) monolayer with a ferromagnetic exchange interaction.

2[010] 2[100] [010] _ 1 R[100]; _
(a) [ Dol =0.87=—DE N (b) Do =0.87=|DR'E: k777=0.05.
The insets at the bottom of (a) and (b) give averaged magnetization
profiles along [001] direction for the two cases. The color scheme

denotes the vertical component of magnetization S,.

situation might be different. For the sake of generality we
explore all possible relative orientations of DM vectors. Gen-
erally, we find that if several DM vectors exist the magnetic
ground state is a superposition of spirals. This superposition
is nontrivial as quite a few configurations depending on the
phase, strength, and sign of the initial spirals are possible. In
addition the lattice symmetry and the strength of the ex-
change interaction play a very important role. For the calcu-
lations on a square lattice we considered two perpendicular
DM vectors as shown in Figs. 1(a) and 1(b). One of the
vectors propagates along the [100] axis and is oriented par-
allel to [010] while another one runs along the [010] direc-
tion and is of the [100] orientation.

If both DM vectors are of identical length the propagation

direction IEP of the modulated structure forms an angle of 45
degrees with respect to each axis of high symmetry (see Fig.
7). There are two possibilities for such an orientation: [110]

and [110]. The two directions are energetically degenerated.

Apparently the same should be true for the orientation of

2[010]) _ | ~[100]
D[100]| = |D[010]

are oriented with an angle of 45° with respect to the principal
axes. However, for each direction of propagation character-

magnetization. For | | the magnetic moments

ized by a vector R, two magnetization orientations are pos-

sible: parallel or perpendicular to R,. Our calculations dem-
onstrate that a sign of the DM interaction plays a crucial role
for the orientation of magnetization. The sign of each DM
vector determines the chirality of a spiral. For a single DM
vector the spirals with opposite chirality have identical en-

ergy, but the energy of a superimposed state depends on the

chirality of each constituent. While for |D%?(l)g%|_|DE)?8%|

Fl)(l)g% [010]——DH)(1)8% [100] a Bloch-like rotation is energeti-

cally favorable [see Fig. 7(a)], for |DF1)(1)3%|—|DE)(1)3%| with

D[?ég%-[010]= é?g% [100] the Néel type of rotation applies

[see Fig. 7(a)].

The orientation of R, as well as the magnetization orien-

tation depend on the ratio Q= |DE8%%|/|DE8$%| This depen-

dence is highly nonlinear. In the bottom panel of Fig. § a
schematic representation of the modulated structure and the
orientation of magnetization for different Q is displayed. To
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FIG. 8. Top panel: angle ¢ between the direction of uniform
magnetization and the [010] axis and angle « between the direction
of a uniform magnetization and an in-plane orientation of magneti-

zation S, as a function of the ratio Q=|l§%%8§|/ |13%(1)(1)8%| for a simple
cubic lattice corresponding to a free standing bec(001) monolayer
with a ferromagnetic exchange interaction. Bottom panel: schematic
representation of the orientation of the magnetization §xy (thick
black arrows) with respect to the direction of a uniform magnetiza-
tion (thick black and white lines) as a function of Q. The moduli

and orientations of the DM vectors 5{?58% and 5%5?3% are shown

explicitly.

characterize quantitatively the two orientations in question
we have defined two angles. The angle ¢ is the angle be-
tween the [010] axis and the magnetic “domain walls;” i.e.,
the lines of magnetic moments with identical orientation
(thick black and grey lines in Fig. 7, see also Fig. 8). With
this definition ¢+ /2 gives the angle of the propagator R,

with respect to the [010] direction. The angle « in Fig. 7
denotes the orientation of the in-plane components of mag-

netization, Sys relative to the direction of domain walls. The
moduli and the orientations of the two DM vectors are
shown on the left- and right-hand sides of Fig. 8.

As can be seen from the bottom panel of Fig. 8 the angle
¢ does not depend on the sign of the DM term for a square
lattice. The function ¢=f(Q) is shown in the top panel of
Fig. 8. Within the accuracy of our calculations it follows a
power law with the exponent 2.71. The situation with the
orientation of magnetization « is more complicated: « al-
ways equals 7/2 for opposite senses of rotation of the initial
spirals. This means that for any relative strength of two DM
interactions of opposite sign the rotation is Néel-like. For
both DM vectors being either both positive or both negative
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FIG. 9. (Color online) (a) Top view of a portion of a domain
wall between energetically degenerated regions of a periodic DM
modulation on a square lattice corresponding to a free standing
bee(001) monolayer with a ferromagnetic exchange interaction. The
system is characterized by two DM vectors: |5%?58%| =|5%é?8%| =0.2J;
(b) and (c) schematic representation of the orientation of DM vec-
tors leading to the perfect chirality of [110] domain walls in
Fe/W(110) with (b) a Néel and (c) a Bloch rotation of
magnetization.

the rotation changes from Néel-like to Bloch-like with in-
creasing Q. The a(Q) dependence cannot be described by a
power law but shows Boltzmann growth a(1/Q)* 1 +i 0"
Because of the energetic degeneration of the two propa-
gation directions on the (100) surfaces we find domain for-
mation in samples with DM interactions. The energy cost for

domain walls is small (<2% of the total energy) for realistic

] .. .
values of |D15 as a very smooth transition from one spiral

orientation to the other is possible. A typical domain wall
generated by the Monte Carlo procedure on a square lattice is
shown in Fig. 9(a).

The mechanism of the chiral rotation on other surfaces
with several DM vectors is similar to that described above.
We always find a superposition of initial spirals. However, if
the angle between orientations of the initial DM vectors is
different from /2 or 7 the chirality of initial spirals influ-
ences both ¢(Q) and a(Q) dependencies. Hence, the direc-

tion of propagator R, and the magnetization orientation
strongly depend on the magnitude, the orientation, and the
chirality of the DM vectors. The functions ¢(Q) and a(Q)
vary with respect to the exchange, the DM and the aniso-
tropy parameters; i.e., are material specific. The influence of
the on-site anisotropy and the dipolar interaction is similar to

that described for spirals occurring for a single 52 If an

anisotropy axis coincides with an orientation of the Ifnagne-
tization required by the DM coupling the formation of mag-
netic domains is favored. If the anisotropy is perpendicular
to the ideal plane of rotation it destroys the modulation of the
magnetic ordering. In order to demonstrate to which com-
plexity of magnetic ordering the competition between differ-
ent DM vectors can lead we discuss in the following the
losenge lattice for the example of Fe/W(110).

D. Chirality of domain walls in Fe/W(110)

Double Fe layers on a stepped W(110) substrate have
been extensively studied experimentally and
theoretically.!”! This very interesting system is character-
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ized by alternating monolayer and double layer growth. Both
regions show a periodic magnetic domain structure. The pe-
riodicity of the pattern as well as the width of mono and/or
double layer regions depends on the Fe coverage. The typical
distance between adjacent walls for the coverage of 1.7
monolayers is of the order of 20 nm. The domains are sepa-
rated by 180° domain walls which always run along the
[110] direction. While in monolayers domains with two op-
posite in-plane orientations have been observed, in double
layers out-of-plane domains alternatingly magnetized up and
down exist. Experimentally a perfect chirality of magnetic
domain walls for the whole area of a large sample has been
reported.'®2° This finding has never been supported by the-
oretical studies although all other parameters like the orien-
tation of domain walls or the domain size have been de-
scribed theoretically.”!

Perfect chirality can appear due to DM interactions pre-
dicted to be non-negligible on ultrathin (110) surfaces of
cubic crystals.>*!>2 However, the theoretical concepts in
Refs. 3, 4, and 12 cannot predict an exact orientation of the
DM vectors as shown in Fig. 1(c). The only statement for a
bce(110) surface made in the Refs. 3, 4, and 12 is that the
two vectors should lie in the film plane.

To check whether the uniqueness of the chirality of the
domain walls in Fe/W(110) is due to DM interactions we
first studied the magnetic structuring for two DM vectors as
discussed in Ref. 4 [vectors n; and n, in Fig. 1(c)]. We re-
peated the calculations of Ref. 21 using a Hamiltonian with a
DM term. As the DM interaction vanishes if there is a center
of inversion between cites i and j, it is expected to be rel-
evant only when the local symmetry is sufficiently low.
Therefore, nonvanishing DM interactions have been intro-
duced only between cites belonging to the upper plane of the
double layer. All other interactions have been applied to the
whole system. The parameters of the exchange interaction
and anisotropy as well as the magnitude of magnetic mo-
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ments are known from numerous first principles studies,?>?3

the DM vectors, however, are unknown for that system.

Therefore, we explored a phase space for |5E;1‘“]|:|13'[1121—l]|

=0.1,...,0.5J. It follows from our calculations that there is a
manifold of modulated magnetic structures depending on the
relative orientation and the modulus of 7, and 7,. However,
only some solutions support the experimentally observed
magnetic domain structure. Two possibilities are schemati-
cally shown in Figs. 9(b) and 9(c). The situation in Fig. 9(b)
corresponds to domain walls of Néel type, while that of Fig.
9(c) to the Bloch type. In both cases the walls are running
along [110] L R,

In conclusion, we have demonstrated that several surface
induced DM vectors can compete for the direction of propa-
gation of the modulated structure as well as for the orienta-
tion of magnetization. The strength of the DM interaction
competes with the exchange interaction and anisotropy in
establishing the periodicity and the orientation of the modu-
lated structure. Depending on its orientation the crystalline
anisotropy can promote formation of magnetic domains or
destroy the chiral ordering. We have shown that the DM
interaction is responsible for the perfect chirality of magnetic
domain walls in Fe/W(110). However, our calculations dem-
onstrate also that in real nanosystems in which the exchange
interaction is long ranged, several DM constants apply, the
anisotropy and the dipolar interactions are much stronger
than in bulk, the magnetic phase space is huge. Therefore, to
get an insight into the magnetic structuring of nano-objects
the DM vectors must be accurately calculated in the frame-
work of relativistic ab initio studies.
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